Journal of Mathematical Research with Applications May, 2016, Vol. 36, No. 3, pp. 272–274 DOI:10.3770/j.issn:2095-2651.2016.03.003 Http://jmre.dlut.edu.cn

A Second Note on a Result of Haddad and Helou

Yujie WANG

School of Mathematics and Computer Science, Anhui Normal University, Anhui 241003, P. R. China

Abstract Let K be a finite field of characteristic $\neq 2$ and G the additive group of $K \times K$. Let k_1, k_2 be integers not divisible by the characteristic p of K with $(k_1, k_2) = 1$. In 2004, Haddad and Helou constructed an additive basis B of G for which the number of representations of $g \in G$ as a sum $b_1 + b_2(b_1, b_2 \in B)$ is bounded by 18. For $g \in G$ and $B \subset G$, let $\sigma_{k_1,k_2}(B,g)$ be the number of solutions of $g = k_1b_1 + k_2b_2$, where $b_1, b_2 \in B$. In this paper, we show that there exists a set $B \subset G$ such that $k_1B + k_2B = G$ and $\sigma_{k_1,k_2}(B,g) \leq 16$.

Keywords additive basis; representation function

MR(2010) Subject Classification 11B34

1. Introduction

Let G be a semi-group. For $A, B \subseteq G, g \in G$, and k_1, k_2 be integers with $(k_1, k_2) = 1$, we define

$$\sigma_{k_1,k_2}(A, B, g) = \sharp\{(a, b) \in A \times B : k_1a + k_2b = g\},\$$

and $\sigma_{k_1,k_2}(A,g) = \sigma_{k_1,k_2}(A,A,g)$. In particular, we denote $\sigma_A(g) = \sigma_{1,1}(A,g), \delta_A(g) = \sigma_{1,-1}(A,g)$.

The well known Erdös-Turán conjecture [1] says that if A is a basis of \mathbb{N} , then $\sigma_A(n)$ cannot be bounded. Püs [2] first established that the analogue of the Erdös-Turán conjecture fails to hold in some abelian groups. Let K be a field of characteristic $\neq 2$ and G the additive group of $K \times K$. In 2004, Haddad-Helou [3] constructed an additive basis B of G for which the number of representations of $g \in G$ as a sum $b_1 + b_2$ ($b_1, b_2 \in B$) is bounded by 18. In 2010, Tang-Tang [4] investigated the parallel problem for differences. We find that the set constructed by Tang-Tang [4] is the same as the set constructed by Haddad-Helou [3]. That is, there exists a set $A \subseteq G$ such that $1 \leq \sigma_A(g) \leq 18$ and $1 \leq \delta_A(g) \leq 14$ for all $g \in G$. For the related problems we refer to [5–10].

In this paper, we obtain the following result.

Theorem 1.1 Let K be a finite field of characteristic $\neq 2$, k_1, k_2 be integers not divisible by the characteristic p of K with $(k_1, k_2) = 1$ and G the additive group of $K \times K$. Then there exists a set $B \subset G$ such that $k_1B + k_2B = G$, and $\sigma_{k_1,k_2}(B,g) \leq 16$.

Remark 1.2 Indeed, if, for instance k_1 is divisible by the characteristic p of K, then, for any

Received May 14, 2015; Accepted September 18, 2015

E-mail address: wangyujie9291@126.com

Supported by the National Natural Science Foundation of China (Grant No. 11471017).

subset B of G, we have $k_1B = \{(0,0)\}$ and then $k_1B + k_2B = k_2B$ is in bijection with B (since obviously k_2 will not be divisible by p, as $(k_1, k_2) = 1$), so that $k_1B + k_2B = G$ if and only if B = G, and in that case, for any $g \in G$, we have

$$\sigma_{k_1,k_2}(G,g) = |\{(\mu,\nu) \in G \times G : k_1\mu + k_2\nu = k_2\nu = g\}| = |G \times \{k_2^{-1}g\}| = |G|.$$

Throughout this paper, we denote by $K^* = K \setminus \{0\}$ the multiplicative group of K and by $S(K^*) = \{x^2 : x \in K^*\}$ the subgroup of the square elements of K^* . For $\alpha \in K^*$, let $Q_{\alpha} = \{(\mu, \alpha \mu^2) : \mu \in K\} \subset G.$

2. Proofs

Lemma 2.1 Let k_1, k_2 be integers not divisible by the characteristic p of K with $(k_1, k_2) = 1$. For $g = (a, b) \in G$ and fixed $\alpha, \beta \in K^*$, consider the equation

$$g = k_1 x + k_2 y, \quad x \in Q_\alpha, \ y \in Q_\beta.$$

If $\alpha k_2 + \beta k_1 \neq 0$, then the set $k_1 Q_{\alpha} + k_2 Q_{\beta}$ consists of all elements $(a,b) \in G$ such that $k_1 k_2 (\alpha k_2 + \beta k_1) b - k_1 k_2 \alpha \beta a^2$ is a square in K, and for any $g \in G$, $\sigma_{k_1,k_2}(Q_{\alpha},Q_{\beta},g) \leq 2$. If $\alpha k_2 + \beta k_1 = 0$, then the equation has at most one solution except if g = 0, when it has |K| solutions.

Proof Let $g = (a, b) \in G$. Consider the system of equations

$$a = k_1 \mu + k_2 \nu, \tag{1}$$

$$b = k_1 \alpha \mu^2 + k_2 \beta \nu^2. \tag{2}$$

Substituting the value of μ from (1) into (2), we get the equation

$$k_1 b = k_2 (\alpha k_2 + \beta k_1) \nu^2 - 2a\alpha k_2 \nu + \alpha a^2.$$
(3)

Case 1 $\alpha k_2 + \beta k_1 \neq 0$. This is a quadratic equation in ν , and it has exactly one or two solutions in the field K if and only if its discriminant $4[k_1k_2(\alpha k_2 + \beta k_1)b - k_1k_2\alpha\beta a^2]$ is a square in K. Since the characteristic of K is $\neq 2$, the non-zero square factor 4 can be discarded in the latter condition. Thus for any $g = (a, b) \in G$, we have $\sigma_{k_1, k_2}(Q_\alpha, Q_\beta, g) \leq 2$.

Case 2 $\alpha k_2 + \beta k_1 = 0$. Then (3) is an equation of degree 1. If $a \neq 0$, (3) has one solution. If a = b = 0, (3) has |K| solutions. If a = 0, $b \neq 0$, (3) has no solution. This completes the proof of Lemma 2.1. \Box

Lemma 2.2 ([3, Lemma 3.7]) If K is a finite field of characteristic $\neq 2$, then the index of the subgroup $S(K^*)$ in the multiplicative group of K^* is 2. Thus the product of two non-square elements of K^* is a square element of K^* .

Lemma 2.3 Let k_1, k_2 be integers not divisible by the characteristic p of K with $(k_1, k_2) = 1$. If K is a finite field of characteristic $\neq 2$ and $|K| \ge 5$, then there exist elements $\alpha, \beta \in K^*$ such that $\alpha \in S(K^*), \beta \notin S(K^*)$, and $\alpha k_2 + \beta k_1 \neq 0$. **Proof** By Lemma 2.2, $S(K^*) \neq K^*$ and $|S(K^*)| = |K^*|/2 \ge 2$, thus we can choose $\alpha \in S(K^*)$, $\beta \in K^* \setminus S(K^*)$, and $\alpha k_2 + \beta k_1 \neq 0$. \Box

Proof of Theorem 1.1 If $K = \mathbb{F}_3 = \{0, 1, 2\}$, put $B = \{(0, 0), (0, 1), (0, 2), (1, 1), (1, 0)\}$, then $B \subset \mathbb{F}_3 \times \mathbb{F}_3$, we have $k_1B + k_2B = G$ with $\sigma_{k_1, k_2}(B, g) \leq 5$.

Now we consider K to be a finite field of characteristic $\neq 2$ and $|K| \ge 5$.

Let $\alpha, \beta \in K^*$ such that $\alpha \in S(K^*)$, $\beta \notin S(K^*)$, and $\alpha k_2 + \beta k_1 \neq 0$. Put $\gamma = \alpha \beta (k_1 + k_2)/(\beta k_1 + \alpha k_2)$, $B = Q_\alpha \cup Q_\beta \cup Q_\gamma$. By the fact that $\beta \neq \alpha$, we have $\alpha \neq \gamma$, $\beta \neq \gamma$.

Case 1 If $k_1k_2 = -1$, then $\gamma = 0$. Let $n = 2\alpha\beta/(\alpha - \beta)$. By [4], $B = Q_\alpha \cup Q_\beta \cup Q_n$ is a basis of G, we have

$$\sigma_{k_1,k_2}(B,g) \leqslant \sum_{r,s \in \{\alpha,\beta,n\}} \sigma_{k_1,k_2}(Q_r,Q_s,g) \leqslant 14.$$

Case 2 If $k_1k_2 \neq -1$, then $\gamma \neq 0$. We have $\alpha k_2 + \beta k_1 \neq 0$ and $\gamma k_2 + \gamma k_1 \neq 0$. By Lemma 2.1,

$$k_1Q_{\alpha} + k_2Q_{\beta} = \{(a,b) \in G : k_1k_2(\alpha k_2 + \beta k_1)b - k_1k_2\alpha\beta a^2 \in S(K^*) \cup \{0\}\},\$$

$$k_1Q_{\gamma} + k_2Q_{\gamma} = \{(a,b) \in G : k_1k_2(\gamma k_2 + \gamma k_1)b - k_1k_2\gamma^2 a^2 \in S(K^*) \cup \{0\}\}.$$

Let

$$e = k_1 k_2 (\alpha k_2 + \beta k_1) b - k_1 k_2 \alpha \beta a^2, \quad f = k_1 k_2 (\gamma k_2 + \gamma k_1) b - k_1 k_2 \gamma^2 a^2.$$

Thus an element $(a, b) \neq (0, 0)$ of G lies in $k_1Q_{\alpha} + k_2Q_{\beta}$ (resp., in $k_1Q_{\gamma} + k_2Q_{\gamma}$) if and only if e (resp., f) is square in K.

By simple calculation, we have $f = \beta \alpha \gamma^{-2} e$. Since $\alpha \in S(K^*)$, $\gamma^{-2} \in S(K^*)$, by Lemma 2.2, we have $\beta \alpha \gamma^{-2} \notin S(K^*)$, and thus $f \in S(K^*)$ if and only if $e \notin S(K^*)$. Hence, if an element $(a,b) \neq (0,0)$ of G does not lie in $k_1 Q_{\alpha} + k_2 Q_{\beta}$, then it lies in $k_1 Q_{\gamma} + k_2 Q_{\gamma}$. Therefore, $G = (k_1 Q_{\alpha} + k_2 Q_{\beta}) \cup (k_1 Q_{\gamma} + k_2 Q_{\gamma})$, which is stronger than the required $k_1 B + k_2 B = G$.

Hence, $\sigma_{k_1,k_2}(B,g) \leq \sum_{r,s \in \{\alpha,\beta,\gamma\}} \sigma_{k_1,k_2}(Q_r,Q_s,g) \leq 16$. This completes the proof of Theorem 1.1. \Box

Acknowledgement We would like to thank the referee for his/her helpful comments.

References

- P. ERDÖS, P. TURÁN. On a problem of Sidon in additive number theory, and on some related problems. J. London Math. Soc., 1941, 16(4): 212–215.
- [2] V. PUS. On multiplicative bases in abelian groups. Czechoslovak Math. J., 1991, 41(2): 282–287.
- [3] L. HADDAD, C. HELOU. Bases in some additive groups and the Erdös-Turán conjecture. J. Combin. Theory Ser. A, 2004, 108(1): 147–153.
- [4] Chiwu TANG, Min TANG. Note on a result of Haddad and Helou. Integers, 2010, 10(18): 229–232.
- [5] Yonggao CHEN. The analogue of Erdös-Turán conjecture in Z_m. J. Number Theory, 2008, 128(9): 2573-2581.
- [6] M. B. NATHANSON. Unique representation bases for integers. Acta Arith., 2003, 108(1): 1-8.
- [7] S. V. KONYAGIN, V. F. LEV. The Erdös-Turán Problem in Infinite Groups. Additive Number Theory, Springer, New York, 2010.
- [8] I. Z. RUZSA. A just basis. Monatsh. Math., 1990, 109(2): 145-151.
- [9] Min TANG, Yonggao CHEN. A basis of \mathbb{Z} . Colloq. Math., 2006, **104**(1): 99–103.
- [10] Min TANG, Yonggao CHEN. A basis of \mathbbm{Z} (II). Colloq. Math., 2007, $\mathbf{108}(1),$ 141–145.