A Second Note on a Result of Haddad and Helou

Yujie WANG
School of Mathematics and Computer Science, Anhui Normal University, Anhui 241003, P. R. China

Abstract

Let K be a finite field of characteristic $\neq 2$ and G the additive group of $K \times K$. Let k_{1}, k_{2} be integers not divisible by the characteristic p of K with $\left(k_{1}, k_{2}\right)=1$. In 2004, Haddad and Helou constructed an additive basis B of G for which the number of representations of $g \in G$ as a sum $b_{1}+b_{2}\left(b_{1}, b_{2} \in B\right)$ is bounded by 18. For $g \in G$ and $B \subset G$, let $\sigma_{k_{1}, k_{2}}(B, g)$ be the number of solutions of $g=k_{1} b_{1}+k_{2} b_{2}$, where $b_{1}, b_{2} \in B$. In this paper, we show that there exists a set $B \subset G$ such that $k_{1} B+k_{2} B=G$ and $\sigma_{k_{1}, k_{2}}(B, g) \leqslant 16$.

Keywords additive basis; representation function
MR(2010) Subject Classification 11B34

1. Introduction

Let G be a semi-group. For $A, B \subseteq G, g \in G$, and k_{1}, k_{2} be integers with $\left(k_{1}, k_{2}\right)=1$, we define

$$
\sigma_{k_{1}, k_{2}}(A, B, g)=\sharp\left\{(a, b) \in A \times B: k_{1} a+k_{2} b=g\right\},
$$

and $\sigma_{k_{1}, k_{2}}(A, g)=\sigma_{k_{1}, k_{2}}(A, A, g)$. In particular, we denote $\sigma_{A}(g)=\sigma_{1,1}(A, g), \delta_{A}(g)=\sigma_{1,-1}(A, g)$.
The well known Erdös-Turán conjecture [1] says that if A is a basis of \mathbb{N}, then $\sigma_{A}(n)$ cannot be bounded. Pŭs [2] first established that the analogue of the Erdös-Turán conjecture fails to hold in some abelian groups. Let K be a field of characteristic $\neq 2$ and G the additive group of $K \times K$. In 2004, Haddad-Helou [3] constructed an additive basis B of G for which the number of representations of $g \in G$ as a sum $b_{1}+b_{2}\left(b_{1}, b_{2} \in B\right)$ is bounded by 18. In 2010, Tang-Tang [4] investigated the parallel problem for differences. We find that the set constructed by Tang-Tang [4] is the same as the set constructed by Haddad-Helou [3]. That is, there exists a set $A \subseteq G$ such that $1 \leqslant \sigma_{A}(g) \leqslant 18$ and $1 \leqslant \delta_{A}(g) \leqslant 14$ for all $g \in G$. For the related problems we refer to [5-10].

In this paper, we obtain the following result.
Theorem 1.1 Let K be a finite field of characteristic $\neq 2, k_{1}, k_{2}$ be integers not divisible by the characteristic p of K with $\left(k_{1}, k_{2}\right)=1$ and G the additive group of $K \times K$. Then there exists a set $B \subset G$ such that $k_{1} B+k_{2} B=G$, and $\sigma_{k_{1}, k_{2}}(B, g) \leqslant 16$.

Remark 1.2 Indeed, if, for instance k_{1} is divisible by the characteristic p of K, then, for any
subset B of G, we have $k_{1} B=\{(0,0)\}$ and then $k_{1} B+k_{2} B=k_{2} B$ is in bijection with B (since obviously k_{2} will not be divisible by p, as $\left(k_{1}, k_{2}\right)=1$), so that $k_{1} B+k_{2} B=G$ if and only if $B=G$, and in that case, for any $g \in G$, we have

$$
\sigma_{k_{1}, k_{2}}(G, g)=\left|\left\{(\mu, \nu) \in G \times G: k_{1} \mu+k_{2} \nu=k_{2} \nu=g\right\}\right|=\left|G \times\left\{k_{2}^{-1} g\right\}\right|=|G| .
$$

Throughout this paper, we denote by $K^{*}=K \backslash\{0\}$ the multiplicative group of K and by $S\left(K^{*}\right)=\left\{x^{2}: x \in K^{*}\right\}$ the subgroup of the square elements of K^{*}. For $\alpha \in K^{*}$, let $Q_{\alpha}=\left\{\left(\mu, \alpha \mu^{2}\right): \mu \in K\right\} \subset G$.

2. Proofs

Lemma 2.1 Let k_{1}, k_{2} be integers not divisible by the characteristic p of K with $\left(k_{1}, k_{2}\right)=1$. For $g=(a, b) \in G$ and fixed $\alpha, \beta \in K^{*}$, consider the equation

$$
g=k_{1} x+k_{2} y, \quad x \in Q_{\alpha}, y \in Q_{\beta}
$$

If $\alpha k_{2}+\beta k_{1} \neq 0$, then the set $k_{1} Q_{\alpha}+k_{2} Q_{\beta}$ consists of all elements $(a, b) \in G$ such that $k_{1} k_{2}\left(\alpha k_{2}+\beta k_{1}\right) b-k_{1} k_{2} \alpha \beta a^{2}$ is a square in K, and for any $g \in G, \sigma_{k_{1}, k_{2}}\left(Q_{\alpha}, Q_{\beta}, g\right) \leqslant 2$. If $\alpha k_{2}+\beta k_{1}=0$, then the equation has at most one solution except if $g=0$, when it has $|K|$ solutions.

Proof Let $g=(a, b) \in G$. Consider the system of equations

$$
\begin{gather*}
a=k_{1} \mu+k_{2} \nu \tag{1}\\
b=k_{1} \alpha \mu^{2}+k_{2} \beta \nu^{2} . \tag{2}
\end{gather*}
$$

Substituting the value of μ from (1) into (2), we get the equation

$$
\begin{equation*}
k_{1} b=k_{2}\left(\alpha k_{2}+\beta k_{1}\right) \nu^{2}-2 a \alpha k_{2} \nu+\alpha a^{2} . \tag{3}
\end{equation*}
$$

Case $1 \alpha k_{2}+\beta k_{1} \neq 0$. This is a quadratic equation in ν, and it has exactly one or two solutions in the field K if and only if its discriminant $4\left[k_{1} k_{2}\left(\alpha k_{2}+\beta k_{1}\right) b-k_{1} k_{2} \alpha \beta a^{2}\right]$ is a square in K. Since the characteristic of K is $\neq 2$, the non-zero square factor 4 can be discarded in the latter condition. Thus for any $g=(a, b) \in G$, we have $\sigma_{k_{1}, k_{2}}\left(Q_{\alpha}, Q_{\beta}, g\right) \leqslant 2$.

Case $2 \alpha k_{2}+\beta k_{1}=0$. Then (3) is an equation of degree 1. If $a \neq 0,(3)$ has one solution. If $a=b=0$, (3) has $|K|$ solutions. If $a=0, b \neq 0$, (3) has no solution.

This completes the proof of Lemma 2.1.
Lemma 2.2 ([3, Lemma 3.7]) If K is a finite field of characteristic $\neq 2$, then the index of the subgroup $S\left(K^{*}\right)$ in the multiplicative group of K^{*} is 2 . Thus the product of two non-square elements of K^{*} is a square element of K^{*}.

Lemma 2.3 Let k_{1}, k_{2} be integers not divisible by the characteristic p of K with $\left(k_{1}, k_{2}\right)=1$. If K is a finite field of characteristic $\neq 2$ and $|K| \geqslant 5$, then there exist elements $\alpha, \beta \in K^{*}$ such that $\alpha \in S\left(K^{*}\right), \beta \notin S\left(K^{*}\right)$, and $\alpha k_{2}+\beta k_{1} \neq 0$.

Proof By Lemma 2.2, $S\left(K^{*}\right) \neq K^{*}$ and $\left|S\left(K^{*}\right)\right|=\left|K^{*}\right| / 2 \geqslant 2$, thus we can choose $\alpha \in S\left(K^{*}\right)$, $\beta \in K^{*} \backslash S\left(K^{*}\right)$, and $\alpha k_{2}+\beta k_{1} \neq 0$.

Proof of Theorem 1.1 If $K=\mathbb{F}_{3}=\{0,1,2\}$, put $B=\{(0,0),(0,1),(0,2),(1,1),(1,0)\}$, then $B \subset \mathbb{F}_{3} \times \mathbb{F}_{3}$, we have $k_{1} B+k_{2} B=G$ with $\sigma_{k_{1}, k_{2}}(B, g) \leqslant 5$.

Now we consider K to be a finite field of characteristic $\neq 2$ and $|K| \geqslant 5$.
Let $\alpha, \beta \in K^{*}$ such that $\alpha \in S\left(K^{*}\right), \beta \notin S\left(K^{*}\right)$, and $\alpha k_{2}+\beta k_{1} \neq 0$. Put $\gamma=\alpha \beta\left(k_{1}+\right.$ $\left.k_{2}\right) /\left(\beta k_{1}+\alpha k_{2}\right), B=Q_{\alpha} \cup Q_{\beta} \cup Q_{\gamma}$. By the fact that $\beta \neq \alpha$, we have $\alpha \neq \gamma, \beta \neq \gamma$.

Case 1 If $k_{1} k_{2}=-1$, then $\gamma=0$. Let $n=2 \alpha \beta /(\alpha-\beta)$. By [4], $B=Q_{\alpha} \cup Q_{\beta} \cup Q_{n}$ is a basis of G, we have

$$
\sigma_{k_{1}, k_{2}}(B, g) \leqslant \sum_{r, s \in\{\alpha, \beta, n\}} \sigma_{k_{1}, k_{2}}\left(Q_{r}, Q_{s}, g\right) \leqslant 14 .
$$

Case 2 If $k_{1} k_{2} \neq-1$, then $\gamma \neq 0$. We have $\alpha k_{2}+\beta k_{1} \neq 0$ and $\gamma k_{2}+\gamma k_{1} \neq 0$. By Lemma 2.1,

$$
\begin{aligned}
k_{1} Q_{\alpha}+k_{2} Q_{\beta} & =\left\{(a, b) \in G: k_{1} k_{2}\left(\alpha k_{2}+\beta k_{1}\right) b-k_{1} k_{2} \alpha \beta a^{2} \in S\left(K^{*}\right) \cup\{0\}\right\}, \\
k_{1} Q_{\gamma}+k_{2} Q_{\gamma} & =\left\{(a, b) \in G: k_{1} k_{2}\left(\gamma k_{2}+\gamma k_{1}\right) b-k_{1} k_{2} \gamma^{2} a^{2} \in S\left(K^{*}\right) \cup\{0\}\right\} .
\end{aligned}
$$

Let

$$
e=k_{1} k_{2}\left(\alpha k_{2}+\beta k_{1}\right) b-k_{1} k_{2} \alpha \beta a^{2}, \quad f=k_{1} k_{2}\left(\gamma k_{2}+\gamma k_{1}\right) b-k_{1} k_{2} \gamma^{2} a^{2} .
$$

Thus an element $(a, b) \neq(0,0)$ of G lies in $k_{1} Q_{\alpha}+k_{2} Q_{\beta}$ (resp., in $\left.k_{1} Q_{\gamma}+k_{2} Q_{\gamma}\right)$ if and only if e (resp., f) is square in K.

By simple calculation, we have $f=\beta \alpha \gamma^{-2} e$. Since $\alpha \in S\left(K^{*}\right), \gamma^{-2} \in S\left(K^{*}\right)$, by Lemma 2.2, we have $\beta \alpha \gamma^{-2} \notin S\left(K^{*}\right)$, and thus $f \in S\left(K^{*}\right)$ if and only if $e \notin S\left(K^{*}\right)$. Hence, if an element $(a, b) \neq(0,0)$ of G does not lie in $k_{1} Q_{\alpha}+k_{2} Q_{\beta}$, then it lies in $k_{1} Q_{\gamma}+k_{2} Q_{\gamma}$. Therefore, $G=\left(k_{1} Q_{\alpha}+k_{2} Q_{\beta}\right) \cup\left(k_{1} Q_{\gamma}+k_{2} Q_{\gamma}\right)$, which is stronger than the required $k_{1} B+k_{2} B=G$.

Hence, $\sigma_{k_{1}, k_{2}}(B, g) \leqslant \sum_{r, s \in\{\alpha, \beta, \gamma\}} \sigma_{k_{1}, k_{2}}\left(Q_{r}, Q_{s}, g\right) \leqslant 16$. This completes the proof of Theorem 1.1.

Acknowledgement We would like to thank the referee for his/her helpful comments.

References

[1] P. ERDÖS, P. TURÁN. On a problem of Sidon in additive number theory, and on some related problems. J. London Math. Soc., 1941, 16(4): 212-215.
[2] V. PǓS. On multiplicative bases in abelian groups. Czechoslovak Math. J., 1991, 41(2): 282-287.
[3] L. HADDAD, C. HELOU. Bases in some additive groups and the Erdös-Turán conjecture. J. Combin. Theory Ser. A, 2004, 108(1): 147-153.
[4] Chiwu TANG, Min TANG. Note on a result of Haddad and Helou. Integers, 2010, 10(18): 229-232.
[5] Yonggao CHEN. The analogue of Erdös-Turán conjecture in \mathbb{Z}_{m}. J. Number Theory, 2008, 128(9): 25732581.
[6] M. B. NATHANSON. Unique representation bases for integers. Acta Arith., 2003, 108(1): 1-8.
[7] S. V. KONYAGIN, V. F. LEV. The Erdös-Turán Problem in Infinite Groups. Additive Number Theory, Springer, New York, 2010.
[8] I. Z. RUZSA. A just basis. Monatsh. Math., 1990, 109(2): 145-151.
[9] Min TANG, Yonggao CHEN. A basis of \mathbb{Z}. Colloq. Math., 2006, 104(1): 99-103.
[10] Min TANG, Yonggao CHEN. A basis of \mathbb{Z} (II). Colloq. Math., 2007, 108(1), 141-145.

