
Journal of Mathematical Research with Applications

May, 2016, Vol. 36, No. 3, pp. 272–274

DOI:10.3770/j.issn:2095-2651.2016.03.003

Http://jmre.dlut.edu.cn

A Second Note on a Result of Haddad and Helou

Yujie WANG
School of Mathematics and Computer Science, Anhui Normal University,

Anhui 241003, P. R. China

Abstract Let K be a finite field of characteristic ̸= 2 and G the additive group of K×K. Let

k1, k2 be integers not divisible by the characteristic p of K with (k1, k2) = 1. In 2004, Haddad

and Helou constructed an additive basis B of G for which the number of representations of

g ∈ G as a sum b1 + b2(b1, b2 ∈ B) is bounded by 18. For g ∈ G and B ⊂ G, let σk1,k2(B, g)

be the number of solutions of g = k1b1 + k2b2, where b1, b2 ∈ B. In this paper, we show that

there exists a set B ⊂ G such that k1B + k2B = G and σk1,k2(B, g) 6 16.
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1. Introduction

Let G be a semi-group. For A,B ⊆ G, g ∈ G, and k1, k2 be integers with (k1, k2) = 1, we

define

σk1,k2(A,B, g) = ♯{(a, b) ∈ A×B : k1a+ k2b = g},

and σk1,k2(A, g) = σk1,k2(A,A, g). In particular, we denote σA(g) = σ1,1(A, g), δA(g) = σ1,−1(A, g).

The well known Erdös-Turán conjecture [1] says that if A is a basis of N, then σA(n) cannot

be bounded. Pŭs [2] first established that the analogue of the Erdös-Turán conjecture fails to

hold in some abelian groups. Let K be a field of characteristic ̸= 2 and G the additive group of

K×K. In 2004, Haddad-Helou [3] constructed an additive basis B of G for which the number of

representations of g ∈ G as a sum b1 + b2 (b1, b2 ∈ B) is bounded by 18. In 2010, Tang-Tang [4]

investigated the parallel problem for differences. We find that the set constructed by Tang-Tang

[4] is the same as the set constructed by Haddad-Helou [3]. That is, there exists a set A ⊆ G

such that 1 6 σA(g) 6 18 and 1 6 δA(g) 6 14 for all g ∈ G. For the related problems we refer

to [5–10].

In this paper, we obtain the following result.

Theorem 1.1 Let K be a finite field of characteristic ̸= 2, k1, k2 be integers not divisible by

the characteristic p of K with (k1, k2) = 1 and G the additive group of K×K. Then there exists

a set B ⊂ G such that k1B + k2B = G, and σk1,k2(B, g) 6 16.

Remark 1.2 Indeed, if, for instance k1 is divisible by the characteristic p of K, then, for any
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subset B of G, we have k1B = {(0, 0)} and then k1B + k2B = k2B is in bijection with B (since

obviously k2 will not be divisible by p, as (k1, k2) = 1), so that k1B + k2B = G if and only if

B = G, and in that case, for any g ∈ G, we have

σk1,k2(G, g) = |{(µ, ν) ∈ G×G : k1µ+ k2ν = k2ν = g}| = |G× {k−1
2 g}| = |G|.

Throughout this paper, we denote by K∗ = K\{0} the multiplicative group of K and

by S(K∗) = {x2 : x ∈ K∗} the subgroup of the square elements of K∗. For α ∈ K∗, let

Qα = {(µ, αµ2) : µ ∈ K} ⊂ G.

2. Proofs

Lemma 2.1 Let k1, k2 be integers not divisible by the characteristic p of K with (k1, k2) = 1.

For g = (a, b) ∈ G and fixed α, β ∈ K∗, consider the equation

g = k1x+ k2y, x ∈ Qα, y ∈ Qβ .

If αk2 + βk1 ̸= 0, then the set k1Qα + k2Qβ consists of all elements (a, b) ∈ G such that

k1k2(αk2 + βk1)b − k1k2αβa
2 is a square in K, and for any g ∈ G, σk1,k2(Qα, Qβ , g) 6 2. If

αk2 + βk1 = 0, then the equation has at most one solution except if g = 0, when it has |K|
solutions.

Proof Let g = (a, b) ∈ G. Consider the system of equations

a = k1µ+ k2ν, (1)

b = k1αµ
2 + k2βν

2. (2)

Substituting the value of µ from (1) into (2), we get the equation

k1b = k2(αk2 + βk1)ν
2 − 2aαk2ν + αa2. (3)

Case 1 αk2+βk1 ̸= 0. This is a quadratic equation in ν, and it has exactly one or two solutions

in the field K if and only if its discriminant 4[k1k2(αk2 + βk1)b − k1k2αβa
2] is a square in K.

Since the characteristic of K is ̸= 2, the non-zero square factor 4 can be discarded in the latter

condition. Thus for any g = (a, b) ∈ G, we have σk1,k2
(Qα, Qβ , g) 6 2.

Case 2 αk2 + βk1 = 0. Then (3) is an equation of degree 1. If a ̸= 0, (3) has one solution. If

a = b = 0, (3) has |K| solutions. If a = 0, b ̸= 0, (3) has no solution.

This completes the proof of Lemma 2.1. �

Lemma 2.2 ([3, Lemma 3.7]) If K is a finite field of characteristic ̸= 2, then the index of the

subgroup S(K∗) in the multiplicative group of K∗ is 2. Thus the product of two non-square

elements of K∗ is a square element of K∗.

Lemma 2.3 Let k1, k2 be integers not divisible by the characteristic p of K with (k1, k2) = 1.

If K is a finite field of characteristic ̸= 2 and |K| > 5, then there exist elements α, β ∈ K∗ such

that α ∈ S(K∗), β ̸∈ S(K∗), and αk2 + βk1 ̸= 0.
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Proof By Lemma 2.2, S(K∗) ̸= K∗ and |S(K∗)| = |K∗|/2 > 2, thus we can choose α ∈ S(K∗),

β ∈ K∗\S(K∗), and αk2 + βk1 ̸= 0. �

Proof of Theorem 1.1 If K = F3 = {0, 1, 2}, put B = {(0, 0), (0, 1), (0, 2), (1, 1), (1, 0)}, then
B ⊂ F3 × F3, we have k1B + k2B = G with σk1,k2(B, g) 6 5.

Now we consider K to be a finite field of characteristic ̸= 2 and |K| > 5.

Let α, β ∈ K∗ such that α ∈ S(K∗), β ̸∈ S(K∗), and αk2 + βk1 ̸= 0. Put γ = αβ(k1 +

k2)/(βk1 + αk2), B = Qα ∪Qβ ∪Qγ . By the fact that β ̸= α, we have α ̸= γ, β ̸= γ.

Case 1 If k1k2 = −1, then γ = 0. Let n = 2αβ/(α− β). By [4], B = Qα ∪Qβ ∪Qn is a basis

of G, we have

σk1,k2(B, g) 6
∑

r,s∈{α,β,n}

σk1,k2(Qr, Qs, g) 6 14.

Case 2 If k1k2 ̸= −1, then γ ̸= 0. We have αk2 + βk1 ̸= 0 and γk2 + γk1 ̸= 0. By Lemma 2.1,

k1Qα + k2Qβ = {(a, b) ∈ G : k1k2(αk2 + βk1)b− k1k2αβa
2 ∈ S(K∗) ∪ {0}},

k1Qγ + k2Qγ = {(a, b) ∈ G : k1k2(γk2 + γk1)b− k1k2γ
2a2 ∈ S(K∗) ∪ {0}}.

Let

e = k1k2(αk2 + βk1)b− k1k2αβa
2, f = k1k2(γk2 + γk1)b− k1k2γ

2a2.

Thus an element (a, b) ̸= (0, 0) of G lies in k1Qα + k2Qβ (resp., in k1Qγ + k2Qγ) if and only if e

(resp., f) is square in K.

By simple calculation, we have f = βαγ−2e. Since α ∈ S(K∗), γ−2 ∈ S(K∗), by Lemma

2.2, we have βαγ−2 ̸∈ S(K∗), and thus f ∈ S(K∗) if and only if e ̸∈ S(K∗). Hence, if an

element (a, b) ̸= (0, 0) of G does not lie in k1Qα + k2Qβ , then it lies in k1Qγ + k2Qγ . Therefore,

G = (k1Qα + k2Qβ) ∪ (k1Qγ + k2Qγ), which is stronger than the required k1B + k2B = G.

Hence, σk1,k2(B, g) 6
∑

r,s∈{α,β,γ} σk1,k2(Qr, Qs, g) 6 16. This completes the proof of

Theorem 1.1. �
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