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Abstract In this paper, we determine the classification up to isomorphism and the central

extensions of a class of Lie algebras B(q) of Block type, where q is a non-zero complex number.

Our results generalize some previous results.

Keywords Block type Lie algebras; central extension; classification up to isomorphism

MR(2010) Subject Classification 17B05; 17B56; 17B65; 17B68

1. Introduction

In 1958, motivated by the fact that many finite-dimensional nonclassical simple Lie algebras

of prime characteristic have simple infinite-dimensional analogues of characteristic zero, Block

[1] introduced a class of infinite dimensional simple Lie algebras as analogues of the Zassenhaus

algebras. Nowadays, these Lie algebras and their generalizations are usually referred to as Lie

algebras of Block type. Partially due to their close relations with the Virasoro algebra, special

cases of (generalized) Cartan type Lie algebras [2] or W -infinity algebras, the Lie algebras of this

type have received much attention in the last two decades [3–15].

For any 0 ̸= q ∈ C, there is a class of Lie algebras B(q) of Block type with basis {Lα,i |α ∈
Z, i ∈ Z+} over C, and relations

[Lα,i, Lβ,j ] = (β(i+ q)− α(j + q))Lα+β,i+j . (1)

This class of Lie algebras B(q) can be viewed as subalgebras of some special cases of generalized

Block algebras studied in [3]. It is interesting that, as pointed in [4,5], each B(q) contains the

(centerless) Virasoro subalgebra span{q−1Lα,0 |α ∈ Z}. It is recently found in [6,7] that it

also has close relations with the twisted Heisenberg-Virasoro algebra and twisted Schrödinger-

Virasoro algebra. Derivations, automorphisms and central extensions are three important aspects
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in the structure theory of Lie algebras. The derivations and automorphisms of B(q) have been

completely determined in [5,8]. In [5], the authors also determined the classification up to

isomorphism and central extensions of B(q) for positive integers q’s. The central extension of

B(1) was first considered in [9].

In this paper, we will consider the classification up to isomorphism and central extensions

of B(q) for all non-zero complex numbers q’s. Our first main result is

Theorem 1.1 Lie algebras B(q) are different from each other for distinct non-zero complex

numbers q’s, namely, B(q1) ∼= B(q2) ⇐⇒ q1 = q2.

This generalizes the isomorphism theorem given in [5]. Our basic strategy for proving this

result is to reduce the problem to showing that B(q) � B(−q) for any q ̸= 0 (see Lemma 2.2),

which is different from that used in [5].

It is well known that a Lie algebra has a non-trivial universal central extension if and only

if it is perfect. One can easily check that Lie algebra B(q) is perfect if and only if q is not equal

to any half of a negative integer, i.e, q /∈ 1
2Z−. As usual, we use the symbol δi,j to denote the

Kronecker delta function. Our second main result is the following, which generalizes some results

in [5,9], where the authors consider the cases with 0 ̸= q ∈ Z+ (in these cases, B(q) is, of cause,
perfect).

Theorem 1.2 The unique non-trivial universal central extension of B(q) is given by

[Lα,i, Lβ,j ] = (β(i+ q)− α(j + q))Lα+β,i+j + ϕ(Lα,i, Lβ,j)c, (2)

where q /∈ 1
2Z−, c is a central element and ϕ is the following non-trivial 2-cocycle:

ϕ(Lα,i, Lβ,j) = δα+β,0δi+j,0
α3 − α

12
. (3)

Hence, the second cohomology group of B(q) is H2(B(q),C) = Cϕ.
Throughout this paper, we work over the complex field C. We will use Z,Z+ and Z− to

denote the sets of integers, nonnegative and nonpositive integers, respectively.

2. Classification up to isomorphism

In this section, we will give the proof of Theorem 1.1. First, let us recall two useful def-

initions. An element x ∈ B(q) is called ad-locally finite if span{admx (v) |m ∈ Z+} is a finite

dimensional subspace of B(q) for any v ∈ B(q); ad-locally nilpotent if there exists some positive

integer N such that adNx (v) = 0 for any v ∈ B(q). Denote by Fq the set of ad-locally finite

elements of B(q), and by Nq the set of ad-locally nilpotent elements of B(q). We have

Lemma 2.1 The sets Fq and Nq are as follows:

(i) If q ∈ Z−, then Fq = CL0,0 + CL0,−q, and Nq = CL0,−q;

(ii) If q /∈ Z−, then Fq = CL0,0, and Nq is an empty set.

Proof The conclusion (i) with q ∈ Z− has been proved in [8, Lemma 3.2]. The conclusion (ii)
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with q /∈ Z− can be processed by similar arguments (with very minor changes) as those in [5,

Lemma 2.1]. Here, we omit the details. �
Let B(q1) and B(q2) be two Lie algebras of Block type defined as in (1). We use the notations

Lα,i and L
′
α,i to stand for the base elements of B(q1) and B(q2), respectively. Assume that

τ : B(q1) → B(q2)

is a Lie algebra isomorphism. We want to prove q1 = q2. Let B(q)α = span{Lα,i| i ∈ Z+} for

α ∈ Z. We first prove the following lemma.

Lemma 2.2 (i) We have q1q
−1
2 ∈ {±1}.

(ii) If q1 = −q2, then there exists s ∈ {±1} such that τ(B(q1)α) ⊆ B(q2)sα for α ∈ Z.

Proof First, by Lemma 2.1, we must have τ(L0,0) = aL′
0,0 + bL′

0,−q2 , where a ̸= 0 and we treat

b as zero if q2 /∈ Z−. Define a new Lie algebra isomorphism τ from B(q1) to B(q2) and an integer

s ∈ {±1} as follows:

τ =

{
−a−1τ, if a < 0,

a−1τ, otherwise,
s =

{
−1, if a < 0,

1, otherwise.

Then we have τ(L0,0) = sL′
0,0 + sa−1bL′

0,−q2 . For α ∈ Z and i ∈ Z+, we may assume that

τ(Lα,i) =
∑

(β,j)∈Iα,i

λ′β,jL
′
β,j ,

where Iα,i is a finite subset of Z × Z+. Applying τ to [L0,0, Lα,i] = q1αLα,i and noticing that

L′
0,−q2 is a central element of B(q2) if q2 ∈ Z−, we obtain

∑
(β,j)∈Iα,i

(sq2β − q1α)λ
′
β,jL

′
β,j = 0,

which implies that

λ′β,j = 0 if β ̸= (sq2)
−1q1α. (4)

Since τ is a Lie algebra isomorphism, there exists at least one pair (β, j) ∈ Iα,i such that

λ′β,j ̸= 0. Then (4) with α = 1 implies that β = (sq2)
−1q1. Hence q1q

−1
2 = sβ ∈ Z. Similarly,

since τ−1 is Lie algebra isomorphism from B(q2) to B(q1), one can show that q2q
−1
1 ∈ Z. Hence

q1q
−1
2 ∈ {±1}, namely, the conclusion (i) holds.

If q1 = −q2, then as above, it follows from (4) that β = −s−1α = −sα. Hence τ(B(q1)α) ⊆
B(q2)s′α for α ∈ Z, where s′ = −s. Since the original Lie algebra isomorphism τ is always a

multiple of the new τ , the conclusion (ii) holds. �
Note that Lemma 2.2(i) reduces the classification problem (up to isomorphism) to showing

that B(q) � B(−q) for any q ̸= 0. Now, we give the proof of Theorem 1.1.

Proof of Theorem 1.1 First, note that if q1 = −q2 ∈ Z, it follows from Lemma 2.1 that

B(q1) � B(q2). By Lemma 2.2(i), we only need to derive a contradiction from the assumption

q1 = −q2 and q1 /∈ Z.

Suppose q1 = −q2 = q /∈ Z. By Lemmas 2.1(ii) and 2.2(ii), we can assume that τ(L0,0) =
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aL′
0,0 with a ̸= 0, and

τ(L0,1) =
∑
i∈J

νiL
′
0,i,where J is a finite subset of Z+,

τ(L1,0) =
∑
i∈K1

µ
(1)
i L′

s,i, where K1 is a finite subset of Z+,

τ(L2,0) =
∑
i∈K2

µ
(2)
i L′

2s,i, where K2 is a finite subset of Z+,

τ(L−1,0) =
∑

i∈K−1

µ
(−1)
i L′

−s,i, where K−1 is a finite subset of Z+.

Applying τ to [L−1,0, L1,0] = 2qL0,0, and considering the terms with the minimal second subscript

on the two sides, we can derive that [µ
(−1)
0 L′

−s,0, µ
(1)
0 L′

s,0] = 2aqL′
0,0, which gives sµ

(−1)
0 µ

(1)
0 =

−a, and in particular µ
(1)
0 ̸= 0. Similarly, applying τ to [L1,0, L0,0] = −qL1,0, we can obtain

[µ
(1)
0 L′

s,0, aL
′
0,0] = −qµ(1)

0 L′
s,0, which gives (1 + as)µ

(1)
0 = 0. Hence as = −1, and so

µ
(−1)
0 µ

(1)
0 = −as−1 = −as = 1. (5)

Furthermore, applying τ to [L−1,0, L2,0] = 3qL1,0, we have [µ
(−1)
0 L′

−s,0, µ
(2)
0 L′

2s,0] = 3qµ
(1)
0 L′

s,0,

which gives

µ
(1)
0 + sµ

(−1)
0 µ

(2)
0 = 0. (6)

Note that (6) implies µ
(2)
0 ̸= 0, since µ

(1)
0 ̸= 0. At last, applying τ to −2[L1,0, [L1,0, L0,1]] =

[L2,0, L0,1], we can derive that −2[µ
(1)
0 L′

s,0, [µ
(1)
0 L′

s,0, νj0L
′
0,j0

]] = [µ
(2)
0 L′

2s,0, νj0L
′
0,j0

], where j0 =

min{j ∈ J | νj ̸= 0}. This implies

(j0 − q)(j0(µ
(1)
0 )2 − sµ

(2)
0 )νj0 = 0. (7)

Recall the assumption q /∈ Z and the proved result µ
(1)
0 ̸= 0, by (5)–(7), we can show that

j0 = −1, a contradiction. This completes the proof of Theorem 1.1. �

3. Central extensions

In this section, we will give the proof of Theorem 1.2. Since a non-perfect Lie algebra has no

non-trivial universal central extensions, we only need to consider the cases with the Lie algebra

B(q) being perfect, or equivalently, q /∈ 1
2Z−. Our argument is similar to that of [5] but with

some differences (see the discussions after (12) and after (14)).

Let ψ be any 2-cocycle. Define a linear function on B(q) as follows:

f(Lα,i) =

{
−(αq)−1ψ(Lα,i, L0,0), if α ̸= 0,

(i+ 2q)−1ψ(L−1,i, L1,0), otherwise.

Then ϕ = ψ−ψf is a 2-cocycle of B(q), which is equivalent to ψ, where ψf is the trivial 2-cocycle

induced by f . Similar to (4.6), (4.7) and Lemma 4.2 of [5], one can show that if q /∈ 1
2Z−, then

we still have

ϕ(L−1,i, L1,0) = 0, i ∈ Z+, (8)

ϕ(L1,i, L−1,0) = 0, i ∈ Z+, (9)
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ϕ(L−2,i, L2,0) = 0, i ∈ Z+\{0}. (10)

Lemma 3.1 For α, β ∈ Z, i, j ∈ Z+, we have

(i) ϕ(Lα,i, Lβ,j) = 0 if α+ β ̸= 0;

(ii) ϕ(Lα,i, L−α,j) = 0 if i ̸= j.

Proof (i) This conclusion can be proved as in [5, Lemma 4.3(1)].

(ii) Applying ϕ to triples (L1,0, Lα,i, L−1−α,j) and (L−1,0, L1+α,i, L−α,j), respectively, by

(9) and (10), we obtain following two equations

0 = ϕ(L1,0, [Lα,i, L−1−α,j ])

= ϕ([L1,0, Lα,i], L−1−α,j) + ϕ([L−1−α,j , L1,0], Lα,i)

= ((α− 1)q − i)ϕ(L1+α,i, L−1−α,j)− ((α+ 2)q + j)ϕ(Lα,i, L−α,j), (11)

0 = ϕ(L−1,0, [L1+α,i, L−α,j ])

= ϕ([L−1,0, L1+α,i], L−α,j) + ϕ([L−α,j , L−1,0], L1+α,i)

= ((α+ 2)q + i)ϕ(Lα,i, L−α,j)− ((α− 1)q − j)ϕ(L1+α,i, L−1−α,j). (12)

Multiplying (11) by −1, and then adding to (12), under the condition i ̸= j, we must have that

ϕ(Lα,i, L−α,j) is a constant, say, a for any α ∈ Z. Then, fix i = 0 in (12), by arbitrariness of j,

we must have a = 0. �

Lemma 3.2 For α ∈ Z, i ∈ Z+, we have

(i) ϕ(Lα,i, L−α,i) = 0 if i ̸= 0;

(ii) ϕ(Lα,0, L−α,0) =
α3−α

6 ϕ(L2,0, L−2,0).

Proof It is shown in [5, Lemma 4.4] that

((α+ 2)q + i)ϕ(Lα,i, L−α,i) = ((α− 1)q − i)ϕ(L1+α,i, L−1−α,i), (13)

(i+ 2q)(2i+ 3q)ϕ(Lα,i, L−α,i) = (α+ 1)(αq − i)((α− 1)q − i)ϕ(L2,0, L−2,2i). (14)

If i ̸= 0,−3
2q, then by (14) and (10) we have ϕ(Lα,i, L−α,i) = 0. If i = −3

2q, then (13) becomes

q(α+
1

2
)ϕ(Lα,i, L−α,i) = q(α+

1

2
)ϕ(L1+α,i, L−1−α,i).

Since q ̸= 0 and α ∈ Z, the above equality implies that ϕ(Lα,i, L−α,i) is a constant, say, b for

any α ∈ Z. By the anti-symmetry property of the 2-cocycle ϕ, we have

b = ϕ(Lα,i, L−α,i) = −ϕ(L−α,i, Lα,i) = −b.

Hence b = 0, and so the conclusion (i) holds. If i = 0, then (14) gives the conclusion (ii). �
Now, we give the proof of Theorem 1.2.

Proof of Theorem 1.2 By Lemmas 3.1 and 3.2, we see that the 2-cocycle ϕ must take the form

(3), and it induces the non-trivial central extension of B(q) as (2) by taking c = 2ϕ(L2,0, L−2,0).

�



290 Xiu HAN, Wei WANG and Chunguang XIA

Acknowledgements We thank the referees for the careful reading and valuable comments.

References

[1] R. BLOCK. On torsion-free abelian groups and Lie algebras. Proc. Amer. Math. Soc., 1958, 9(4): 613–620.

[2] Xiaoping XU. New generalized simple Lie algebras of Cartan type over a field with characteristic 0. J.

Algebra, 2000, 224(1): 23–58.

[3] D. –DOKOVIĆ, Kaiming ZHAO. Derivations, isomorphisms and second cohomology of generalized Block

algebras. Algebra Colloq., 1996, 3(3): 245–272.

[4] Qing WANG, Shaobin TAN. Quasifinite modules of a Lie algebra related to Block type. J. Pure Appl.

Algebra, 2007, 211(9): 596–608.

[5] Chunguang XIA, Taijie YOU, Liji ZHOU. Structure of a class of Lie algebras of Block type. Comm. Algebra,

2012, 40(8): 3113–3126.

[6] Yucai SU, Chunguang XIA, Ying XU. Classification of quasifinite representations of a Lie algebra related to

Block type. J. Algebra, 2013, 393: 71–78.

[7] Hongjia CHEN, Xiangqian GUO, Kaiming ZHAO. Irreducible quasifinite modules over a class of Lie algebras

of Block type. Asian J. Math., 2014, 18(5): 817–828.

[8] Chunguang XIA, Xiu HAN, Wei WANG. Structure of a class of Lie algebras of Block type II. J. Algebra

Appl., 2016, 15(2): 1–11.

[9] Qing WANG, Shaobin TAN. Leibniz central extension on a Block Lie algebra. Algebra Colloq., 2007, 14(4):

713–720.

[10] J. M. OSBORN, Kaiming ZHAO. Infinite-dimensional Lie algebras of generalized Block type. Proc. Amer.

Math. Soc., 1999, 127(6): 1641–1650.

[11] Yucai SU. Quasifinite representations of a Lie algebra of Block type. J. Algebra, 2004, 276(1): 117–128.

[12] Yucai SU, Chunguang XIA, Ying XU. Quasifinite representations of a class of Block type Lie algebras B(q).
J. Pure Appl. Algebra, 2012, 216(4): 923–934.

[13] Yucai SU, Jianhua ZHOU. Structure of the Lie algebras related to those of Block. Comm. Algebra, 2002,

30(7): 3205–3226.

[14] Xiaoping XU. Quadratic conformal superalgebras. J. Algebra, 2000, 231(1): 1–38.

[15] Linsheng ZHU, Daoji MENG. Structure of degenerate Block algebras. Algebra Colloq., 2003, 10(1): 53–62.


