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Abstract In this paper we first present a 3-dimensional Lie algebra H and enlarge it into
a 6-dimensional Lie algebra T with corresponding loop algebras H and T, respectively. By
using the loop algebra H and the Tu scheme, we obtain an integrable hierarchy from which
we derive a new Darboux transformation to produce a set of exact periodic solutions. With
the loop algebra T, a new integrable-coupling hierarchy is obtained and reduced to some
variable-coefficient nonlinear equations, whose Hamiltonian structure is derived by using the
variational identity. Furthermore, we construct a higher-dimensional loop algebra H of the
Lie algebra H from which a new Liouville-integrable hierarchy with 5-potential functions is
produced and reduced to a complex mKdV equation, whose 3-Hamiltonian structure can
be obtained by using the trace identity. A new approach is then given for deriving multi-
Hamiltonian structures of integrable hierarchies. Finally, we extend the loop algebra H to
obtain an integrable hierarchy with variable coefficients.
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1. Introduction

The development of new integrable hierarchies of evolution equations is important in the
study of soliton theory. These developments include the recent Lax pair method for generating
integrable hierarchies of evolution equations [1] among which Tu [2] employed the matrix Lie
algebras to introduce Lax pairs to derive some well-known integrable hierarchies of evolution
type, such as the AKNS hierarchy, the KN hierarchy, and the WKI hierarchy. In this paper
Tu proposed a milestone formula to deduce Hamiltonian structures of the integrable hierarchies,
called the trace identity. The scheme for generating integrable hierarchies and the corresponding
Hamiltonian structures was now known as the Tu scheme [3]. By adopting the Tu scheme, some
interesting integrable hierarchies and their some properties were obtained [4-9]. Guo and Yu [10]

introduced a loop algebra to obtain a multi-potential integrable hierarchy with 3-Hamiltonian

Received June 4, 2015; Accepted September 14, 2015

Supported by the Research Grant Council of the Hong Kong Special Administrative Region (Grant No. CityU
101211), the National Natural Science Foundation of China (Grant No. 11371361) and the Natural Science Foun-
dation of Shandong Province (Grant No. ZR2013AL016).

* Corresponding author

E-mail address: fbl_1963@126.com (Binlu FENG)



302 Binlu FENG and Y. C. HON

structure. In [11,12] the authors proved that the self-dual Yang-Mills equations can be presented
as a compatibility condition of the general Lax pair. The Lax pair method has been shown in [13]
that it provides an effective approach to generate integrable hierarchies of evolution equations.
To the knowledge of the authors, there is still very few work on applying the Lax pair method
for generating variable-coefficient integrable hierarchies. Li [14] has proposed an approach to
produce variable-coefficient integrable hierarchies under isospectral and non-isospectral problems
by Lax pairs. In this paper, we first present a 3-dimensional Lie algebra H and enlarge it into
a 6-dimensional Lie algebra T with corresponding loop algebras H and T, respectively. Starting
from the loop algebra H, we obtain two various integrable hierarchies under the isospectral
problems by using the Tu scheme, one is an isospectral integrable hierarchy and the another
one is a non-isospectral integrable hierarchy with variable coefficients. Based on the work given
in [15], we derive a new Darboux transformation of the obtained integrable hierarchy which
can be used to produce exact periodic solutions. Furthermore, we provide a new approach for
generating variable-coefficient integrable hierarchies by producing an integrable couplings which
can be reduced to a series of variable-coefficient nonlinear integrable equations. As a result, the
Hamiltonian structure can be derived by the variational identity. Finally, we establish a higher
dimensional loop algebra H of the Lie algebra H to produce a multi-potential Liouville-integrable
hierarchy along with 3-Hamiltonian structure which can be reduced to an mKdV equation with

complex coefficients.

2. A Lie algebra and its loop algebra H as well as applications

The most simplest Lie algebra [16] presents:

0 1 0 0 1 0
A = e = s = ,h = 5 1
which possesses the following commutative relations
[h, €] = 2e,[h, f] = —2f, e, f] = h.

We introduce the following Lie algebra

H = span{tl,tg,tg}, (2)

0 1 0 0
where t; = ( 5 0 ) st =2 ( Lo ) ,t3 = h along with the commutative relations:

[t1,t2] = 23, [t1,13] = =2ty — 4t [to, t3] = 2t3.

A corresponding loop algebra is defined as

H = span{t;(n),tz2(n),t3(n)}, (3)

where t;(n) = t;\",i =1,2,3;n € Z. Eq. (3) will be used to generate two integrable hierarchies.
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Firstly, we introduce the following isospectral problems:

o = Up, U =t1(1) — vt2(0) + ut3(0),

P = VoV = S (anhi(—m) + buta(=m) +emts(~m)). (4)
Denote 7
V+(") = i (amti(—m) + byta(—m) + emts(—m))A", v — Vin) — ant1(0),
m=0
we have

—V L [U, V] = (depyr — duan)ta(0) — (2041 + 2va,,)t3(0).
Based on the Tu scheme, the zero curvature equation Uy, — Vi 4 [U,V(™)] =0 admits that

{ vy, = 4cpq1 — 4uan,

Ut,, = Cn,x,

()

where ay,, b, ¢, satisfy:
Cpnt+1 = _%an,z + uay,
bn+1 = %Cn,x — Van, (6)
Oz = %bn@ + vey, + uby,.

Setting n = 2,a9 = —2,byg = ¢p = 0,t3 = t, we obtain from Egs. (5) and (6) the following coupled

nonlinear integrable equation:

Ve = Ugy + 30V + 2Utly,
{ (7)

Uy = *%vzm + (UU);C,

which is similar to the long water wave equation. From Eq.(6), it is easy to get

which satisfies the following recurrence relation:
—2ay, —2an,
Gt ) p[ T ). 8)
2¢n41 2¢y
Combined with Eq. (6), Eq. (5) can be rewritten as:

—2a, B —2a,
J(or)-(Br) e

3. A Darboux transformation of the integrable hierarchy (5)

=

&

3

I
VR
e <
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o Q
v O

Ma [17] once investigated some Darboux transformations of a Lax integrable system in
2n-dimensions. Based on this and [15], we shall discuss a Darboux transformation of equation

hierarchy (5) in what follows.
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0 0
Denote ® = JLJ !, where J = < 0 0 ) , and L is presented in Eq. (8). We have
2
_ — (w0t +v) -2 —u . (10)
9 Louot 0

Thus, the isospectral integrable hierarchy (9) can be written as

(1))

The Lax pair of Eq. (20) is given by

e1 ) u A ©1
(2) (e 2)(2) oo
Dt ) o
e2 ), —2A+ 2B — 2a, -C V2

A= i am\""™, B = i b AT O = i Cn AT
m=0 m=0 m=0

The compatibility condition of Egs. (12) and (13) leads to

where

Ay = =2)\C 4 2uA,
B, = —4)\C — 2vC + 4uA — 2uB, (14)
C, =2)\B + 2vA,

from which we get
1

A= 5B+a*1(vc+u3). (15)
@11($7t7)\) @IQ(muta)\)
por1(w,t,A)  pa(z,t,\)

_ e (@t A) + vyt A))
pie11 (@, 1, Aj) + viera(@,t, A)
where i # j = p; # pj,v; # vj, and pj,v; are arbitrary constants with |u;| 4+ |v;| not identical

Suppose that the matrix ( ) is a soliton matrix of Eq. (12). Denote

& j=12, (16)

zero. In terms of Egs. (12) and (13), &; satisfy the following Riccati equations
Gjw =20 —2u& —w— &Ny, j=1,2, (17)
& =—2A+2B —2a, — 20 — (A+a,)&;, j=1.2. (18)
Eq. (17) gives
- (1—&2), 22— A1)+ €7 -3
B 2(£2—€1) ’ (19)

_ G102 +261 0226 M1 FA 165 € — N2 856
o 2(€2—£1) )

v

Hence, we obtain from Eq. (27) that

_ P o Q
2% —6)2 T 2(6 - &)

Vg
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where

P =(2X0&1&0 — 20167 — 2uéy + 2ub2)é16a + €061 2 (2N161€0 — 2ués — 20063 + 2uéy)+
(61&2 — ED)&2 20 + (&1 — €2)E2&1 2w
=(

Q =(& — &)(2 — &)wa + [2u(&2 — &) +4(A2 — A1) = BMET + 20085 + 2066 — M&]éra+
[4(A1 = A2) + 2u(&1 — &) + 2X061€a — 4Xa85 + MET + Mbaléaa
Assume
T — « a182 + a0 b162 + by0
B 2(52 - 51)2 0182 + Cga d182 + dga ’
where

a1 = &6 — 6%, a2 = 20667 — 2ub® — 2006° + 2ub1&, by = 16 — &7,
by = 2X0061%& — 201617 — 2ué? + 2u&i&p, 01 = & — &,
2 =2u(& — &) +4(A2 — A1) — 3M& 7 + 2067 + 2066 — M, di =& — &,
do = 4(A1 — A2) 4+ 2u(&1 — &) + 200618 — A& + & + M&
The inverse operator of T' presents that
— ( B’Qa*1+8*1a2’1 8’2cf1+8’1051 )
o727 + 0t 97 2d 407 dy !

C) = ) =0, i=12
w o/, ot

( B11(M, Aa, €1, 62) Bra(Ar, Ao, Er,E0) )

It is easy to obtain

Set

o

Do1 (A1, A2, €1, &) Poa(A1, Ao, €1, E2)

where
~ 1 1
@11()\1, )\2,5152) :(a_lafl + 8_1a§1)(—§vm8_1a182 — va182 — 58_11}804182—
%vza_laga — vag0 — %8_108@6 — uc 0%—
ucy0 + 0 ude 0 + 07 udcyd),
- 1 1
(13’21()\1, )\2,51,62) :(8_2bf1 + 8_1b;1)(—§vw8_1a182 - va182 - 58_11}866182—
1 1
vaa—laﬁ) — vags0 — 58_1116@28 — uc %=
uc20 + 0 udc 0% + 07 udey0),
P12(Ais A2, &1, &2) =Po1 (A2, A1, €2,&1), Paz(Aiy A2, &1, &) = D11 (X2, Mi, o, &1).
After simplification and computation, we obtain

T =T, (21)
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which indicates that
Q" = TP". (22)

Therefore, we have
&\ [ —24+42B-2a,—-2C& — (A+an)&f \ Gm-1 [ Sie (23)
& ), —2A+ 2B — 2a, — 2C& — (A + a,)&2 S0 )

() ()l o (2)
u ¢ AUy 2 t 2,x

Choosing an appropriate &; (i = 1,2) and employing Egs. (12)and (13), we obtain
{ T=uv+ (A1—X2)(61+82)(24+€162)

2(€2—€1) ’
Qamh (e ) (25)
2(62—¢&1) ’
It can be verified that Eq. (25) satisfies Eq. (11). Therefore, Eq. (25) is a Darboux transformation

of the isospectral integrable hierarchy (5).

u=u-+

In the following, we consider some exact solutions of the nonlinear integrable equations (7)

by using the Darboux transformation (25). Eq. (12) can be written as

Plle = UP11 + Apat,
P12,0 = UP12 + Apaa,

(26)
V21,0 = (—2X — 20)p11 — uP21,
P22, = (—2X — 20) 12 — UP22.
We take a special solution of Eq.(7) to be u = v = 0. Eq. (26) reduces to
Pll,e = AP21, V12,0 = AP22, V210 = —2 P11, P22, = —2AP12, (27)
which gives rise to
P11,20 = —220%011, Q12,00 = —27\ 12, (28)
whose solutions are given by
@11 = sin(cy (t) + V2X\z), 12 = sin(ca(t) + V2Az). (29)
Substituting (29) into (27) yields that
Y91 = \/Ecos(cl(t) + \/5)\1‘), (pog = ﬂcos(cz(t) + \/5)\1‘) (30)
Eq. (13) can be written as
11t = Co11 + (A + an)par,
=C A n )
P12,t w12 + (A + an)p2o (31)

P14 = (—2A + 2B — 2a,)p11 — Cpan,
a2t = (—2A+ 2B — 2a,)p12 — Cipaa.
When n = 2, we have from Eq. (6) that
) 1 1 3, 1,

b1 =2v,¢1 = —2u,a; = v,byg = —uy — v 702:—§vw+uv,a2:—§uw—1v —iu yeoee (32)
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Thus, we obtain

A=—-2\2 40— %uz — Zv2 — %u2, B =20\ —uy — v, C = —2u\ — %vx + uv. (33)
When n = 2,u =v =0, Eq. (31) reduces to
11,6 = =20 2021, P12t = —2 2002, Qa14 = AN2Q11, Yooy = 4N 10, (34)
which gives
O11,20 = =8N @11, Q1o = —8\ p1a. (35)

When ¢ (t) = ca(t) = —2v/2)%t, the solutions to Eq. (27) satisfy Eq. (34). That is, the following

equations

11 = @12 = sin(V2Az — 2V2X\%1), 091 = a2 = V2 cos(V2Ax — 2v/2)0%t) (36)
satisfy Eq. (34). Substituting (36) into Eq. (16) yields that
& = V2cot(V2X\ix — 2V2X\21), i=1,2. (37)
When A\ # Ao, Eq.(37) represents two formulas
&1 = V2cot(V2hiz — 2vV2)\%1), (38)
o = V2 cot(V2Xhax — 2V/2)31). (39)

When set v = v = 0, Eq. (25) reduces to

7 = Au=A2)(€14€2)(246182)
2(é2—£1) ’ (40)
i = (Az—A1)(4+£7+€3)
B 2(&2—¢&1) :

Substituting (38), (39) into (40), we obtain the following set of exact periodic solutions:
_ cot(vV2A12—2v2A%t) +cot (vV2h2z—2v/2A2t) 2
v= ()\1 - )\2)cot(\/ix\;w72\/5/\%)700‘5(\/5)\?9:72\/i)ét) (1 + COt(\/i)ql’ - 2\/§/\1t)
cot(v2Xar — 2v/2A31)), (41)

Ao—A; 24cot? (V2A12—2v2A2t) +cot? (vV2Aex—2v/2)2E)
V2 cot(x/ﬁAQr—Q\/ﬁ)\gt)—cot(\/ﬁ)\lr—Q\/ﬁ)\%t)

u =

4. Enlarged Lie algebra of the Lie algebra H and its applications

In the section we further enlarge the Lie algebra H into another one with the help of the

known Lie algebra proposed in [18]. If we denote

1 0 01 0 0
€1 = , €2 = , €3 = ’
! 0 -1 2 0 0 ° 10

which is the same as the one given in Eq.(1), then one Lie algebra was presented in [16] as:

G = span{ fi, fo,..., f6}, (42)

e; O 0 e . .
[ sy Jj— ) :47576;1:17233
f ( 0 €; ) f] ( 0 €; ) J

where
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equipped with the following commutative relations

[f1, fa] = 2fa, [f1, f3] = =23, [fa, f3] = fu, [f1, fa] = O, [f1, f5] = 2f5, [f1, fo] = —2fs,
[f2, fa] = =2f5, [fa, f5] = O, [f2, f6] = fa, [f3, fa] = 2f6,[f3, 5] = — fa, [f3, f6] = O,
[f1, f5] = 2[5, [fa, f6] = —2f6, [, f6] = [
Denote Gy = span{ fi, fo, f3}, G2 = span{f4, f5, f¢}, then we have
G:Gl@GQ,GlgAl,[Gl,GQ} CGQ, (43)

and G4, G are all single Lie subalgebras. Based on the Lie algebra G and Eq. (43), we introduce
a linear space 71"

T:span{tl,tg,...,t(;}, (44)

whose commutative relations are defined as

[t1,ta] = 2t3, [t1, t3] = —2t1 — 4ta, [ta, 3] = 2t, [t1,ta] = 0, [t1,15] = 2t,

[t1,te] = [ta, te] = —2t4 — 45, [ta, ta] = =216, [t2, 5] = 0, [t2, ts] = 2ts, [t3, ta] = —[t1,t6),

[t37 ] = _2t5a [t37t6] - O [t47t5] - 2t6a [t57t6] - 2t5
It can be verified that the above relations satisfy

[a,b] = —[b,al, [@a + Bb, c] = ala, ] + BIb, ], [[a, b], ] + [[b, ], a] + [[¢,a],b] =0,
Va,b,ce T,a,B € C.

Therefore, T becomes a Lie algebra. If we denote T7 = span{ty, to, t3}, To = span{ty, t5, ts}, then
T,Ty and T, satisfy the relation (43). Furthermore, we have T} = H. Hence, the Lie algebra T
is an enlarged one of the Lie algebra H. We now define a loop algebra of the Lie algebra T

T = span{ti(n),t2(n), ..., ts(n)}, (45)

where
ti(n) = ;A" i =1,2,4,5:t;(n) = t;A\*", j=3,6. (46)

According to (44) and (46), we get the commutative relations

[t1(m), ta(n)] = 2ts(m +n+ 1), [t1(m), t3(n)] = —2t1(m + n) — 4ta(m + n),

[t2(m), t3(n)] = 2t2(m + n), [t1(m), ta(n)] = 0, [t1(m), ts(n)] = 2t6(m +n + 1),
[t1(m),te(n)] = [ta(m), ts(n)] = —2t4(m + n) — 4t5(m + n),

[t2(m), ta(n)] = =2t6(m + n + 1), [t2a(m), t5(n)] = 0, [t2(m), t6(n)] = 2t5(m +n),

[t3(m), ta(n)] = 2ta(m + n) + 4ts(m + n), [ta(m), t5(n)] = =2t5(m +n),

[ts(m),te(n)] = 0, [ta(m), t5(n)] = 2ts(m +n + 1), [ts(m), ts(n)] = 2ts(m +n), m,n € Z.

Set

Ty = span{t1(n), t2(n), t3(n)}, To = span{ta(n), ts(n), to(n)},
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then we have T = T} ® Tb, [’f’l, T~2] C T5. For illustration, we first present an application of the

loop algebra T} in the following example. Consider
Yo = Urth,Ur = t3(1) + qt1(0) + rt2(0),
3
Ve =Vig, Vi = 30 (22 Vimt;(—m)).

m>0 j=1

(47)

According to the Tu scheme, we solve the following stationary zero curvature equation for Vj .,
(Vi)a = [Ur, V4] (48)

to yield
Vm)y = 2Vime1 — 2qV3,m,
(Vaom), = Vims1 — 2Vamgr — 44Vam + 2rVa o,
Vam), = 24Vams1 — 2rVimg1,
which is equivalent to
Vims1 = 3(Vim), +aVsm,
VQ,m+1 = *%(VZ,m)m + (Vl,m)m + TV&mv (49)
(Vam), = —a(Vam), + 24 = 1) (Vim),-
Given the initial values Vz o = o, Vi g = V290 = 0, Eq. (49) leads to

1
Vii=aq,Vag=ar, Va1 =a(g®—qr),Vis= 56 + ¢ —¢*r),

Voo = a(—%r.@ + e+ —qr?), Vs = a(%qu — ¢ = 3¢°r + ;q‘* + qurQ), e
We decompose Eq. (48) into the following:
~(i)e + 0V = () = 0 V], (50)
where

n 3
Vi = 3TN Vit (—m)a, v = a2y -y,
m=0 j=1
The degree of the left-hand side in (50) is greater than zero, whilst the right-hand side is smaller
than 1. Thus, we obtain that

~ (V) + UL V) = =2V i1t1(0) + (Vo — AVing1)E2(0) + 27Vt — 2Ve,n41)t3(0).
Denote Vl(n) = Vl(rjr) — V3 »t3(0), we then have
~(V{")a + [0, V] = = (Vi 0)2t1(0) = (Va,n)ata(0).

Therefore, we obtain the zero curvature equation (Uy);, — (Vl(n))x + [Us, Vl(n)] = 0, which is a

compatibility condition of the following Lax pair

Py = Ul@v bt, = Vl(n)spv (51)

( g ) _ ( (Vi) ) :J< —AVip 4+ 2Va ) (52)
r t (‘/2,71)1 2‘/1,71

which admits that
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QO WY

0

where J = ( 5 ) is an obvious Hamiltonian operator. We consider the Hamiltonian struc-
2
)

ture of Eq. (52).

A2 g Vs N
Uy = , | = _ T,
—2\g+2\r =\ SNV L2V, Vs

where V; = Y om0 VimA™2™, i =1,2,3, it is easy to derive that

oU oU;
(Vi 5 Ty — AN+ 20T, (1, 2L

or
oUy _ _ _ _
W, — o\ ) = —4A\V5 + A(2rVy — 4qV7) — 2 Va.

Since

Ly = 227,

Substituting the above equations into the trace identity yields

_ _ _ _ —4V; + 2V5)\2
—4V3 + 2rVy — 4qVi — 2qVa]\ = /\*Va%/\7 ( ( L 2) ) , (53)

2
ou 2V A2

where £ = (5%’ 2)T. Comparing the coefficients of A=2"*1 in Eq. (53), we have
6
5a

—4Vy oy + 2V
—4V3 0+ 2rVi — 4qVin — 2¢Van) = (2 — 2n +7) ( L+ 2V2n ) .

2Vin
Using the initial values in Eq. (49), we have v = 2. Thus, we obtain

—4Vi , +2Va,, ) (—2V3 nt+ (r—29)Vi, — qVQm) 0H,
2Vin ~ Su 2—n ou

Therefore, the Hamiltonian structure of the integrable hierarchy (52) is given as:

q 0H,
- - 1
. ( r )t ou (54)

n

where H,, = 5[21/3” + (2¢ — r)V1, + ¢Va,,] are the Hamiltonian densities of Eq. (44). When
n = 2, Eq. (52) can be reduced to

{ qt, = %wa + 304(]26]96 - a(q2r)g;7 (55)

Tty = _%rzz + Oz + 04(‘]27")95 - 0‘((]7"2)@7
which is a kind of generalized nonlinear Schréodinger equation. Obviously, Eq. (52) is not the
classical KN hierarchy but a new integarbel system.

To tackle the more complicated case of variable-coefficient nonlinear integrable equations,
we will devise in the following an integrable coupling of Eq. (52) and deduce its Hamiltonian

structure by using the variational identity [19]. Let

{ 0 =Up, U =Uy + Uy,

(56)
pr =V, V=V 4V,

where

U, = t3(1) + qtl(O) + TtQ(O), Uy = tﬁ(l) + U1t4(0) + U2t5(0),
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3 6
V=3 (S Vimti-m), Vo= 3 (3 Vimts(-m).
m20  j=1 m>0 j=4

The compatibility condition of Eq. (56) gives
Ui + Uzt — Vig — Voo + [U, Vi] + [Uy, Vo] + [Us, Vi] + [Ua2, Vo] = 0. (57)
The corresponding stationary zero curvature equation of Eq. (57) obtains
Vi = Voo + [U, Vi] + [U, Vo] + [Ua, V1] + [Ua, V2] = 0, (58)
whose sufficient condition deduces that
—Vie +[U, V1] =0, (59)
~Vaz + [Ur, Vo] + [ug, Vi + V2] = 0. (60)
It can be seen that Eq. (59) is the same as Eq. (48). Again, we find that (60) is equivalent to
(Vam)a =4Vami1 — (2¢ 4 2u1)Vom — (201 +2¢)Vam + (Vim)a
(Vom)z =8Vimt1 — 4Vs ma1 + (—4q + 2r — duqg + 2ug) Vi i+
(—4uq + 2ug + 4q — 2r)Vam + (Va,m) s,
(Vom)z =(2¢ + 2u1) Vs ma1 — (21 4+ 2u2) Vi1 + 201 Vo my1 — 2u2 Vi ey,

which can be written as

Vima1 = 1(Vam), + 5@ +u1)Vom + 5 (u1 — @) Vam — 5 (Vim),,
Vsmt1 = _i(%,m)x +3 ( 2m)y T (VZL m) - *(Vl m)y T %(T + u2)Ve,m + %(u2 =)V m,
(Vom)y = —3(a+u)(Vom), + (g +u1 — 57— gu2)(Vam), + 5(q — u1)(Vaym), +
(up —gq+ 57" — fu YViim),-
(61)
Note that

v =vi ¢ Z Z Vit (—m))A2" = A2V — v,

m=0 j=4

A direct computation leads to
= (V") + [0 V)
= =2V1 ny1t1(0) + (2V2ng1 — 4Vin1)t2(0) + (2rVi g1 — 2¢Vo ng1)t3(0)—
(AVip+1 +2V1 pg1)ta(0) + (—8Va 1 +4Vs nt1 — AVi g1 + 2Va 5 41)t5(0)+
(=2qVsn41 — 201 Va g1 + 202V g1 — 2ur Vs g1 + 2up Vi g1 + 20V p1)t6(0).

Denote
VO 2V Vi 10) — Vi tl0).

From Egs. (49) and (61), we have:
— V;p(") + U, V(”)]
—(Vi)2t1(0) — (Va.5)at2(0) + [(2¢ + 2u1) Ve, + 201 Vi, — 4Va g1 — 2V4 p1[E4(0)+
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[(4g — 2r + duq — 2u2) Ve + (dur — 2u2) Vs, — 8Viny1 + 4Vs nt1 — 4V1nt1 + 2V2 n41]t5(0)
= *(Vl,n)xtl(o) - (VZ,n)xtQ(O) - (Vél,n)actél(o) - (‘/S,n)xtS(O)

Thus, the zero curvature equation Uy, — vim 4 + [U, V(] = 0 admits that

(Vin)e
_| | (Vamda

Qtn - U B (Vzl,n)x . (62)
(0 (V{"),n)x

tn
When u; = uz = 0, Eq. (62) reduces to Eq. (52). Hence, according to the theory on integrable
couplings [19-23], Eq. (62) is an integrable coupling of Eq. (52). Using the following initial values
in Egs. (49) and (61):

Vao=a, Vig=Voo=Vio=V50="V50=0, (63)
we obtain
9 « «

Vii=aq, Vo1 =ar, V3 = a(q” — (JT),V4,1 = §(U1 —q),Vs1 = 5(“2 =),

« «
Vo = (=qua + qui — war —wup +qr +ui = ¢%), Vip = 56 + g’ — ag’r,

«
Voo =— gqrm + aq, + arq2 — aqrz7
3« 3

Vio :%qrz—% —3aq r—i—?q +7aq2r2
v 3a a o %" +5 n

=—Ul gy — —(Qr — —q¢ Uz — —qUIUZ — —QqTU] — — T u
4,2 81’ 8q 8Q2 46112 2Q1 8q 8q 4971

«Q « o «

gu%r + §u1q2 + gu‘;’ — gu?uQ,
v o +30¢ 3a +oz +a a5 o +50¢ 2

=— —Upp+ =Ty — —Qp+ UL x + qrug — —uT° — —TrULU —qr
5,2 g U2, 3 4(] 74 8Q181 U2 8q

L2y 5—ar 2qu + Zquiu 2u u2+gu2u —I—?E 2uy — Sqru

g 8q 8(]2 8Q12812812 86122(127--~-

When n = 2, Eq. (62) reduces to

{ i, = %wa + 3aq2Qw - a(qzr)m, (64)

Tty = =572z + Qfzz + a(rq2)m — a(qr2)z.

(u1)e, = ug)e — $(quitia)s — $(qrun)e — 3242 + 52 (¢%r)a+
qu%)z - %(Uﬂ“)m + %(q2u1)w + %U%m z — %(U%UQ)@«,
3

(u2)t, = —SUzp0 + 238700 — 2 qoe + Gt + $(qrur)e — $(uar?)e — §(rurug)o+
5

%(QTQ)QL' + %(U%T)x - ?a(TQQ)x - §(qu2)x + %(qu1u2)x - %(ulu%)x‘i'
%(u%UQ)JE + 3?Ol(quLLQ):Jc - %(qTUQ)w

(65)

Obviously, Eq. (65) is a variable-coefficient nonlinear integrable coupled equation under the con-
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strained equation (64). When ¢ = r = 0, Eq. (65) reduces to

_ « 3a,,2
{ (u1)y, = §U1,zx + “§UTUL &, (66)

(u2)y, = —§U2.e + §U12e — §(uru3), + §(ufug),.

Remark 4.1 The first equation in Eq. (66) is similar to both the mKdV equation and the
Burgers equation, which can be called a deformed Burgers equation. In addition, we see that
Eq. (66) is a new integrable coupling of this deformed equation. The second equation in Eq. (66)
can be regarded as a variable-coefficient equation, whose variable coefficients are controlled by
the deformed Burgers equation. When u; = 0, it is trivial that Eq. (66) is the well-known heat

equation:
@
(u2)e, = —gU2.ee (67)
If u; = 1, Eq. (66) casts into a generalized Burgers equation:
a ! a
(u2)e, = —glUzas — JU2l2e + SlUzg. (68)
Obviously, if we take ¢ = r = 1, then Eq. (64) holds and Eq. (65) reduces to the following coupled

nonlinear equation with constant coefficients:

(U1)ty = SUt 20 — Suzp — L(Uru2)s + Surur e + 22udus 5 — S (uiug)q,
(U2)t, = —JU2p0 + UL 2o + SUIULL — FU2U2 5z — S(UrUz)e — S (Uru3)at (69)

& (ufuz)e — Suga.
We note here that Eq. (69) is not an integrable coupling system, which is an essential difference
from Eq. (66).
We now recall the steps for generating Hamiltonian structures of integrable couplings by
the variational identity:
(i) A column-vector Lie algebra V, which has the same dimension with the known Lie
algebra T, is constructed. V and T are isomorphic to each other.

(ii) In the Lie algebra V, the commutator is exhibited by the following form:
[a,0] = a" R(D), (70)

where a,b € V, R(b) is a square matrix with entries b;,¢i = 1,2,...,p. Here, p represents the
dimension of the Lie algebra V.

(iii) Solve the matrix equation for F:
R(b)F = —F(R(b)", F = F7, (71)

where F' is a matrix with constant entries.

(iv) Introduce a linear functional
{a,b} = a’ Fb. (72)
(v) Deduce from the variational identity
6 [T, oU 0 oY
= = 2 g 73
5 [ o GoHe =g (e ) (73)
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the Hamiltonian structures of the obtained integrable hierarchy, where U is a vector in the loop
algebra V of the Lie algebra V. It is remarked here that the loop algebra V is not unique. Based

on the above steps, we consider a linear map:
6
0:T =V, azz:aitiET%é(a):(al,ag,...,aG)TeV, (74)
i=1
from which we can prove that ¢ is an isomorphism. Define
[CL, b] = (2&31)1 — 2&1b3, 2&2()3 — 20‘,31)2 + 4a3b1 — 40,11)3, 2&1[)2 — 2(121)1, 2CL6b1 - 2@1b6 +
2a3by — 2a4b3,4agb1 — 4a1bg 4+ 2a5bg — 2agby + 2a5b3 — 2a3bs + 4azby —
daybs, 2a1bs — 2asby + 2asbs — 2a2bs)”, (75)

where a = (a1,...,a6)7,b = (b1,...,bs)". It can be verified that V becomes a Lie algebra by

combining with Eq. (75) which is rewritten as

[a,b] = a” R(b), (76)
where
—2b3 —4b3 2b2
Ry R
a” = (a1, ...,a), R(b) = ( 01 R2 ) Ry = 0 by —2b, |,
N 2  Aby—2by, 0
—2bg —4bg 205 —2b3 — 2bg —4bg — 4b3 2by + 2bs
Ry = 0 2bg —2by , Ry = 0 2b3 + 2bg —2b1 — 2by
204  4by — 2b5 0 2by +2by  —2b5 + 4by + 4by — 2bs 0
Using (76), we obtain from Eq. (71):
F, F
F= L (77)
Fy I3
where
—2m om0 =22 2 O =2z 2 0
F = m 0 0 , Fy = 7o 0 0 , F3 = 7o 0 0
0 0 m 0 0 ne 0 0 mn

In terms of Eq. (77), we introduce a linear functional:
{a,b} = n1(agb1 — 2a1b1 + a1by + agbs + agbs) + n2(asby — 2a4b1 + asbs +
agbs — 2a1bs + azbs — 2a4bs + asbs + a1bs + asbs + asbs + agbe). (78)
By making use of the Lie algebra V', we introduce a Lax pair

{ e = U, U = (qh, v, A2, ush, uph, A2) 7,

79
/l/}t = V¢»V = (VlAv‘/2>HV37‘/4>\a‘/5)\7‘/6)T' ( )

Due to the isomorphic property of § , Eq. (79) has the same compatibility condition with Eq. (56).
Hence, the stationary equation of the compatibility condition Eq. (79) leads to Egs. (49) and (61).
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Denote

VI = 57 (Vi Van s Vans Vi, Vo, Vo) TAZ2m = 220y -y

m>0

VO =V 40,0, -V30,0,0, Vi)
We can easily obtain
*Vx(n) + [U, V(n)] = (7(‘/1,71)2?3 7(V2,n)9ca 0, 7(‘/4,77,)3’:7 7(‘/5,n)ac7 O)T

Thus, the zero curvature equation U, — Vi 4 [U, V(] = 0 admits the integrable-coupling
hierarchy (62). From (79), we have

oU oUu
— =(),0,0,0,0,0)T, == =(0,,0,0,0,0)T
aq ( ) ) ) ) ) ) ) a’,’ ( b ) b ) ) ) )
oUu oUu
— =(0,0,0,X,0,0)T, =— =(0,0,0,0,),0)%
aul ( ) ) b b ) ) b au2 ( ) ) b b ) ) b
oU
e (q,r,?)\,ul,U272)\)T.
Substituting the above results into Eq. (73) yields that
oUu oUu
v, (qu} = (=2m Vi +mVa — 2m2Vy + m2V5)A%, {V, E} = (m V1 + m2Va) A2,

oU oU
{v, 371“} = (=2m2Vi + maVo — 202V + 2 V) A2, {V, 67112} =na(V1 + Vi)A?,

ou
Vo 55t = mlaVa +2Vs + (r = 20)Vi]A + 2 [(uz — 2u1)Vi + Vo + 2V +
(r—2q —2uy +u2)Va + (g + u1) Vs] A
Putting the above results into the variational identity gives
(5 x
s | (mlava-+ 23 + (r = 20VilA + mf{us = 2u0)Vi + Ve + 2V +

(r —2q 4 uz — 2u1)Va + (q + u1)V5)A})da
(=2m Vi +mVa — 2m2Vy + 12 Vs) A2

1% VN2
- )\wg)\v (mVi +m2Va) , (80)
oA (=2m2 Vi + m2Va — 212V + 12 V5) A
ne (V1 + Vi) A2
Comparing the coefficients of A=2"*1 in (80), we obtain
5 x
@ / ({771 [quZ,n + 2‘/3,77, + (’l" - QQ)VYI,n] + 772[(U2 - 2u1)vl,n + ul‘/Z,n + 2V5,n +
(r —2q +us — 2u1)Va, + (¢ +u1) Vs, })dz
=2 Vi +mVan —202Van +1m2Vs
1% V.
— (2 —n4+ 'Y) mVvamn + 2 Van (81)

=2V +12Von — 22V +12V5
772V1,n + 772‘/4,77,
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It can be seen that v = 2. Thus, we get

_2771‘/1,7; + 7]1V2,n - 2"72‘/4,n + 7]2V5,n

anQ,n + 772‘/21,n _ 5Hn (82)
72772‘/1,11 + 772V2,n - 2772V4,n + 7’2V5,n 6Q ’
N2Vin +m2Van
where
o1
Hn :/ (4 . n{771 [qv2,n + 2‘/3,n + (’I“ - 2Q)V1,n] + 772[(”2 - 2“1)‘/1,7L+
u1Van + 2Va 0 + (1 — 2¢ 4+ ug — 2u1) Vi, + (¢ + u1) Vs 0] })d.
Hence, the integrable coupling (62) can be written as the Hamiltonian structure form:
=2 Vi +mVan — 22V +1m2Vs
Vo +m2Van 0H,
Qtn —J nive, T2 V4, —J 7 (83)
—2noVipn +1m2Von — 202Van +1m2Vsn oQ
M2Vin +m2Van

where

G 0 )

m—"n2 n—n2
) )
J= m—"n2 0 Tmen2 0
0 __ 0 0 710 ’
n1—"n2 n2(n-n2)
) 0 710 0
n1—"2 n2(m —n2)

is a Hamiltonian operator, 0 = %. Obviously, we cannot allow 72 to vanish, otherwise J has no

meaning. If 71 = 0, we can get a simpler Hamiltonian structure of Eq. (62):

_6H,

= Jg— 84
Qtn (SQ Y ( )
where
0o -9 o <4
o 2 o 2
g | = 0 % 0
0o 2 0 0
2
2.0 0 0

is an obvious Hamiltonian operator, and

Hn = 471271 [(UZ - 2UI)V1m + u1V2,n + 2V3,n + (T —2q+up — 2u1)V4,n + (q + UI)VS,n]~

Therefore, we obtained two different Hamiltonian structure of Eq. (62) by choosing various pa-

rameters 7; and 7.

5. A new loop algebra H of the Lie algebra H and some applications

In the section, we introduce a higher-degree loop algebra H to generate multi-Hamiltonian

structures as an application. This result can be further extended to obtain an mKdV equation
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with complex coefficients. Set
H = span{t,(i,m), to(i,m), t3(i,m)}, (85)

where ¢;(i,m) = t;A\3"F § =1,2,3;i =0,1,2;m = 0,+1,42,.... In terms of the commutative

relations of the Lie algebra H, we get the corresponding operative relations of H:

ti(t,m),t2(g,n)| =
[ (Em). t2(:m)] {2m@+j—&m+n+nﬂ+j>&

. . —2t1(i+j,m+mn) —4ta(i +j,m+n),i+j < 3,
[tl(lvm)vt?)(.]vn)] = . . . . . .
—2t1(i+j7—-3,m+n+1)—4dt(i +j—-3,m+n+1),i+j>3,
2t9(i+j,m+n),i+j <3,

to(t,m),t3(g,n)| =
f2(iym). t3(j:m)] {2m@+j—&m+n+nﬂ+j>&

where ¢,7 = 0,1,2;m,n € Z. Define the degree of each ¢;(i,m) to be deg(t;(i,m)) =3m+1i,i =
0,1,2. We find that the linear space H becomes a loop algebra, which can be used to derive a

3-Hamiltonian integrable hierarchy. Set
pr =Up, U =t3 (1, 0) + uity (0, 0) + usto (0, 0) + usty (2, —1) + uqto (2, —1) + usts (2, —1) ,
2
o=V, V=735 > la(i,m)ty (i,—m)+b(i,m)ta (i,—m) + c(i,m) t3 (i, —m)] .

m>0i=0

(86)

According to the Tu scheme, the stationary zero curvature equation
Ve = (U, V] (87)
is equivalent to the following equations

a(0,m) = a(1,n) +uic(l,m) + uzc(2, m) — usa(2, m),
b(0,m) = —3b,(1,m) + 2a(0,m) + (u2 — 2uq)c(l,m) + (us — 2uz)c(2,m) + 2uza(2,m)—
usb(2,m),

a(2,m+ 1) = 2a,(0,m) + u1c(0,m) + uze(l,m) — usa(1l, m),

b(2,m + 1) = —3b,(0,m) + 2a(2,m + 1) + (uz — 2u1)c(0,m) + (ug — 2us)c(l,m)+
2usa(l,m) — usb(1,m),

a(l,m+1) = 3a,(2,m + 1) + usc(0,m) — usa(0,m) + uic(2,m + 1),

b(1,m+1) = —3b,(2,m + 1) + 2a(1,m + 1) + uge(2,m + 1) + (ug — 2u3z)c(0, m)+
2usa(0,m) — usb(0,m) — 2uic(2,m + 1),

cx(2,m + 1) = —u1b, (0,m) + (duy — 2uz)a(2,m + 1) — 4u?c(0,m)+
(2uiug — dugug)e(l,m) + dujusa(l, m) — 2uyusb(1, m) + 2uyugc(0,m)+
2ugb(0,m) — 2u4a(0,m).

(83)

Assume the initial values of Eq. (88) as follows:

a(0,0) = b(0,0) = ¢(1,0) = a(1,0) = b(1,0) = a(2,0) = b(2,0) = ¢(2,0) = 0,(0,0) = 3.
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From Eq. (88) we can get a series of explicit solutions:

a(2,1) = Buy, b(2,1) = Pus,¢(2,1) = 0,a(1,1) = éul’w + Bus,

2
b(1,1) = Buyz — §u2,m + Bug, ¢(1,1) = Bui — PBujus,
B B 3 2
a(0,1) = et + SUse + Buy — Bujus — Bujus,
b(0,1) = B B 2 2
0,1)= F2ee — Sl + Bus . + Buius — fuius; — Busus,
B B
c(0,1) = 5”1”2’93 — §uQu1,m — Bujug + 2PBuius — Busus, ... .
Denote
n 2
v = 575 Jali, mt (i, n — m) + b, m)ta(i,n — m) + ei,mts(i,n — m)] = AV — VI,
m=0 i=0

Eq. (87) can be decomposed into: —(VjEn))I +1[U, Vin)] = (an))z -0, an)] whose left-hand side
gives
— (V) + [0 V)
= —2a(2,n + 1)t1(0,0) + [2b(2,n + 1) — 4a(2,n + 1)]t2(0,0)+
[az(2,n+1) —2a(l,n 4+ 1) + 2ure(2,n + 1)]t1(2, 1)+
[br(2,n+ 1)+ 4durc(2,n+1) —4a(l,n+ 1) + 2b(1,n + 1) — 2ugc(2,n + 1)]t2(2, —1)+
[cx(2,n+ 1) —2u1b(2,n + 1) + 2uza(2,n + 1)]t5(2, —1).

Hence, the compatibility condition of the Lax pair

by = Up,m, = Ve, (89)

where U is the same as the one given in Eq. (86), gives directly the following integrable hierarchy

with 5-potential functions:

Uy 2a(2,n+ 1)
Us 4a(2,n +1) —2b(2,n+ 1)
ug, = | us = 2a(1,m+1) —az(2,n+ 1) — 2uc(2,n + 1)
Uy —dure(2,n+1) = b (2,n+ 1) +4a(l,n+ 1) — 2b(1,n 4+ 1) + 2usc(2,n + 1)
us /. —cp(2,n+ 1)+ 2u1b(2,n 4+ 1) — 2usa(2,n + 1)
= J, P, (90)
where
0O 0 O 1 0
0 0 -1 0 0
Ji=| 0 1 0 g —uy
-1 0 -2 -9  w-2y
0 0 wu 2u;—us fg
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is a Hamiltonian operator,
Py = (—4a(1,n+1)+2b(1,n+1),2a(1,n+1), —4a(2,n+1)+2b(2,n+1), 2a(2,n+1), 2¢(2,n+1)) 7.

In terms of Eq. (88), the integrable hierarchy (90) can be written as

2a(2,n + 1)
4a(2,n +1) —2b(2,n + 1)
ug, = 2uzc(0,n) — 2usa(0,n) = o P, (91)
dusc(0,n) — 2uqc(0,n) — dusa(0,n) + 2usb(0, n)
2uga(0,n) — 2uzb(0,n)
where

0 1 0 0 0
-1 0 O 0 0

Jo = 0 O 0 —us U3
0 0 |us 0 2u3 — uy
0 0 —u3z wug—2ug 0

is a Hamiltonian operator:
Py = (2b(2,n + 1) —4a(2,n + 1),2a(2,n + 1),2b(0,n) — 4a(0,n), 2a(0,n), 2¢(0,n))T.
Similary, using Eq.(88), we can rewrite Eq.(90) as
a;(0,n) + 2u1¢(0,n) + 2uzc(1,n) — 2usa(l,n)
M
Uy, = 2uzc(0,n) — 2usa(0,n)
4uzc(0,n) — 2uge(0,n) — dusa(0,n) + 2usb(0,n)

2uqa(0,n) — 2uzb(0,n)

= (A, B,C, D,2u4a(0,n) — 2uzb(0,n))

H

I
o
s
B

where
M =b,(0,n) + (4us — 2u2)c(0,n) + (dus — 2uq)c(1,n) — dusa(l,n) + 2usb(1,n),
J3 = (Js1, J32, J33, J34, J35),
2u18_1u1
g + 4u 07wy — 2ua0 ™ty
J31 = QU3871U1 y
Us + (4’U,3 — 2U4)8_1U1

—ug

g — 20107 tug + 4u 07 Ty
0 — du10 Yug + 2us0 1us + 8u10 Tuy — dusd g
J30 = —ug — 2u30 ™ ug + dusd " ug ,
(—4duz + 2u4)0 tug + (S8us — dug)0~ tuy

Uy — 2ug
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2u10" tug
dur 0~ ug — 2uad usg + us
J33 = 2uz0 " us ,
(4us — 2uy)0 tus
0

du 0~ ug — 2u 07 Tuy — us
—4U18_1U4 + ZUQ8_1U4 + 8u18‘1u3 — 4’(1,2(9_1U3

J34 = —2u30" Yuy + dus0 tug ,
(—dusz + 2ug)0 tuy + (8uz — 4uyg )0 tug
0
ug
2uz — ug
J35 = 0 ;
0
0
Ps =(2b(0,n) — 4a(0,7n),2a(0,n),2b(1,n) — 4a(1,n),2a(1,n), 2¢(1,n))7,
A =(0 — 4u10"  uz)a(0,n) + 4u 0~ uyb(0, ) + dur 0 ugb(1,n)—
(4u10™ tug + 2us)a(1,n) + 2uzc(1,n),
B =(0 + 8u10™ uy — 4u20™ u1)b(0,n) — (Sur0  ug — 4usd " us)a(0,n)+
(Su10  ug — duyd ™ ug + 2us)b(1,n) — (8u1871U4 — dupd uy + dus)a(l,n)+

(dus — 2uq)c(1,n),
C =4u30™ u1b(0,n) — (duzd~tug + 2us)a(0,n) + 4uzd tusb(1,n) — 4uzd  usa(l, n),
D =[(8uz — 4uy)0  uy + 2us]b(0,n) — [(Suz — 4us)0™ tug + 4us)a(0,n)+
(8uz — 4uy)0 tuzb(1,n) — (Suz — 4uy)0 tuga(l,n).
Due to the fact that J3 contains the inverse operator 01, it is very tedious for the verification of

J3 to be a Hamiltonian operator. Instead we will discuss the Hamiltonian structures of Eqgs. (90)—

(92). It is easy to find that the U and V in Eq.(56) can be written as

v < At ts uy + e )
QUQ — 2u1 + 72714;21% —/\ — Lf ,
v c(0) + C(1)A + c(2)A? a(0) + a(1)X + a(2)A\?
=\ 2600) = 20(0) + (26(1) — 2a(1)A + (2b(2) — 2a(2)X2  —c(0) — (A — e(2)A2 )

where a(0) = 3, 0 a(0,m)A™", a(1) = 3, soa(l,m)A"", ... Since
0
0 )

ou _ (0 1) ou _ [(00) o (0 ou
dui \ =2 0 ) 9uz \ 2 0 ) 0us \ -2 "Ous

O >
> O
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U _(x 0 ) _(1-% -
aus 0 _% ’a)\ 2u3/\—22u4 1+ % )

we have
(v, %) = —4a(0) + 2b(0) + (2b(1) — 4a(1))X + (2b(2) — 4a(2))\?,
(Vﬂéﬁé)::2a(0)472a(1)A4k2a(2)ka
(V;g%é}::——4a(1)4—2b0)~+(2b(0)——4aUD)§~+(2b(2)——4a@D)A,
<mg%>:muy+§am+zdmx
W, ST? :§c(0) 1 2¢(1) + 26(2),
v, 2% Z90(0) — 2use(1) + (dus — 2us)a(2) — 2usb(2)+

"IN
%[—UE,C(O) + (dug — 2uyg)a(l) — 2uzb(1) — use(1)]+

[(2¢(1) — usc(2)]A + 2¢(2)\2 + i[(4713 — 2uy4)a(0) — 2u3zb(0) — uzc(0)].

22
Substituting the above results into the trace identity yields that

{
{
i(V 8£> — )\_72)\7 (v, oU
{
{

T O O

Comparing the coefficients of A™3"73 in Eq. (93) gives

ou
2b(l,n+1) —4a(l,n+1)
2(1,n+1)
=(=3n—-2+7)| 20(2,n+1)—4a(0,n+1)
2a(2,n + 1)
2(2,n + 1)

Comparing the coefficients of A73"~2 in Eq. (93) yields

26(2,n+1) —4a(2,n+1)
2a(2,n + 1)
=(-3n—-1+7) 2b(0,n) — 4a(0,n)
2a(0,n)
2¢(0,n)

i[QC(O,n +1) = 2use(l,n+ 1) + (dug — 2uq)a(2,n + 1) — 2uzb(2,n + 1)]

0 2e(l,n+1) —use(2,n+ 1) + (dus — 2uq)a(0,n) — 2usb(0,n) — usc(0,n)]

321

(95)
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Comparing the coefficients of A=3"~! leads to
o
%[26(2’ n+1) + (dus — 2uq)a(0,n) — 2usb(0,n) — usc(0,n)]
2b(0,n) — 4a(0,n)
2a(0,n)
=(=3n+7~)| 2b(1,n) —4a(l,n) |. (96)
2a(1,n)
2¢(1,n)

In terms of the initial values of Eq. (88), we have v = 1. Thus, Eqgs. (94)—(96) can be written as

SH(1,3n+3
P = ( Su )7

H(1,3n+ 3) = —=—15[2¢(0,n + 1) — 2uzc(l,n + 1)+ (97)

a 3n+%

(4dus — 2uq)a(2,n 4+ 1) — 2uzb(2,n + 1)],

0H (2,3n+2
P2 = ( Su )7

H(2,3n+2) = L [2¢(1,n + 1) —usc(2,n + 1)+ (98)

_3n+%

(duz — 2uq)a(0,n) — 2u3zb(0,n) — usc(0,n)],

j 6H(3(%3n+1)7
h 1 (99)
{ H(3,3n+1) = —m[Qc(Zn + 1) + (4ug — 2uyq)a(0,n) — 2uzb(0,n) — usc(0,n)].
Therefore, the integrable hierarchy (90) can be written as
w = g SH3nE3) G SHR23n42)  SHEI 4D (100)
" ou ou ou
From Eq. (88), we can obtain a recurrence operator L = (L1, La, ..., Ls), where
—g + (2ug — 4uq1)0 tuy —0 + 4uy — 2uy + (dug — 8up)0 tuy
2u10 1wy g + 4du 0" ug — 2u10" g
L= 1 , Lo = 0 )
0 1
20~y 407y — 2us
(2ug — 4uy)0~tus — us (duy — 8up)0 tuz + (duy — 2us)0 tuy
2u10" tug dur 0~ Yug + us
Ly = 0 , Ly = 0 )
0 0
20 lug 40~ ug — 20 1uy
—u4 + 2us

us — 2u10" tuy
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satisfies the following relations by using the symobolic software Maple:

JlL = L*Jl = JQ,JQL = L*JZ = J37
SH(1,3n+3) _ 1 6H(2,3n+2)
= s

SH(2.3n+2) _ LéH(gffnﬂ)7 (101)

)

ou ou
0H(3,3n+1) _ L5H(1,3n)
du - ou '

This implies that L is a cyclic operator of Eq. (90). Since J; L = L*J; = Ja, Eq. (90) is Liouville
integrable. By the use of Maple, we can verify that the linear combination of Jy, Jo and Js is an
identical Hamiltonian operator. Hence, the integrable hierarchy (90) possesses a 3-Hamilotnian

styructure. We consider some reductions of Eq. (90) in the following:

Case 1 If ug = uqy = us = 0, Eq. (90) reduces to
Uy 2a(2,n + 1)
()] = =
o u ), da(2,n+1) — 2b(2,n + 1)

0 1 2b(2,n+1) —4a(2,n+1)
-1 0 2a(2,n+1)

Ej< 26(2,n + 1) — 4a(2,n + 1) )

2a(2,n + 1) (102)

From the reduced recurrence relations of Eq. (8):

a;(0,n) = 2a(2,n+ 1) — 2u1¢(0,n),
b (0,n) =4a(2,n+ 1) — 2b(2,n + 1) — du1¢(0,n) + 2u2c(0,n), (103)
cz(0,m) = 2u16(0,n) — 2uga(0,n),

we get

20(2,n+1) —4a(2,n+1) \ i 2b(2,n) —4a(2,n)
2a(2,n + 1) B 2a(2,n) ’

where

i— ( —9 4+ (2up — 4u1)0tur (dur — 2un)0 T — O + (dus — 8up)0 >

2u10~ gy g — 2u10" Yy + 2u10" Ty

Thus, Eq. (102) can be written as

i ( 2b(2,n) — 4a(2,n) ) | (100
2a(2,n)

It is obvious that Eq. (104) is not an AKNS hierarchy. Set a(0,0) = 5(0,0) = 0,¢(0,0) = 8, we
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can obtain from Eq. (103) that

a(2,1) = Buy,b(2,1) = Bus,a(0,1) = éul’m + ﬁu? — Bu%u%

4
b(0,1) = guz,m + Buius — Buiui, c(0,1) = §u1u2,w - §U2U1,m
3 3
a(2,2) = gul,wwm + gu?um — Stz g,

3
7u§u2,$ + gul,wmx + 3Butuy 4 + guluwz,z, e

If n = 1, Eq. (104) can be reduced to a coupled equation

b(25 2) = _§u2,www - 35u1u2u1,x -

Ut = _§U2,xm¢ - SﬁU%UQ,w + 36“1”2“2,377 (105)
Ugp = %uLm + 3Butuy » — 3Burusu 4.
If up = iug,i2 = —1,us = q, Eq. (105) becomes
i3 oy, 2

which is a modified KdV equation with complex coefficients. When n = 0, Eq.(104) reduces
to uy = 2Bug — 4Puq, uzy = 2pu;, and thus vy = 48%u, — 4PBu; ¢, which is a 2-order linear

equation with respect to u;.
Case 2 If n=1,t; =t, Eq.(90) reduces to the following equations:
u1,e = 2Puy, (107)

Ut = 26(2“1 — Ug), (108)

1
2 2
ugs =0 (u1usus o — UsUzUy 5 — 2uguzts + dugu3 — 2UoU3 — ZUSUL g — UsUZo—
2

2uius + 2uousui + 2uiu?), (109)

Uar =B (2us — dua)urug » — B(2us — ua)uguy 5 — PBurua(dus — 2uy) + 2Puqusz(dus — 2uqg)—
Bugus(dus — 2uy) — Busuy zo — 2Busuz z — 4Busu3 + 4fususu? + 4ﬂu1u§, (110)
_B 3 > B
Us,t =5 Uil an + Buguz z + 2Buguy — 2Buiusuy — 2Burugus — §u3u2,zac+

Busty z — 2Pusug o — 2ﬁuquU3 + 2,6u1U3u§ + 2Bususus. (111)

If uy = uy =0, Egs. (107)—(111) reduce to

Uz = —PuU3 U5, Ug s = —20U3 U
3,t B 3,2 W5 4.t ﬂ 3,z U5, (112)
Us,e = Pusus + Busty  — 2Busus s
If uy = 2u3 = w, Eq. (112) leads to the following nonlinear evolution equation
WilWgt — Wylpy = —wWW> (113)

2"

Remark 5.1 By using the loop algebra H, we can obtain a non-isospectral integrable hierarchy.
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For instance, set

{ 0o = Up, U = t1(1) — vt2(0) + uts(0), (114)

Yt = V(p7 V = Atl(O) + Btg(O) + Ct3(0)7

where
A=D"a X" 4 @ N B =Y hATT 4 Y hAT =) At Y e
j=0 j=0 j=1 j=1 j=1 j=1
The compatibility condition of Eq. (114) gives rise to

Uy — Cyp +2\B+2vA =0,
A — Ay —20C — 2uA =0, (115)
/\t—i—vt —AI+B$+2)\C+2’I}C+2U(B—A) :0,
which postulates that
vp +4AC + 20vC — 4uA + 2uB + B, = 0,

where we assume A, = > k;j(t)A\™7J. It is easy to see that Eq.(115) is equivalent to the

j=0"j
following:
vag+b1 =0,—cj o +2bj11 +2va; =0, =1,2,...,n—1, (116)
Vag +Bl =0,-Cj. +26j+1 +2va; =0,5=1,2,...,m—1,
ag, +2c1 — 2uag = 0,0, + 2¢j11 —2ua; =0,5=1,2,...,n—1, (117)
ko(t) - aO,:c - 261 + 2u(_10 = O, aj,ac + 25j+1 - 2U(ij - k}](t) = 0,] = 1, 27 e, — ].,
—uag +c1 = 0,b; ; + 2ve; + 2ub; —4ua; +4cj41 =0,7=1,2,...,n—1, (118)
—ugag + €1 = 0,bj » + 20¢; + 2ub; — 4a; +4¢j11 =0,5=1,...,m — 1,
from which we get
e = %lf” ubj e, (119)
Qj o = §bj7m + ubj + v + k‘j (t)
Based on the above results, we obtain a Lax integrable hierarchy
Vi = —bno — bz — 20(cn + Em) — 2u(bp, + b)) + 4ulay, + @), (120)
Ut, . = Cnz + Cme — 20(an + Q).

Set ag = a(t),ap = ko(t)x, by = co = by = ¢ = 0, one infers from Eqs. (116)-(119) that

—_

by = —a(t)v,c; = a(t)u,a; = —3 (t)v, by = —ko(t)zv, 1 = ko(t)zu,
a1y = — sko(t)z + i (0)2, b2 = Sa(t)uy + 3a(t)e?, 2 = Jalt), — salt)
a1 = —gho()zv + ki(t)z, by = ga(t)us + ga(t)”, c2 = Za(t)o — Sa(t)uv,
1 3 0, 1 .- 1 1 )
as = —a(t)u, + —a(t)v® + —a(t)u’, by = —a(t)uy + —ko(t)zv® — k1 (t)zv,
4 8 4 2 2
1 1 1
Co = Zko(t)v + Zk‘o(t)xvm — Eko(t)xuv + k1 (t)zu,
1 1 1 1
g = Za(t)uw — le(t)mv + Zoz(t)u2 + §k0(t)xv2 + ka(t)x, . ...
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If n = m =1, Eq. (120) reduces to

{ vy, = (a(t) + ko(t)x)vy — 2(a(t) + ko(t)x)uv + ko(t)v + 4k (t)zu

(121)
wy,, = (a(t) + ko(t)z) (us + v?) + ko(t)u — 2k; (t)zv

which is a new variable-coefficient nonlinear integrable system. If n = 1,m = 2, Eq.(120) becomes

v, , = (a(t) + ki(t)x )(vqc — 2uv) — %a(t)um — ko(t)v? — %ko(t)xvvm + dko(t)zu + k1 (t)v+
a(t)u® + 2ko(t)ruv
ut1,2 = (a(t) + kQ( ) )’ZLI + kO(t)vm + lkO( )xvzx - lkO(t)U'U - %(ko(t)x + Oé(t))uz’l)n—
Lko(t)zuv, + k1 ()u + a(t)v? + ki (t)zv? — 2a(t)u?v — ko(t)zvd — 2ko ()20,
(122)

which is a more complicated variable-coefficient integrable system. Similarly, if n = 2,m =

1;n = m = 2, we obtain respectively the following variable-coefficient integrable systems:

Viyy = —2a(t)ugy + ko(t)v + Fa(t)vv, — 2ko(t)zuwv + Sa(t)uv? + at)u? + 4k (t)zu
Uy, = 2a(t)vee — a(t)ugv — %a(t)uvx + ko(t)u — 2a(t)v® — La(t)vu®+
ko(t)$1} — 2](31( )

3 3 3
Viyo = — () Ugsy — §a(t)vvz — ko(t)v? — (§k0(t) + 2k (1)) zuw + ko(t)zuv? + ia(t)uvz—i—
k1(t)v + k1 (t)zv, + 20(t)u® + ko (t)zu

1 3 1 1 1 1
Uty , :Za(t)vm — ia(t)uxv - §a(t)uvx + iko(t)vz + Zko(t):rvm - ikg(t)uvf
1 1 1
iko(t)xuzv - §k0(t)xuvm + k1 (t)u + ky (H)zu, — Za(t)v4 - §a(t)u21) + ky () zv® -

%oz(t)vu2 — ko(t)zv® — 2ko(t)zv

Remark 5.2 We obtain in this paper some integrable hierarchies of evolution type, which can
be reduced to some explicit equations. Related works can be found from the papers [24-27] in
which the algebro-geometric solutions of some well-known nonlinear evolution equations were

obtained by using some kinds of nonlinearity methods.
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