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Abstract In this paper we first present a 3-dimensional Lie algebra H and enlarge it into

a 6-dimensional Lie algebra T with corresponding loop algebras H̃ and T̃ , respectively. By

using the loop algebra H̃ and the Tu scheme, we obtain an integrable hierarchy from which

we derive a new Darboux transformation to produce a set of exact periodic solutions. With

the loop algebra T̃ , a new integrable-coupling hierarchy is obtained and reduced to some

variable-coefficient nonlinear equations, whose Hamiltonian structure is derived by using the

variational identity. Furthermore, we construct a higher-dimensional loop algebra H̄ of the

Lie algebra H from which a new Liouville-integrable hierarchy with 5-potential functions is

produced and reduced to a complex mKdV equation, whose 3-Hamiltonian structure can

be obtained by using the trace identity. A new approach is then given for deriving multi-

Hamiltonian structures of integrable hierarchies. Finally, we extend the loop algebra H̃ to

obtain an integrable hierarchy with variable coefficients.
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1. Introduction

The development of new integrable hierarchies of evolution equations is important in the

study of soliton theory. These developments include the recent Lax pair method for generating

integrable hierarchies of evolution equations [1] among which Tu [2] employed the matrix Lie

algebras to introduce Lax pairs to derive some well-known integrable hierarchies of evolution

type, such as the AKNS hierarchy, the KN hierarchy, and the WKI hierarchy. In this paper

Tu proposed a milestone formula to deduce Hamiltonian structures of the integrable hierarchies,

called the trace identity. The scheme for generating integrable hierarchies and the corresponding

Hamiltonian structures was now known as the Tu scheme [3]. By adopting the Tu scheme, some

interesting integrable hierarchies and their some properties were obtained [4–9]. Guo and Yu [10]

introduced a loop algebra to obtain a multi-potential integrable hierarchy with 3-Hamiltonian
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structure. In [11,12] the authors proved that the self-dual Yang-Mills equations can be presented

as a compatibility condition of the general Lax pair. The Lax pair method has been shown in [13]

that it provides an effective approach to generate integrable hierarchies of evolution equations.

To the knowledge of the authors, there is still very few work on applying the Lax pair method

for generating variable-coefficient integrable hierarchies. Li [14] has proposed an approach to

produce variable-coefficient integrable hierarchies under isospectral and non-isospectral problems

by Lax pairs. In this paper, we first present a 3-dimensional Lie algebra H and enlarge it into

a 6-dimensional Lie algebra T with corresponding loop algebras H̃ and T̃ , respectively. Starting

from the loop algebra H̃, we obtain two various integrable hierarchies under the isospectral

problems by using the Tu scheme, one is an isospectral integrable hierarchy and the another

one is a non-isospectral integrable hierarchy with variable coefficients. Based on the work given

in [15], we derive a new Darboux transformation of the obtained integrable hierarchy which

can be used to produce exact periodic solutions. Furthermore, we provide a new approach for

generating variable-coefficient integrable hierarchies by producing an integrable couplings which

can be reduced to a series of variable-coefficient nonlinear integrable equations. As a result, the

Hamiltonian structure can be derived by the variational identity. Finally, we establish a higher

dimensional loop algebra H̄ of the Lie algebra H to produce a multi-potential Liouville-integrable

hierarchy along with 3-Hamiltonian structure which can be reduced to an mKdV equation with

complex coefficients.

2. A Lie algebra and its loop algebra H̃ as well as applications

The most simplest Lie algebra [16] presents:

A1 =

{
e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)}
, (1)

which possesses the following commutative relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

We introduce the following Lie algebra

H = span{t1, t2, t3}, (2)

where t1 =

(
0 1

−2 0

)
, t2 = 2

(
0 0

1 0

)
, t3 = h along with the commutative relations:

[t1, t2] = 2t3, [t1, t3] = −2t1 − 4t2, [t2, t3] = 2t3.

A corresponding loop algebra is defined as

H̃ = span{t1(n), t2(n), t3(n)}, (3)

where ti(n) = tiλ
n, i = 1, 2, 3;n ∈ Z. Eq. (3) will be used to generate two integrable hierarchies.
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Firstly, we introduce the following isospectral problems: φx = Uφ,U = t1(1)− vt2(0) + ut3(0),

φt = V φ, V =
∑
m≥0

(amt1(−m) + bmt2(−m) + cmt3(−m)). (4)

Denote

V
(n)
+ =

n∑
m=0

(amt1(−m) + bmt2(−m) + cmt3(−m))λn, V (n) = V
(n)
+ − ant1(0),

we have

−V (n)
x + [U, V (n)] = (4cn+1 − 4uan)t2(0)− (2bn+1 + 2van)t3(0).

Based on the Tu scheme, the zero curvature equation Utn − V
(n)
x + [U, V (n)] = 0 admits that{

vtn = 4cn+1 − 4uan,

utn = cn,x,
(5)

where an, bn, cn satisfy: 
cn+1 = −1

2an,x + uan,

bn+1 = 1
2cn,x − van,

an,x = 1
2bn,x + vcn + ubn.

(6)

Setting n = 2, a0 = −2, b0 = c0 = 0, t2 = t, we obtain from Eqs. (5) and (6) the following coupled

nonlinear integrable equation: {
vt = uxx + 3vvx + 2uux,

ut = −1
2vxx + (uv)x,

(7)

which is similar to the long water wave equation. From Eq.(6), it is easy to get

L =

(
− 1

2∂
−1v∂ − 1

2v −∂
4 − 1

2∂
−1u∂

∂
2 − u 0

)
which satisfies the following recurrence relation:(

−2an+1

2cn+1

)
= L

(
−2an

2cn

)
. (8)

Combined with Eq. (6), Eq. (5) can be rewritten as:

ũtn =

(
v

u

)
tn

=

(
∂ 0

0 ∂
2

)(
−2an

2cn

)
= J

(
−2an

2cn

)
. (9)

3. A Darboux transformation of the integrable hierarchy (5)

Ma [17] once investigated some Darboux transformations of a Lax integrable system in

2n-dimensions. Based on this and [15], we shall discuss a Darboux transformation of equation

hierarchy (5) in what follows.
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Denote Φ = JLJ−1, where J =

(
∂ 0

0 ∂
2

)
, and L is presented in Eq. (8). We have

Φ =

(
− 1

2 (∂v∂
−1 + v) −∂

2 − u
∂
4 − 1

2∂u∂
−1 0

)
. (10)

Thus, the isospectral integrable hierarchy (9) can be written as

ũt =

(
v

u

)
t

= Φn−1

(
αvx

2αux

)
. (11)

The Lax pair of Eq. (20) is given by(
φ1

φ2

)
x

=

(
u λ

−2λ− 2v −u

)(
φ1

φ2

)
, (12)

(
φ1

φ2

)
t

=

(
C A+ an

−2A+ 2B − 2an −C

)(
φ1

φ2

)
, (13)

where

A =
n∑

m=0

amλ
n−m, B =

n∑
m=0

bmλ
n−m, C =

n∑
m=0

cmλ
n−m.

The compatibility condition of Eqs. (12) and (13) leads to
Ax = −2λC + 2uA,

Bx = −4λC − 2vC + 4uA− 2uB,

Cx = 2λB + 2vA,

(14)

from which we get

A =
1

2
B + ∂−1(vC + uB). (15)

Suppose that the matrix

(
φ11(x, t, λ) φ12(x, t, λ)

φ21(x, t, λ) φ22(x, t, λ)

)
is a soliton matrix of Eq. (12). Denote

ξj =
µjφ21(x, t, λj) + νjφ22(x, t, λj)

µjφ11(x, t, λj) + νjφ12(x, t, λj)
, j = 1, 2, (16)

where i ̸= j ⇒ µi ̸= µj , νi ̸= νj , and µj , νj are arbitrary constants with |µj | + |νj | not identical
zero. In terms of Eqs. (12) and (13), ξj satisfy the following Riccati equations

ξj,x = −2λj − 2uξj − 2v − ξ2jλj , j = 1, 2, (17)

ξj,t = −2A+ 2B − 2an − 2Cξj − (A+ an)ξ
2
j , j = 1, 2. (18)

Eq. (17) gives  u =
(ξ1−ξ2)x−2(λ2−λ1)+λ1ξ

2
1−λ2ξ

2
2

2(ξ2−ξ1)
,

v =
ξ1ξ2,x−ξ1,xξ2+2ξ1λ2−2ξ2λ1+λ1ξ

2
1ξ2−λ2ξ

2
2ξ1

2(ξ2−ξ1)
.

(19)

Hence, we obtain from Eq. (27) that

vx =
P

2(ξ2 − ξ1)2
, ux =

Q

2(ξ2 − ξ1)2
, (20)
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where

P =(2λ2ξ1ξ2 − 2λ1ξ
2
1 − 2uξ1 + 2uξ2)ξ1ξ2,x + ξ2ξ1,x(2λ1ξ1ξ2 − 2uξ2 − 2λ2ξ

2
2 + 2uξ1)+

(ξ1ξ2 − ξ21)ξ2,xx + (ξ1 − ξ2)ξ2ξ1,xx,

Q =(ξ1 − ξ2)(ξ2 − ξ1)xx + [2u(ξ2 − ξ1) + 4(λ2 − λ1)− 3λ1ξ
2
1 + 2λ2ξ

2
2 + 2λ1ξ1ξ2 − λ1ξ1]ξ1,x+

[4(λ1 − λ2) + 2u(ξ1 − ξ2) + 2λ2ξ1ξ2 − 4λ2ξ
2
2 + λ1ξ

2
1 + λ1ξ1]ξ2,x.

Assume

T =
α

2(ξ2 − ξ1)2

(
a1∂

2 + a2∂ b1∂
2 + b2∂

c1∂
2 + c2∂ d1∂

2 + d2∂

)
,

where

a1 = ξ1ξ2 − ξ2
2, a2 = 2λ1ξ1ξ2

2 − 2uξ2
2 − 2λ2ξ2

3 + 2uξ1ξ2, b1 = ξ1ξ2 − ξ1
2,

b2 = 2λ2ξ1
2ξ2 − 2λ1ξ1

3 − 2uξ1
2 + 2uξ1ξ2, c1 = ξ2 − ξ1,

c2 = 2u(ξ2 − ξ1) + 4(λ2 − λ1)− 3λ1ξ1
2 + 2λ2ξ2

2 + 2λ1ξ1ξ2 − λ1ξ1, d1 = ξ1 − ξ2,

d2 = 4(λ1 − λ2) + 2u(ξ1 − ξ2) + 2λ2ξ1ξ2 − 4λ2ξ
2
2 + λ1ξ

2
1 + λ1ξ1.

The inverse operator of T presents that

T−1 =

(
∂−2a−1 + ∂−1a−1

2 ∂−2c−1
1 + ∂−1c−1

2

∂−2b−1
1 + ∂−1b−1

2 ∂−2d−1
1 + ∂−1d−1

2

)
.

It is easy to obtain (
v

u

)
t

= T

(
ξ1,t

ξ2,t

)
, λi,t = 0, i = 1, 2.

Set

Φ̃ =

(
Φ̃11(λ1, λ2, ξ1, ξ2) Φ̃12(λ1, λ2, ξ1, ξ2)

Φ̃21(λ1, λ2, ξ1, ξ2) Φ̃22(λ1, λ2, ξ1, ξ2)

)
,

where

Φ̃11(λ1, λ2, ξ1ξ2) =(∂−1a−1
1 + ∂−1a−1

2 )(−1

2
vx∂

−1a1∂
2 − va1∂

2 − 1

2
∂−1v∂a1∂

2−

1

2
vx∂

−1a2∂ − va2∂ − 1

2
∂−1v∂a2∂ − uc1∂

2−

uc2∂ + ∂−1u∂c1∂
2 + ∂−1u∂c2∂),

Φ̃21(λ1, λ2, ξ1, ξ2) =(∂−2b−1
1 + ∂−1b−1

2 )(−1

2
vx∂

−1a1∂
2 − va1∂

2 − 1

2
∂−1v∂a1∂

2−

1

2
vx∂

−1a2∂ − va2∂ − 1

2
∂−1v∂a2∂ − uc1∂

2−

uc2∂ + ∂−1u∂c1∂
2 + ∂−1u∂c2∂),

Φ̃12(λ1, λ2, ξ1, ξ2) =Φ̃21(λ2, λ1, ξ2, ξ1), Φ̃22(λ1, λ2, ξ1, ξ2) = Φ̃11(λ2, λ1, ξ2, ξ1).

After simplification and computation, we obtain

ΦT = T Φ̃, (21)
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which indicates that

ΦnT = T Φ̃n. (22)

Therefore, we have(
ξ1

ξ2

)
t

=

(
−2A+ 2B − 2an − 2Cξ1 − (A+ an)ξ

2
1

−2A+ 2B − 2an − 2Cξ2 − (A+ an)ξ
2
2

)
= Φ̃m−1

(
ξ1,x

ξ2,x

)
, (23)

(
v

u

)
t

− Φm−1

(
αvx

2αux

)
= T

{(
ξ1

ξ2

)
t

− Φ̃m−1

(
ξ1,x

ξ2,x

)}
. (24)

Choosing an appropriate ξi (i = 1, 2) and employing Eqs. (12)and (13), we obtain{
v̄ = v + (λ1−λ2)(ξ1+ξ2)(2+ξ1ξ2)

2(ξ2−ξ1)
,

ū = u+
(λ2−λ1)(4+ξ21+ξ22)

2(ξ2−ξ1)
.

(25)

It can be verified that Eq. (25) satisfies Eq. (11). Therefore, Eq. (25) is a Darboux transformation

of the isospectral integrable hierarchy (5).

In the following, we consider some exact solutions of the nonlinear integrable equations (7)

by using the Darboux transformation (25). Eq. (12) can be written as
φ11,x = uφ11 + λφ21,

φ12,x = uφ12 + λφ22,

φ21,x = (−2λ− 2v)φ11 − uφ21,

φ22,x = (−2λ− 2v)φ12 − uφ22.

(26)

We take a special solution of Eq.(7) to be u = v = 0. Eq. (26) reduces to

φ11,x = λφ21, φ12,x = λφ22, φ21,x = −2λφ11, φ22,x = −2λφ12, (27)

which gives rise to

φ11,xx = −2λ2φ11, φ12,xx = −2λ2φ12, (28)

whose solutions are given by

φ11 = sin(c1(t) +
√
2λx), φ12 = sin(c2(t) +

√
2λx). (29)

Substituting (29) into (27) yields that

φ21 =
√
2 cos(c1(t) +

√
2λx), φ22 =

√
2 cos(c2(t) +

√
2λx). (30)

Eq. (13) can be written as
φ11,t = Cφ11 + (A+ an)φ21,

φ12,t = Cφ12 + (A+ an)φ22,

φ21,t = (−2A+ 2B − 2an)φ11 − Cφ21,

φ22,t = (−2A+ 2B − 2an)φ12 − Cφ22.

(31)

When n = 2, we have from Eq. (6) that

b1 = 2v, c1 = −2u, a1 = v, b2 = −ux − v2, c2 = −1

2
vx + uv, a2 = −1

2
ux − 3

4
v2 − 1

2
u2, . . . . (32)
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Thus, we obtain

A = −2λ2 + vλ− 1

2
ux − 3

4
v2 − 1

2
u2, B = 2vλ− ux − v2, C = −2uλ− 1

2
vx + uv. (33)

When n = 2, u = v = 0, Eq. (31) reduces to

φ11,t = −2λ2φ21, φ12,t = −2λ2φ22, φ21,t = 4λ2φ11, φ22,t = 4λ2φ12, (34)

which gives

φ11,xx = −8λ4φ11, φ12,tt = −8λ4φ12. (35)

When c1(t) = c2(t) = −2
√
2λ2t, the solutions to Eq. (27) satisfy Eq. (34). That is, the following

equations

φ11 = φ12 = sin(
√
2λx− 2

√
2λ2t), φ21 = φ22 =

√
2 cos(

√
2λx− 2

√
2λ2t) (36)

satisfy Eq. (34). Substituting (36) into Eq. (16) yields that

ξi =
√
2 cot(

√
2λix− 2

√
2λ2i t), i = 1, 2. (37)

When λ1 ̸= λ2, Eq.(37) represents two formulas

ξ1 =
√
2 cot(

√
2λ1x− 2

√
2λ21t), (38)

ξ2 =
√
2 cot(

√
2λ2x− 2

√
2λ22t). (39)

When set u = v = 0, Eq. (25) reduces to{
v̄ = (λ1−λ2)(ξ1+ξ2)(2+ξ1ξ2)

2(ξ2−ξ1)
,

ū =
(λ2−λ1)(4+ξ21+ξ22)

2(ξ2−ξ1)
.

(40)

Substituting (38), (39) into (40), we obtain the following set of exact periodic solutions:
v̄ = (λ1 − λ2)

cot(
√
2λ1x−2

√
2λ2

1t)+cot(
√
2λ2x−2

√
2λ2

2t)

cot(
√
2λ2x−2

√
2λ2

2t)−cot(
√
2λ1x−2

√
2λ2

1t)
(1 + cot(

√
2λ1x− 2

√
2λ21t)

cot(
√
2λ2x− 2

√
2λ22t)),

ū = λ2−λ1√
2

2+cot2(
√
2λ1x−2

√
2λ2

1t)+cot2(
√
2λ2x−2

√
2λ2

2t)

cot(
√
2λ2x−2

√
2λ2

2t)−cot(
√
2λ1x−2

√
2λ2

1t)
.

(41)

4. Enlarged Lie algebra of the Lie algebra H and its applications

In the section we further enlarge the Lie algebra H into another one with the help of the

known Lie algebra proposed in [18]. If we denote

e1 =

(
1 0

0 −1

)
, e2 =

(
0 1

0 0

)
, e3 =

(
0 0

1 0

)
,

which is the same as the one given in Eq.(1), then one Lie algebra was presented in [16] as:

G = span{f1, f2, . . . , f6}, (42)

where

fi =

(
ei 0

0 ei

)
, fj =

(
0 ei

0 ei

)
, j = 4, 5, 6; i = 1, 2, 3
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equipped with the following commutative relations

[f1, f2] = 2f2, [f1, f3] = −2f3, [f2, f3] = f1, [f1, f4] = 0, [f1, f5] = 2f5, [f1, f6] = −2f6,

[f2, f4] = −2f5, [f2, f5] = 0, [f2, f6] = f4, [f3, f4] = 2f6, [f3, f5] = −f4, [f3, f6] = 0,

[f4, f5] = 2f5, [f4, f6] = −2f6, [f5, f6] = f4.

Denote G1 = span{f1, f2, f3}, G2 = span{f4, f5, f6}, then we have

G = G1 ⊕G2, G1
∼= A1, [G1, G2] ⊂ G2, (43)

and G1, G2 are all single Lie subalgebras. Based on the Lie algebra G and Eq. (43), we introduce

a linear space T :

T = span{t1, t2, . . . , t6}, (44)

whose commutative relations are defined as

[t1, t2] = 2t3, [t1, t3] = −2t1 − 4t2, [t2, t3] = 2t2, [t1, t4] = 0, [t1, t5] = 2t6,

[t1, t6] = [t4, t6] = −2t4 − 4t5, [t2, t4] = −2t6, [t2, t5] = 0, [t2, t6] = 2t5, [t3, t4] = −[t1, t6],

[t3, t5] = −2t5, [t3, t6] = 0, [t4, t5] = 2t6, [t5, t6] = 2t5.

It can be verified that the above relations satisfy

[a, b] = −[b, a], [αa+ βb, c] = α[a, c] + β[b, c], [[a, b], c] + [[b, c], a] + [[c, a], b] = 0,

∀a, b, c ∈ T, α, β ∈ C.

Therefore, T becomes a Lie algebra. If we denote T1 = span{t1, t2, t3}, T2 = span{t4, t5, t6}, then
T, T1 and T2 satisfy the relation (43). Furthermore, we have T1 ∼= H. Hence, the Lie algebra T

is an enlarged one of the Lie algebra H. We now define a loop algebra of the Lie algebra T :

T̃ = span{t1(n), t2(n), . . . , t6(n)}, (45)

where

ti(n) = tiλ
2n+1, i = 1, 2, 4, 5; tj(n) = tjλ

2n, j = 3, 6. (46)

According to (44) and (46), we get the commutative relations

[t1(m), t2(n)] = 2t3(m+ n+ 1), [t1(m), t3(n)] = −2t1(m+ n)− 4t2(m+ n),

[t2(m), t3(n)] = 2t2(m+ n), [t1(m), t4(n)] = 0, [t1(m), t5(n)] = 2t6(m+ n+ 1),

[t1(m), t6(n)] = [t4(m), t6(n)] = −2t4(m+ n)− 4t5(m+ n),

[t2(m), t4(n)] = −2t6(m+ n+ 1), [t2(m), t5(n)] = 0, [t2(m), t6(n)] = 2t5(m+ n),

[t3(m), t4(n)] = 2t4(m+ n) + 4t5(m+ n), [t3(m), t5(n)] = −2t5(m+ n),

[t3(m), t6(n)] = 0, [t4(m), t5(n)] = 2t6(m+ n+ 1), [t5(m), t6(n)] = 2t5(m+ n), m, n ∈ Z.

Set

T̃1 = span{t1(n), t2(n), t3(n)}, T̃2 = span{t4(n), t5(n), t6(n)},
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then we have T̃ = T̃1 ⊕ T̃2, [T̃1, T̃2] ⊂ T̃2. For illustration, we first present an application of the

loop algebra T̃1 in the following example. Consider
ψx = U1ψ,U1 = t3(1) + qt1(0) + rt2(0),

ψt = V1ψ, V1 =
∑
m≥0

(
3∑

j=1

Vj,mtj(−m)).
(47)

According to the Tu scheme, we solve the following stationary zero curvature equation for Vj,m

(V1)x = [U1, V1] (48)

to yield 
(V1,m)x = 2V1,m+1 − 2qV3,m,

(V2,m)x = 4V1,m+1 − 2V2,m+1 − 4qV3,m + 2rV3,m,

(V3,m)x = 2qV2,m+1 − 2rV1,m+1,

which is equivalent to 
V1,m+1 = 1

2 (V1,m)x + qV3,m,

V2,m+1 = −1
2 (V2,m)x + (V1,m)x + rV3,m,

(V3,m)x = −q(V2,m)x + (2q − r)(V1,m)x.

(49)

Given the initial values V3,0 = α, V1,0 = V2,0 = 0, Eq. (49) leads to

V1,1 = αq, V2,1 = αr, V3,1 = α(q2 − qr), V1,2 = α(
1

2
qx + q3 − q2r),

V2,2 = α(−1

2
rx + qx + rq2 − qr2), V3,2 = α(

1

2
qrx − rqx − 3q3r +

3

2
q4 +

3

2
q2r2), . . . .

We decompose Eq. (48) into the following:

−(V
(n)
1,+ )x + [U1, V

(n)
1,+ ] = (V

(n)
1,− )x − [U1, V

(n)
1,− ], (50)

where

V
(n)
1,+ =

n∑
m=0

3∑
j=1

Vj,mtj(−m)λ2n, V
(n)
1,− = λ2nV − V

(n)
1,+ .

The degree of the left-hand side in (50) is greater than zero, whilst the right-hand side is smaller

than 1. Thus, we obtain that

−(V
(n)
1,+ )x + [U1, V

(n)
1,+ ] = −2V1,n+1t1(0) + (2V2,n+1 − 4V1,n+1)t2(0) + (2rV1,m+1 − 2qV2,n+1)t3(0).

Denote V
(n)
1 = V

(n)
1,+ − V3,nt3(0), we then have

−(V
(n)
1 )x + [U1, V

(n)
1 ] = −(V1,n)xt1(0)− (V2,n)xt2(0).

Therefore, we obtain the zero curvature equation (U1)tn − (V
(n)
1 )x + [U1, V

(n)
1 ] = 0, which is a

compatibility condition of the following Lax pair

φx = U1φ,φtn = V
(n)
1 φ, (51)

which admits that (
q

r

)
tn

=

(
(V1,n)x

(V2,n)x

)
= J

(
−4V1,n + 2V2,n

2V1,n

)
, (52)
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where J =

(
0 ∂

2
∂
2 ∂

)
is an obvious Hamiltonian operator. We consider the Hamiltonian struc-

ture of Eq. (52). Since

U1 =

(
λ2 λq

−2λq + 2λr −λ2

)
, V1 =

(
V̄3 λV̄1

−2λV̄1 + 2λV̄2 −V̄3

)
,

where V̄i =
∑

m≥0 Vi,mλ
−2m, i = 1, 2, 3, it is easy to derive that

⟨V1,
∂U1

∂q
⟩ = −4λ2V̄1 + 2λ2V̄2, ⟨V1,

∂U1

∂r
⟩ = 2λ2V̄1,

⟨V1,
∂U1

∂λ
⟩ = −4λV̄3 + λ(2rV̄1 − 4qV̄1)− 2λqV̄2.

Substituting the above equations into the trace identity yields

δ

δu
[−4V̄3 + 2rV̄1 − 4qV̄1 − 2qV̄2]λ = λ−γ ∂

∂λ
λγ

(
(−4V̄1 + 2V̄2)λ

2

2V̄1λ
2

)
, (53)

where δ
δu = ( δ

δq ,
δ
δr )

T . Comparing the coefficients of λ−2n+1 in Eq. (53), we have

δ

δu
(−4V3,n + 2rV1,n − 4qV1,n − 2qV2,n) = (2− 2n+ γ)

(
−4V1,n + 2V2,n

2V1,n

)
.

Using the initial values in Eq. (49), we have γ = 2. Thus, we obtain(
−4V1,n + 2V2,n

2V1,n

)
=

δ

δu
(
−2V3,n + (r − 2q)V1,n − qV2,n

2− n
) ≡ δHn

δu
.

Therefore, the Hamiltonian structure of the integrable hierarchy (52) is given as:

utn =

(
q

r

)
tn

= J
δHn

δu
, (54)

where Hn = 1
n−2 [2V3,n + (2q − r)V1,n + qV2,n] are the Hamiltonian densities of Eq. (44). When

n = 2, Eq. (52) can be reduced to{
qt2 = α

2 qxx + 3αq2qx − α(q2r)x,

rt2 = −α
2 rxx + αqxx + α(q2r)x − α(qr2)x,

(55)

which is a kind of generalized nonlinear Schrödinger equation. Obviously, Eq. (52) is not the

classical KN hierarchy but a new integarbel system.

To tackle the more complicated case of variable-coefficient nonlinear integrable equations,

we will devise in the following an integrable coupling of Eq. (52) and deduce its Hamiltonian

structure by using the variational identity [19]. Let{
φx = Uφ,U = U1 + U2,

φt = V φ, V = V1 + V2,
(56)

where

U1 = t3(1) + qt1(0) + rt2(0), U2 = t6(1) + u1t4(0) + u2t5(0),
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V1 =
∑
m≥0

( 3∑
j=1

Vj,mtj(−m)
)
, V2 =

∑
m≥0

( 6∑
j=4

Vj,mtj(−m)
)
.

The compatibility condition of Eq. (56) gives

U1,t + U2,t − V1,x − V2,x + [U1, V1] + [U1, V2] + [U2, V1] + [U2, V2] = 0. (57)

The corresponding stationary zero curvature equation of Eq. (57) obtains

−V1,x − V2,x + [U1, V1] + [U1, V2] + [U2, V1] + [U2, V2] = 0, (58)

whose sufficient condition deduces that

−V1,x + [U1, V1] = 0, (59)

−V2,x + [U1, V2] + [u2, V1 + V2] = 0. (60)

It can be seen that Eq. (59) is the same as Eq. (48). Again, we find that (60) is equivalent to

(V4,m)x =4V4,m+1 − (2q + 2u1)V6,m − (2u1 + 2q)V3,m + (V1,m)x,

(V5,m)x =8V4,m+1 − 4V5,m+1 + (−4q + 2r − 4u1 + 2u2)V6,m+

(−4u1 + 2u2 + 4q − 2r)V3,m + (V2,m)x,

(V6,m)x =(2q + 2u1)V5,m+1 − (2r + 2u2)V4,m+1 + 2u1V2,m+1 − 2u2V1,m+1,

which can be written as
V4,m+1 = 1

4 (V4,m)x + 1
2 (q + u1)V6,m + 1

2 (u1 − q)V3,m − 1
4 (V1,m)x,

V5,m+1 = −1
4 (V5,m)x + 1

4 (V2,m)x + 1
2 (V4,m)x − 1

2 (V1,m)x + 1
2 (r + u2)V6,m + 1

2 (u2 − r)V3,m,

(V6,m)x = − 1
2 (q + u1)(V5,m)x + (q + u1 − 1

2r −
1
2u2)(V4,m)x + 1

2 (q − u1)(V2,m)x+

(u1 − q + 1
2r −

1
2u2)(V1,m)x.

(61)

Note that

V
(n)
+ = V

(n)
1,+ +

n∑
m=0

(
6∑

j=4

Vj,mtj(−m))λ2n = λ2nV − V
(n)
− .

A direct computation leads to

− (V
(n)
+ )x + [U, V

(n)
+ ]

= −2V1,n+1t1(0) + (2V2,n+1 − 4V1,n+1)t2(0) + (2rV1,n+1 − 2qV2,n+1)t3(0)−

(4V4,n+1 + 2V1,n+1)t4(0) + (−8V4,n+1 + 4V5,n+1 − 4V1,n+1 + 2V2,n+1)t5(0)+

(−2qV5,n+1 − 2u1V2,n+1 + 2u2V1,n+1 − 2u1V5,n+1 + 2u2V4,n+1 + 2rV4,n+1)t6(0).

Denote

V (n) = V
(n)
+ − V3,nt3(0)− V6,nt6(0).

From Eqs. (49) and (61), we have:

− V (n)
x + [U, V (n)]

= −(V1,n)xt1(0)− (V2,n)xt2(0) + [(2q + 2u1)V6,n + 2u1V3,n − 4V4,n+1 − 2V1,n+1]t4(0)+
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[(4q − 2r + 4u1 − 2u2)V6,n + (4u1 − 2u2)V3,n − 8V4,n+1 + 4V5,n+1 − 4V1,n+1 + 2V2,n+1]t5(0)

= −(V1,n)xt1(0)− (V2,n)xt2(0)− (V4,n)xt4(0)− (V5,n)xt5(0).

Thus, the zero curvature equation Utn − V
(n)
x + [U, V (n)] = 0 admits that

Qtn ≡


q

r

u1

u2


tn

=


(V1,n)x

(V2,n)x

(V4,n)x

(V5,n)x

 . (62)

When u1 = u2 = 0, Eq. (62) reduces to Eq. (52). Hence, according to the theory on integrable

couplings [19–23], Eq. (62) is an integrable coupling of Eq. (52). Using the following initial values

in Eqs. (49) and (61):

V3,0 = α, V1,0 = V2,0 = V4,0 = V5,0 = V6,0 = 0, (63)

we obtain

V1,1 =αq, V2,1 = αr, V3,1 = α(q2 − qr), V4,1 =
α

2
(u1 − q), V5,1 =

α

2
(u2 − r),

V6,1 =
α

4
(−qu2 + qu1 − u1r − u1u2 + qr + u21 − q2), V1,2 =

α

2
qx + αq3 − αq2r,

V2,2 =− α

2
qrx + αqx + αrq2 − αqr2,

V3,2 =
α

2
qrx − α

2
rqx − 3αq3r +

3α

2
q4 +

3α

2
q2r2,

V4,2 =
α

8
u1,x − 3α

8
qx − α

8
q2u2 −

α

4
qu1u2 −

α

2
qru1 −

5α

8
q3 +

5α

8
q2r +

α

4
qu21−

α

8
u21r +

α

2
u1q

2 +
α

8
u31 −

α

8
u21u2,

V5,2 =− α

8
u2,x +

3α

8
rx − 3α

4
qx +

α

4
u1,x +

α

8
qru1 −

α

8
u1r

2 − α

4
ru1u2 +

5α

8
qr2+

α

8
u21r −

5α

8
rq2 − α

8
qu22 +

α

8
qu1u2 −

α

8
u1u

2
2 +

α

8
u21u2 +

3α

8
q2u2 −

α

2
qru2, . . . .

When n = 2, Eq. (62) reduces to{
qt2 = α

2 qxx + 3αq2qx − α(q2r)x,

rt2 = −α
2 rxx + αqxx + α(rq2)x − α(qr2)x.

(64)



(u1)t2 = α
8 u1,xx − 3α

8 qxx − α
8 (q

2u2)x − α
4 (qu1u2)x − α

2 (qru1)x − 15α
8 q2qx + 5α

8 (q2r)x+
α
4 (qu

2
1)x − α

8 (u
2
1r)x + α

2 (q
2u1)x + 3α

8 u
2
1u1,x − α

8 (u
2
1u2)x,

(u2)t2 = −α
8 u2,xx + 3α

8 rxx − 3α
4 qxx + α

4 u1,xx + α
8 (qru1)x − α

8 (u1r
2)x − α

4 (ru1u2)x+
5α
8 (qr2)x + α

8 (u
2
1r)x − 5α

8 (rq2)x − α
8 (qu

2
2)x + α

8 (qu1u2)x − α
8 (u1u

2
2)x+

α
8 (u

2
1u2)x + 3α

8 (q2u2)x − α
2 (qru2)x.

(65)

Obviously, Eq. (65) is a variable-coefficient nonlinear integrable coupled equation under the con-
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strained equation (64). When q = r = 0, Eq. (65) reduces to{
(u1)t2 = α

8 u1,xx + 3α
8 u

2
1u1,x,

(u2)t2 = −α
8 u2,xx + α

4 u1,xx − α
8 (u1u

2
2)x + α

8 (u
2
1u2)x.

(66)

Remark 4.1 The first equation in Eq. (66) is similar to both the mKdV equation and the

Burgers equation, which can be called a deformed Burgers equation. In addition, we see that

Eq. (66) is a new integrable coupling of this deformed equation. The second equation in Eq. (66)

can be regarded as a variable-coefficient equation, whose variable coefficients are controlled by

the deformed Burgers equation. When u1 = 0, it is trivial that Eq. (66) is the well-known heat

equation:

(u2)t2 = −α
8
u2,xx. (67)

If u1 = 1, Eq. (66) casts into a generalized Burgers equation:

(u2)t2 = −α
8
u2,xx − α

4
u2u2,x +

α

8
u2,x. (68)

Obviously, if we take q = r = 1, then Eq. (64) holds and Eq. (65) reduces to the following coupled

nonlinear equation with constant coefficients:
(u1)t2 = α

8 u1,xx − α
8 u2,x − α

4 (u1u2)x + α
4 u1u1,x + 3α

8 u
2
1u1,x − α

8 (u
2
1u2)x,

(u2)t2 = −α
8 u2,xx + α

4 u1,xx + α
4 u1u1,x − α

4 u2u2,x − α
8 (u1u2)x − α

8 (u1u
2
2)x+

α
8 (u

2
1u2)x − α

8 u2,x.

(69)

We note here that Eq. (69) is not an integrable coupling system, which is an essential difference

from Eq. (66).

We now recall the steps for generating Hamiltonian structures of integrable couplings by

the variational identity:

(i) A column-vector Lie algebra V , which has the same dimension with the known Lie

algebra T , is constructed. V and T are isomorphic to each other.

(ii) In the Lie algebra V , the commutator is exhibited by the following form:

[a, b] = aTR(b), (70)

where a, b ∈ V, R(b) is a square matrix with entries bi, i = 1, 2, . . . , p. Here, p represents the

dimension of the Lie algebra V .

(iii) Solve the matrix equation for F :

R(b)F = −F (R(b))T , F = FT , (71)

where F is a matrix with constant entries.

(iv) Introduce a linear functional

{a, b} = aTFb. (72)

(v) Deduce from the variational identity

δ

δu

∫ x

{a, ∂U
∂λ

}dx = λ−γ ∂

∂λ
λγ{a, ∂Y

∂ui
} (73)
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the Hamiltonian structures of the obtained integrable hierarchy, where U is a vector in the loop

algebra Ṽ of the Lie algebra V . It is remarked here that the loop algebra Ṽ is not unique. Based

on the above steps, we consider a linear map:

δ : T → V, a =
6∑

i=1

aiti ∈ T → δ(a) = (a1, a2, . . . , a6)
T ∈ V, (74)

from which we can prove that δ is an isomorphism. Define

[a, b] = (2a3b1 − 2a1b3, 2a2b3 − 2a3b2 + 4a3b1 − 4a1b3, 2a1b2 − 2a2b1, 2a6b1 − 2a1b6 +

2a3b4 − 2a4b3, 4a6b1 − 4a1b6 + 2a2b6 − 2a6b2 + 2a5b3 − 2a3b5 + 4a3b4 −

4a4b3, 2a1b5 − 2a5b1 + 2a4b2 − 2a2b4)
T , (75)

where a = (a1, . . . , a6)
T , b = (b1, . . . , b6)

T . It can be verified that V becomes a Lie algebra by

combining with Eq. (75) which is rewritten as

[a, b] = aTR(b), (76)

where

aT = (a1, . . . , a6), R(b) =

(
R1 R2

0 R3

)
, R1 =

 −2b3 −4b3 2b2

0 2b3 −2b1

2b1 4b1 − 2b2 0

 ,

R2 =

 −2b6 −4b6 2b5

0 2b6 −2b4

2b4 4b4 − 2b5 0

 , R3 =

 −2b3 − 2b6 −4b6 − 4b3 2b2 + 2b5

0 2b3 + 2b6 −2b1 − 2b4

2b1 + 2b4 −2b5 + 4b1 + 4b4 − 2b2 0

 .

Using (76), we obtain from Eq. (71):

F =

(
F1 F2

F2 F3

)
, (77)

where

F1 =

 −2η1 η1 0

η1 0 0

0 0 η1

 , F2 =

 −2η2 η2 0

η2 0 0

0 0 η2

 , F3 =

 −2η2 η2 0

η2 0 0

0 0 η2

 .

In terms of Eq. (77), we introduce a linear functional:

{a, b} = η1(a2b1 − 2a1b1 + a1b2 + a3b3 + a6b3) + η2(a5b1 − 2a4b1 + a4b2 +

a6b3 − 2a1b4 + a2b4 − 2a4b4 + a5b4 + a1b5 + a4b6 + a3b6 + a6b6). (78)

By making use of the Lie algebra V , we introduce a Lax pair{
ψx = Uψ,U = (qλ, rλ, λ2, u1λ, u2λ, λ

2)
T
,

ψt = V ψ, V = (V1λ, V2λ, V3, V4λ, V5λ, V6)
T
.

(79)

Due to the isomorphic property of δ , Eq. (79) has the same compatibility condition with Eq. (56).

Hence, the stationary equation of the compatibility condition Eq. (79) leads to Eqs. (49) and (61).
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Denote

V
(n)
+ =

∑
m≥0

(V1,mλ, V2,mλ, V3,m, V4,mλ, V5,mλ, V6,m)Tλ2n−2m = λ2nV − V (n),

V (n) = V (n) + (0, 0,−V3,n, 0, 0,−V6,n)T .

We can easily obtain

−V (n)
x + [U, V (n)] = (−(V1,n)x, −(V2,n)x, 0,−(V4,n)x,−(V5,n)x, 0)

T .

Thus, the zero curvature equation Utn − V
(n)
x + [U, V (n)] = 0 admits the integrable-coupling

hierarchy (62). From (79), we have

∂U

∂q
= (λ, 0, 0, 0, 0, 0)T ,

∂U

∂r
= (0, λ, 0, 0, 0, 0)T ,

∂U

∂u1
= (0, 0, 0, λ, 0, 0)T ,

∂U

∂u2
= (0, 0, 0, 0, λ, 0)T ,

∂U

∂λ
= (q, r, 2λ, u1, u2, 2λ)

T .

Substituting the above results into Eq. (73) yields that

{V, ∂U
∂q

} = (−2η1V1 + η1V2 − 2η2V4 + η2V5)λ
2, {V, ∂U

∂r
} = (η1V1 + η2V4)λ

2,

{V, ∂U
∂u1

} = (−2η2V1 + η2V2 − 2η2V4 + η2V5)λ
2, {V, ∂U

∂u2
} = η2(V1 + V4)λ

2,

{V, ∂U
∂λ

} = η1[qV2 + 2V3 + (r − 2q)V1]λ+ η2[(u2 − 2u1)V1 + u1V2 + 2V3+

(r − 2q − 2u1 + u2)V4 + (q + u1)V5]λ.

Putting the above results into the variational identity gives

δ

δQ

∫ x

({η1[qV2 + 2V3 + (r − 2q)V1]λ+ η2[(u2 − 2u1)V1 + u1V2 + 2V3 +

(r − 2q + u2 − 2u1)V4 + (q + u1)V5]λ})dx

= λ−γ ∂

∂λ
λγ


(−2η1V1 + η1V2 − 2η2V4 + η2V5)λ

2

(η1V1 + η2V4)λ
2

(−2η2V1 + η2V2 − 2η2V4 + η2V5)λ
2

η2(V1 + V4)λ
2

 . (80)

Comparing the coefficients of λ−2n+1 in (80), we obtain

δ

δQ

∫ x

({η1[qV2,n + 2V3,n + (r − 2q)V1,n] + η2[(u2 − 2u1)V1,n + u1V2,n + 2V3,n +

(r − 2q + u2 − 2u1)V4,n + (q + u1)V5,n]})dx

= (2− n+ γ)


−2η1V1,n + η1V2,n − 2η2V4,n + η2V5,n

η1V2,n + η2V4,n

−2η2V1,n + η2V2,n − 2η2V4,n + η2V5,n

η2V1,n + η2V4,n

 . (81)



316 Binlu FENG and Y. C. HON

It can be seen that γ = 2. Thus, we get
−2η1V1,n + η1V2,n − 2η2V4,n + η2V5,n

η1V2,n + η2V4,n

−2η2V1,n + η2V2,n − 2η2V4,n + η2V5,n

η2V1,n + η2V4,n

 ≡ δHn

δQ
, (82)

where

Hn =

∫ x

(
1

4− n
{η1[qV2,n + 2V3,n + (r − 2q)V1,n] + η2[(u2 − 2u1)V1,n+

u1V2,n + 2V3,n + (r − 2q + u2 − 2u1)V4,n + (q + u1)V5,n]})dx.

Hence, the integrable coupling (62) can be written as the Hamiltonian structure form:

Qtn = J


−2η1V1,n + η1V2,n − 2η2V4,n + η2V5,n

η1V2,n + η2V4,n

−2η2V1,n + η2V2,n − 2η2V4,n + η2V5,n

η2V1,n + η2V4,n

 = J
δHn

δQ
, (83)

where

J =


0 ∂

η1−η2
0 − ∂

η1−η2

∂
η1−η2

0 − ∂
η1−η2

0

0 − ∂
η1−η2

0 η1∂
η2(η−η2)

− ∂
η1−η2

0 η1∂
η2(η1−η2)

0

 ,

is a Hamiltonian operator, ∂ ≡ ∂
∂x . Obviously, we cannot allow η2 to vanish, otherwise J has no

meaning. If η1 = 0, we can get a simpler Hamiltonian structure of Eq. (62):

Qtn = J̄
δH̄n

δQ
, (84)

where

J̄ =


0 − ∂

η2
0 ∂

η2

− ∂
η2

0 ∂
η2

0

0 ∂
η2

0 0
∂
η2

0 0 0


is an obvious Hamiltonian operator, and

H̄n ≡ η2
4− n

[(u2 − 2u1)V1,n + u1V2,n + 2V3,n + (r − 2q + u2 − 2u1)V4,n + (q + u1)V5,n].

Therefore, we obtained two different Hamiltonian structure of Eq. (62) by choosing various pa-

rameters η1 and η2.

5. A new loop algebra H̄ of the Lie algebra H and some applications

In the section, we introduce a higher-degree loop algebra H̄ to generate multi-Hamiltonian

structures as an application. This result can be further extended to obtain an mKdV equation
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with complex coefficients. Set

H̄ = span{t1(i,m), t2(i,m), t3(i,m)}, (85)

where tj(i,m) = tjλ
3m+i, j = 1, 2, 3; i = 0, 1, 2;m = 0,±1,±2, . . . . In terms of the commutative

relations of the Lie algebra H, we get the corresponding operative relations of H̄:

[t1(i,m), t2(j, n)] =

{
2t3(i+ j,m+ n), i+ j < 3,

2t3(i+ j − 3,m+ n+ 1), i+ j ≥ 3,

[t1(i,m), t3(j, n)] =

{
−2t1(i+ j,m+ n)− 4t2(i+ j,m+ n), i+ j < 3,

−2t1(i+ j − 3,m+ n+ 1)− 4t2(i+ j − 3,m+ n+ 1), i+ j ≥ 3,

[t2(i,m), t3(j, n)] =

{
2t2(i+ j,m+ n), i+ j < 3,

2t3(i+ j − 3,m+ n+ 1), i+ j ≥ 3,

where i, j = 0, 1, 2;m,n ∈ Z. Define the degree of each tj(i,m) to be deg(tj(i,m)) = 3m+ i, i =

0, 1, 2. We find that the linear space H̄ becomes a loop algebra, which can be used to derive a

3-Hamiltonian integrable hierarchy. Set
φx = Uφ,U = t3 (1, 0) + u1t1 (0, 0) + u2t2 (0, 0) + u3t1 (2,−1) + u4t2 (2,−1) + u5t3 (2,−1) ,

φt = V φ, V =
∑
m≥0

2∑
i=0

[a (i,m) t1 (i,−m) + b (i,m) t2 (i,−m) + c (i,m) t3 (i,−m)] .

(86)

According to the Tu scheme, the stationary zero curvature equation

Vx = [U, V ] (87)

is equivalent to the following equations

a(0,m) = 1
2ax(1, n) + u1c(1,m) + u3c(2,m)− u5a(2,m),

b(0,m) = −1
2bx(1,m) + 2a(0,m) + (u2 − 2u1)c(1,m) + (u4 − 2u3)c(2,m) + 2u5a(2,m)−
u5b(2,m),

a(2,m+ 1) = 1
2ax(0,m) + u1c(0,m) + u3c(1,m)− u5a(1,m),

b(2,m+ 1) = −1
2bx(0,m) + 2a(2,m+ 1) + (u2 − 2u1)c(0,m) + (u4 − 2u3)c(1,m)+

2u5a(1,m)− u5b(1,m),

a(1,m+ 1) = 1
2ax(2,m+ 1) + u3c(0,m)− u5a(0,m) + u1c(2,m+ 1),

b(1,m+ 1) = −1
2bx(2,m+ 1) + 2a(1,m+ 1) + u2c(2,m+ 1) + (u4 − 2u3)c(0,m)+

2u5a(0,m)− u5b(0,m)− 2u1c(2,m+ 1),

cx(2,m+ 1) = −u1bx(0,m) + (4u1 − 2u2)a(2,m+ 1)− 4u21c(0,m)+

(2u1u4 − 4u1u3)c(1,m) + 4u1u5a(1,m)− 2u1u5b(1,m) + 2u1u2c(0,m)+

2u3b(0,m)− 2u4a(0,m).

(88)

Assume the initial values of Eq. (88) as follows:

a(0, 0) = b(0, 0) = c(1, 0) = a(1, 0) = b(1, 0) = a(2, 0) = b(2, 0) = c(2, 0) = 0, c(0, 0) = β.
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From Eq. (88) we can get a series of explicit solutions:

a(2, 1) = βu1, b(2, 1) = βu2, c(2, 1) = 0, a(1, 1) =
β

2
u1,x + βu3,

b(1, 1) = βu1,x − β

2
u2,x + βu4, c(1, 1) = βu21 − βu1u2,

a(0, 1) =
β

4
u1,xx +

β

2
u3,x + βu31 − βu21u2 − βu1u5,

b(0, 1) =
β

4
u2,xx − β

2
u4,x + βu3,x + βu21u2 − βu1u

2
2 − βu2u5,

c(0, 1) =
β

2
u1u2,x − β

2
u2u1,x − βu1u4 + 2βu1u3 − βu2u3, . . . .

Denote

V
(n)
+ =

n∑
m=0

2∑
i=0

[a(i,m)t1(i, n−m) + b(i,m)t2(i, n−m) + c(i,m)t3(i, n−m)] = λ3nV − V
(n)
− .

Eq. (87) can be decomposed into: −(V
(n)
+ )x+[U, V

(n)
+ ] = (V

(n)
− )x− [U, V

(n)
− ] whose left-hand side

gives

− (V
(n)
+ )x + [U, V

(n)
+ ]

= −2a(2, n+ 1)t1(0, 0) + [2b(2, n+ 1)− 4a(2, n+ 1)]t2(0, 0)+

[ax(2, n+ 1)− 2a(1, n+ 1) + 2u1c(2, n+ 1)]t1(2,−1)+

[bx(2, n+ 1) + 4u1c(2, n+ 1)− 4a(1, n+ 1) + 2b(1, n+ 1)− 2u2c(2, n+ 1)]t2(2,−1)+

[cx(2, n+ 1)− 2u1b(2, n+ 1) + 2u2a(2, n+ 1)]t3(2,−1).

Hence, the compatibility condition of the Lax pair

ψx = Uψ, πtn = V
(n)
+ ψ, (89)

where U is the same as the one given in Eq. (86), gives directly the following integrable hierarchy

with 5-potential functions:

utn =


u1

u2

u3

u4

u5


tn

=


2a(2, n+ 1)

4a(2, n+ 1)− 2b(2, n+ 1)

2a(1, n+ 1)− ax(2, n+ 1)− 2u1c(2, n+ 1)

−4u1c(2, n+ 1)− bx(2, n+ 1) + 4a(1, n+ 1)− 2b(1, n+ 1) + 2u2c(2, n+ 1)

−cx(2, n+ 1) + 2u1b(2, n+ 1)− 2u2a(2, n+ 1)


≡ J1P1, (90)

where

J1 =


0 0 0 1 0

0 0 −1 0 0

0 1 0 −∂
2 −u1

−1 0 −∂
2 −∂ u2 − 2u1

0 0 u1 2u1 − u2 −∂
2
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is a Hamiltonian operator,

P1 = (−4a(1, n+1)+2b(1, n+1), 2a(1, n+1),−4a(2, n+1)+2b(2, n+1), 2a(2, n+1), 2c(2, n+1))T .

In terms of Eq. (88), the integrable hierarchy (90) can be written as

utn =


2a(2, n+ 1)

4a(2, n+ 1)− 2b(2, n+ 1)

2u3c(0, n)− 2u5a(0, n)

4u3c(0, n)− 2u4c(0, n)− 4u5a(0, n) + 2u5b(0, n)

2u4a(0, n)− 2u3b(0, n)

 ≡ J2P2, (91)

where

J2 =


0 1 0 0 0

−1 0 0 0 0

0 0 0 −u5 u3

0 0 u5 0 2u3 − u4

0 0 −u3 u4 − 2u3 0


is a Hamiltonian operator:

P2 = (2b(2, n+ 1)− 4a(2, n+ 1), 2a(2, n+ 1), 2b(0, n)− 4a(0, n), 2a(0, n), 2c(0, n))T .

Similary, using Eq.(88), we can rewrite Eq.(90) as

utn =


ax(0, n) + 2u1c(0, n) + 2u3c(1, n)− 2u5a(1, n)

M

2u3c(0, n)− 2u5a(0, n)

4u3c(0, n)− 2u4c(0, n)− 4u5a(0, n) + 2u5b(0, n)

2u4a(0, n)− 2u3b(0, n)


≡ (A,B,C,D, 2u4a(0, n)− 2u3b(0, n))

T ≡ J3P3, (92)

where

M = bx(0, n) + (4u1 − 2u2)c(0, n) + (4u3 − 2u4)c(1, n)− 4u5a(1, n) + 2u5b(1, n),

J3 = (J31, J32, J33, J34, J35),

J31 =


2u1∂

−1u1
∂
2 + 4u1∂

−1u1 − 2u2∂
−1u1

2u3∂
−1u1

u5 + (4u3 − 2u4)∂
−1u1

−u3

 ,

J32 =



∂
2 − 2u1∂

−1u2 + 4u1∂
−1u1

∂ − 4u1∂
−1u2 + 2u2∂

−1u2 + 8u1∂
−1u1 − 4u2∂

−1u1

−u5 − 2u3∂
−1u2 + 4u3∂

−1u1

(−4u3 + 2u4)∂
−1u2 + (8u3 − 4u4)∂

−1u1

u4 − 2u3

 ,
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J33 =


2u1∂

−1u3

4u1∂
−1u3 − 2u2∂

−1u3 + u5

2u3∂
−1u3

(4u3 − 2u4)∂
−1u3

0

 ,

J34 =


4u1∂

−1u3 − 2u1∂
−1u4 − u5

−4u1∂
−1u4 + 2u2∂

−1u4 + 8u1∂
−1u3 − 4u2∂

−1u3

−2u3∂
−1u4 + 4u3∂

−1u3

(−4u3 + 2u4)∂
−1u4 + (8u3 − 4u4)∂

−1u3

0

 ,

J35 =


u3

2u3 − u4

0

0

0

 ,

P3 =(2b(0, n)− 4a(0, n), 2a(0, n), 2b(1, n)− 4a(1, n), 2a(1, n), 2c(1, n))T ,

A =(∂ − 4u1∂
−1u2)a(0, n) + 4u1∂

−1u1b(0, n) + 4u1∂
−1u3b(1, n)−

(4u1∂
−1u4 + 2u5)a(1, n) + 2u3c(1, n),

B =(∂ + 8u1∂
−1u1 − 4u2∂

−1u1)b(0, n)− (8u1∂
−1u2 − 4u2∂

−1u2)a(0, n)+

(8u1∂
−1u3 − 4u2∂

−1u3 + 2u5)b(1, n)− (8u1∂
−1u4 − 4u2∂

−1u4 + 4u5)a(1, n)+

(4u3 − 2u4)c(1, n),

C =4u3∂
−1u1b(0, n)− (4u3∂

−1u2 + 2u5)a(0, n) + 4u3∂
−1u3b(1, n)− 4u3∂

−1u4a(1, n),

D =[(8u3 − 4u4)∂
−1u1 + 2u5]b(0, n)− [(8u3 − 4u4)∂

−1u2 + 4u5]a(0, n)+

(8u3 − 4u4)∂
−1u3b(1, n)− (8u3 − 4u4)∂

−1u4a(1, n).

Due to the fact that J3 contains the inverse operator ∂−1, it is very tedious for the verification of

J3 to be a Hamiltonian operator. Instead we will discuss the Hamiltonian structures of Eqs. (90)–

(92). It is easy to find that the U and V in Eq.(56) can be written as

U =

(
λ+ u5

λ u1 +
u3

λ

2u2 − 2u1 +
2u4−2u3

λ −λ− u5

λ

)
,

V =

(
c(0) + C(1)λ+ c(2)λ2 a(0) + a(1)λ+ a(2)λ2

2b(0)− 2a(0) + (2b(1)− 2a(1))λ+ (2b(2)− 2a(2))λ2 −c(0)− c(1)λ− c(2)λ2

)
,

where a(0) =
∑

m≥0 a(0,m)λ−3m, a(1) =
∑

m≥0 a(1,m)λ−3m, . . . . Since

∂U

∂u1
=

(
0 1

−2 0

)
,
∂U

∂u2
=

(
0 0

2 0

)
,
∂U

∂u3
=

(
0 1

λ

− 2
λ 0

)
,
∂U

∂u4
=

(
0 0
2
λ 0

)
,
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∂U

∂u5
=

(
1
λ 0

0 − 1
λ

)
,
∂U

∂λ
=

(
1− u5

λ2 −u3

λ2

2u3−2u4

λ2 −1 + u5

λ2

)
,

we have

⟨V, ∂U
∂u1

⟩ =− 4a(0) + 2b(0) + (2b(1)− 4a(1))λ+ (2b(2)− 4a(2))λ2,

⟨V, ∂U
∂u2

⟩ =2a(0) + 2a(1)λ+ 2a(2)λ2,

⟨V, ∂U
∂u3

⟩ =− 4a(1) + 2b(1) + (2b(0)− 4a(0))
1

λ
+ (2b(2)− 4a(0))λ,

⟨V, ∂U
∂u4

⟩ =2a(1) +
2

λ
a(0) + 2a(2)λ,

⟨V, ∂U
∂u5

⟩ =2

λ
c(0) + 2c(1) + 2c(2)λ,

⟨V, ∂U
∂λ

⟩ =2c(0)− 2u5c(1) + (4u3 − 2u4)a(2)− 2u3b(2)+

1

λ
[−u5c(0) + (4u3 − 2u4)a(1)− 2u3b(1)− u5c(1)]+

[(2c(1)− u5c(2)]λ+ 2c(2)λ2 +
1

λ2
[(4u3 − 2u4)a(0)− 2u3b(0)− u5c(0)].

Substituting the above results into the trace identity yields that

δ

δu
⟨V, ∂U

∂λ
⟩ = λ−γ ∂

∂λ
λγ


⟨V, ∂U

∂u1
⟩

⟨V, ∂U
∂u2

⟩
⟨V, ∂U

∂u3
⟩

⟨V, ∂U
∂u4

⟩
⟨V, ∂U

∂u5
⟩

 . (93)

Comparing the coefficients of λ−3n−3 in Eq. (93) gives

δ

δu
[2c(0, n+ 1)− 2u5c(1, n+ 1) + (4u3 − 2u4)a(2, n+ 1)− 2u3b(2, n+ 1)]

= (−3n− 2 + γ)


2b(1, n+ 1)− 4a(1, n+ 1)

2a(1, n+ 1)

2b(2, n+ 1)− 4a(0, n+ 1)

2a(2, n+ 1)

2c(2, n+ 1)

 . (94)

Comparing the coefficients of λ−3n−2 in Eq. (93) yields

δ

δu
[2c(1, n+ 1)− u5c(2, n+ 1) + (4u3 − 2u4)a(0, n)− 2u3b(0, n)− u5c(0, n)]

= (−3n− 1 + γ)


2b(2, n+ 1)− 4a(2, n+ 1)

2a(2, n+ 1)

2b(0, n)− 4a(0, n)

2a(0, n)

2c(0, n)

 . (95)
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Comparing the coefficients of λ−3n−1 leads to

δ

δu
[2c(2, n+ 1) + (4u3 − 2u4)a(0, n)− 2u3b(0, n)− u5c(0, n)]

= (−3n+ γ)


2b(0, n)− 4a(0, n)

2a(0, n)

2b(1, n)− 4a(1, n)

2a(1, n)

2c(1, n)

 . (96)

In terms of the initial values of Eq. (88), we have γ = 1
2 . Thus, Eqs. (94)–(96) can be written as

P1 = δH(1,3n+3)
δu ,

H(1, 3n+ 3) = − 1
3n+ 3

2

[2c(0, n+ 1)− 2u5c(1, n+ 1)+

(4u3 − 2u4)a(2, n+ 1)− 2u3b(2, n+ 1)],

(97)


P2 = δH(2,3n+2)

δu ,

H(2, 3n+ 2) = − 1
3n+ 1

2

[2c(1, n+ 1)− u5c(2, n+ 1)+

(4u3 − 2u4)a(0, n)− 2u3b(0, n)− u5c(0, n)],

(98)

{
P3 = δH(3,3n+1)

δu ,

H(3, 3n+ 1) = − 1
3n+ 3

2

[2c(2, n+ 1) + (4u3 − 2u4)a(0, n)− 2u3b(0, n)− u5c(0, n)].
(99)

Therefore, the integrable hierarchy (90) can be written as

utn = J1
δH(1, 3n+ 3)

δu
= J2

δH(2, 3n+ 2)

δu
= J3

δH(3, 3n+ 1)

δu
, n ≥ 1. (100)

From Eq. (88), we can obtain a recurrence operator L = (L1, L2, . . . , L5), where

L1 =


−∂

2 + (2u2 − 4u1)∂
−1u1

2u1∂
−1u1

1

0

2∂−1u1

 , L2 =


−∂ + 4u1 − 2u2 + (4u2 − 8u1)∂

−1u1
∂
2 + 4u1∂

−1u1 − 2u1∂
−1u2

0

1

4∂−1u1 − 2u2

 ,

L3 =


(2u2 − 4u1)∂

−1u3 − u5

2u1∂
−1u3

0

0

2∂−1u3

 , L4 =


(4u2 − 8u1)∂

−1u3 + (4u1 − 2u2)∂
−1u4

4u1∂
−1u3 + u3

0

0

4∂−1u3 − 2∂−1u4

 ,

L5 =


−u4 + 2u3

u5 − 2u1∂
−1u4

0

0

0

 ,
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satisfies the following relations by using the symobolic software Maple:
J1L = L∗J1 = J2, J2L = L∗J2 = J3,
δH(1,3n+3)

δu = L δH(2,3n+2)
δu ,

δH(2,3n+2)
δu = L δH(3,3n+1)

δu ,
δH(3,3n+1)

δu = L δH(1,3n)
δu .

(101)

This implies that L is a cyclic operator of Eq. (90). Since J1L = L∗J1 = J2, Eq. (90) is Liouville

integrable. By the use of Maple, we can verify that the linear combination of J1, J2 and J3 is an

identical Hamiltonian operator. Hence, the integrable hierarchy (90) possesses a 3-Hamilotnian

styructure. We consider some reductions of Eq. (90) in the following:

Case 1 If u3 = u4 = u5 = 0, Eq. (90) reduces to

vtn =

(
u1

u2

)
tn

=

(
2a(2, n+ 1)

4a(2, n+ 1)− 2b(2, n+ 1)

)

=

(
0 1

−1 0

)(
2b(2, n+ 1)− 4a(2, n+ 1)

2a(2, n+ 1)

)

≡ J̃

(
2b(2, n+ 1)− 4a(2, n+ 1)

2a(2, n+ 1)

)
. (102)

From the reduced recurrence relations of Eq. (8):
ax(0, n) = 2a(2, n+ 1)− 2u1c(0, n),

bx(0, n) = 4a(2, n+ 1)− 2b(2, n+ 1)− 4u1c(0, n) + 2u2c(0, n),

cx(0, n) = 2u1b(0, n)− 2u2a(0, n),

(103)

we get

(
2b(2, n+ 1)− 4a(2, n+ 1)

2a(2, n+ 1)

)
= L̃

(
2b(2, n)− 4a(2, n)

2a(2, n)

)
,

where

L̃ =

(
−∂

2 + (2u2 − 4u1)∂
−1u1 (4u1 − 2u2)∂

−1u2 − ∂ + (4u2 − 8u1)∂
−1u1

2u1∂
−1u1

∂
2 − 2u1∂

−1u2 + 2u1∂
−1u1

)
.

Thus, Eq. (102) can be written as

vtn = J̃ L̃

(
2b(2, n)− 4a(2, n)

2a(2, n)

)
. (104)

It is obvious that Eq. (104) is not an AKNS hierarchy. Set a(0, 0) = b(0, 0) = 0, c(0, 0) = β, we
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can obtain from Eq. (103) that

a(2, 1) = βu1, b(2, 1) = βu2, a(0, 1) =
β

4
u1,xx + βu31 − βu21u2,

b(0, 1) =
β

4
u2,xx + βu21u2 − βu1u

2
2, c(0, 1) =

β

2
u1u2,x − β

2
u2u1,x,

a(2, 2) =
β

8
u1,xxx +

3β

2
u21u1,x − 3β

2
u1u2u1,x,

b(2, 2) = −β
8
u2,xxx − 3βu1u2u1,x − 3β

2
u21u2,x +

β

4
u1,xxx + 3βu21u1,x +

3β

2
u1u2u2,x, . . . .

If n = 1, Eq. (104) can be reduced to a coupled equation{
u1,t = −β

4u2,xxx − 3βu21u2,x + 3βu1u2u2,x,

u2,t =
β
4u1,xxx + 3βu21u1,x − 3βu1u2u1,x.

(105)

If u1 = iu2, i
2 = −1, u2 = q, Eq. (105) becomes

qt =
iβ

4
qxxx + (3β − 3iβ)q2qx, (106)

which is a modified KdV equation with complex coefficients. When n = 0, Eq.(104) reduces

to u1,t = 2βu2 − 4βu1, u2,t = 2βu1, and thus u1,tt = 4β2u1 − 4βu1,t, which is a 2-order linear

equation with respect to u1.

Case 2 If n = 1, t1 = t, Eq.(90) reduces to the following equations:

u1,t = 2βu1, (107)

u2,t = 2β(2u1 − u2), (108)

u3,t =β(u1u3u2,x − u2u3u1,x − 2u1u3u4 + 4u1u
2
3 − 2u2u

2
3 −

1

2
u5u1,xx − u5u3,x−

2u31u5 + 2u2u5u
2
1 + 2u1u

2
5), (109)

u4,t =β(2u3 − 4u4)u1u2,x − β(2u3 − u4)u2u1,x − βu1u4(4u3 − 2u4) + 2βu1u3(4u3 − 2u4)−

βu2u3(4u3 − 2u4)− βu5u1,xx − 2βu5u3,x − 4βu5u
3
1 + 4βu2u5u

2
1 + 4βu1u

2
5, (110)

u5,t =
β

2
u4u1,xx + βu4u3,x + 2βu4u

3
1 − 2βu21u2u4 − 2βu1u4u5 −

β

2
u3u2,xx+

βu3u4,x − 2βu3u3,x − 2βu21u2u3 + 2βu1u3u
2
2 + 2βu2u3u5. (111)

If u1 = u2 = 0, Eqs. (107)–(111) reduce to{
u3,t = −βu3,xu5, u4,t = −2βu3,xu5,

u5,t = βu3,xu4 + βu3u4,x − 2βu3u3,x.
(112)

If u4 = 2u3 = w, Eq. (112) leads to the following nonlinear evolution equation

wtwxt − wxwtt =
β

2
ww3

x. (113)

Remark 5.1 By using the loop algebra H̃, we can obtain a non-isospectral integrable hierarchy.
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For instance, set {
φx = Uφ,U = t1(1)− vt2(0) + ut3(0),

φt = V φ, V = At1(0) +Bt2(0) + Ct3(0),
(114)

where

A =

n∑
j=0

ajλ
n−j +

m∑
j=0

ājλ
m−j , B =

n∑
j=1

bjλ
n−j +

m∑
j=1

b̄jλ
m−j , C =

n∑
j=1

cjλ
n−j +

m∑
j=1

c̄jλ
m−j .

The compatibility condition of Eq. (114) gives rise to
Ut − Cx + 2λB + 2vA = 0,

λt −Ax − 2λC − 2uA = 0,

λt + vt −Ax +Bx + 2λC + 2vC + 2u(B −A) = 0,

(115)

which postulates that

vt + 4λC + 2vC − 4uA+ 2uB +Bx = 0,

where we assume λt =
∑m

j=0 kj(t)λ
m−j . It is easy to see that Eq. (115) is equivalent to the

following: {
va0 + b1 = 0,−cj,x + 2bj+1 + 2vaj = 0, j = 1, 2, . . . , n− 1,

vā0 + b̄1 = 0,−c̄j,x + 2b̄j+1 + 2vāj = 0, j = 1, 2, . . . ,m− 1,
(116)

{
a0,x + 2c1 − 2ua0 = 0, aj,x + 2cj+1 − 2uaj = 0, j = 1, 2, . . . , n− 1,

k0(t)− ā0,x − 2c̄1 + 2uā0 = 0, āj,x + 2c̄j+1 − 2uāj − kj(t) = 0, j = 1, 2, . . . ,m− 1,
(117)

{
−ua0 + c1 = 0, bj,x + 2vcj + 2ubj − 4uaj + 4cj+1 = 0, j = 1, 2, . . . , n− 1,

−u0ā0 + c̄1 = 0, b̄j,x + 2vc̄j + 2ub̄j − 4āj + 4c̄j+1 = 0, j = 1, . . . ,m− 1,
(118)

from which we get {
aj,x = 1

2bj,x + ubj + vcj ,

āj,x = 1
2 b̄j,x + ub̄j + vc̄j + kj(t).

(119)

Based on the above results, we obtain a Lax integrable hierarchy{
vtn,m = −bn,x − b̄m,x − 2v(cn + c̄m)− 2u(bn + b̄m) + 4u(an + ām),

utn,m = cn,x + c̄m,x − 2v(an + ām).
(120)

Set a0 = α(t), ā0 = k0(t)x, b0 = c0 = b̄0 = c̄0 = 0, one infers from Eqs. (116)-(119) that

b1 = −α(t)v, c1 = α(t)u, a1 = −1

2
α(t)v, b̄1 = −k0(t)xv, c̄1 = k0(t)xu,

ā1 = −1

2
k0(t)xv + k1(t)x, b2 =

1

2
α(t)ux +

1

2
α(t)v2, c2 =

1

4
α(t)vx − 1

2
α(t)uv,

a2 =
1

4
α(t)ux +

3

8
α(t)v2 +

1

4
α(t)u2, b̄2 =

1

2
α(t)ux +

1

2
k0(t)xv

2 − k1(t)xv,

c̄2 =
1

4
k0(t)v +

1

4
k0(t)xvx − 1

2
k0(t)xuv + k1(t)xu,

ā2 =
1

4
α(t)ux − 1

2
k1(t)xv +

1

4
α(t)u2 +

1

2
k0(t)xv

2 + k2(t)x, . . . .
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If n = m = 1, Eq. (120) reduces to{
vt1,1 = (α(t) + k0(t)x)vx − 2(α(t) + k0(t)x)uv + k0(t)v + 4k1(t)xu,

ut1,1 = (α(t) + k0(t)x)(ux + v2) + k0(t)u− 2k1(t)xv,
(121)

which is a new variable-coefficient nonlinear integrable system. If n = 1,m = 2, Eq.(120) becomes
vt1,2 = (α(t) + k1(t)x)(vx − 2uv)− 1

2α(t)uxx − k0(t)v
2 − 3

2k0(t)xvvx + 4k2(t)xu+ k1(t)v+

α(t)u3 + 2k0(t)xuv
2,

ut1,2 = (α(t) + k2(t)x)ux + 1
2k0(t)vx + 1

4k0(t)xvxx − 1
2k0(t)uv −

1
2 (k0(t)x+ α(t))uxvn−

1
2k0(t)xuvx + k1(t)u+ α(t)v2 + k1(t)xv

2 − 1
2α(t)u

2v − k0(t)xv
3 − 2k2(t)xv,

(122)

which is a more complicated variable-coefficient integrable system. Similarly, if n = 2,m =

1;n = m = 2, we obtain respectively the following variable-coefficient integrable systems:
vt2,1 = −1

2α(t)uxx + k0(t)v +
1
2α(t)vvx − 2k0(t)xuv +

3
2α(t)uv

2 + α(t)u2 + 4k1(t)xu,

ut2,1 = 1
4α(t)vxx − α(t)uxv − 1

2α(t)uvx + k0(t)u− 3
4α(t)v

3 − 1
2α(t)vu

2+

k0(t)xv
2 − 2k1(t)xv,

vt2,2 =− α(t)uxx − 3

2
α(t)vvx − k0(t)v

2 − (
3

2
k0(t) + 2k1(t))xuv + k0(t)xuv

2 +
3

2
α(t)uv2+

k1(t)v + k1(t)xvx + 2α(t)u3 + 4k2(t)xu,

ut2,2 =
1

4
α(t)vxx − 3

2
α(t)uxv −

1

2
α(t)uvx +

1

2
k0(t)vx +

1

4
k0(t)xvxx − 1

2
k0(t)uv−

1

2
k0(t)xuxv −

1

2
k0(t)xuvx + k1(t)u+ k1(t)xux − 3

4
α(t)v4 − 1

2
α(t)u2v + k1(t)xv

2−

1

2
α(t)vu2 − k0(t)xv

3 − 2k0(t)xv.

Remark 5.2 We obtain in this paper some integrable hierarchies of evolution type, which can

be reduced to some explicit equations. Related works can be found from the papers [24–27] in

which the algebro-geometric solutions of some well-known nonlinear evolution equations were

obtained by using some kinds of nonlinearity methods.
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