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1. Introduction

In 1940, Ulam [1] proposed the following stability problem: Given a metric group G(·, ρ), a
number ε > 0 and a mapping f : G → G which satisfies the inequality ρ(f(x · y), f(x) · f(y)) < ε

for all x, y in G, does there exist an automorphism a of G and a constant k > 0, depending

only on G, such that ρ(a(x), f(x)) ≤ kε for all x in G? If the answer is affirmative, we call the

equation a(x · y) = a(x) · a(y) of automorphism stable. One year later, Hyers [2] provided a

positive partial answer to Ulam’s problem. In 1978, a generalized version of Hyers’ result was

proved by Rassias in [3]. Since then, the stability problems of several functional equations have

been extensively investigated by a number of authors [4–12]. In fact, we also refer the readers to

the books [13–16].

A function f : X → Y between real vector spaces is said to be quadratic if it satisfies the

following functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.1)

for all x, y ∈ X, and a function B : X ×X → Y is said to be bi-quadratic if B is quadratic for

each fixed variable [17]. Skof [18] was the first person to prove the Hyers-Ulam stability of the
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quadratic function equation (1.1). Cholewa [8] demonstrated that Skof’s theorem is also valid if

X is replaced with an Abelian group G.

In this paper we will use the following notations.

(1) Mn is the set of all n× n-matrices in X which is a real vector space;

(2) ej ∈ M1,n(C) means that jth component is 1 and the other components are zero;

(3) Eij ∈ Mn(C) means that (i, j)-component is 1 and the other components are zero;

(4) Eij ⊗ x ∈ Mn(X) means that (i, j)-component is x and the other components are zero.

Next we extend general matrix normed spaces [19] to matrix β–normed spaces.

Definition 1.1 Let X be a real vector space, Mn = Mn(C), Mn(X) = X ⊗ Mn. A function

∥ · ∥β,n : Mn(X) → [0,∞) is called a β-norm, where 0 < β ≤ 1, if for all n ∈ N and x = [xij ], y =

[yij ] ∈ Mn(X)

(i) ∥x∥β,n ≥ 0; ∥x∥β,n = 0 if and only if x = O;

(ii) ∥αx∥β,n = |α|β∥x∥β,n, for all α ∈ R;

(iii) ∥x+ y∥β,n ≤ ∥x∥β,n + ∥y∥β,n.
The pair (Mn(X), ∥·∥β,n) is called a β-normed space. When β = 1, (Mn(X), ∥·∥1,n) is a normed

space.

Let E,F be vector spaces. For a given mapping h : E → F and a given positive integer n,

define hn : Mn(E) → Mn(F ) by

hn([xij ]) = [h(xij)]

for all [xij ] ∈ Mn(E).

Now, we introduce matrix β-normed spaces and related properties.

Definition 1.2 Let X be a real vector space and (X, ∥ · ∥β) be a β-normed space. (X, {∥ · ∥β,n})
is called a matrix β-normed space if for each positive integer n, (Mn(X), ∥ · ∥β,n) is a β-normed

space, ∥Eij∥β,n = 1 and ∥AxB∥β,k ≤ ∥A∥β∥B∥β∥x∥β,n for all A ∈ Mk,n(C), x = [xij ] ∈ Mk,n(X)

and B ∈ Mn,k(C).

Lemma 1.3 Let (X, {∥ · ∥β,n}) be a matrix β-normed space.

(1) ∥Ekl ⊗ x∥β,n = ∥x∥β , for all x ∈ X;

(2) ∥xkl∥β ≤ ∥[xij ]∥β,n ≤
∑n

i,j=1 ∥xij∥β ;

(3) limm→∞ xm = x if and only if limm→∞ xmij = xij , for xm = [xmij ], x = [xij ] ∈ Mn(X).

Proof (1) Since Ekl⊗x = e∗kxel and ∥e∗k∥β = ∥el∥β = 1, ∥Ekl⊗x∥β,n ≤ ∥e∗k∥β∥el∥β∥x∥β = ∥x∥β .
Since ek(Ekl ⊗ x)e∗l = x, we have ∥Ekl ⊗ x∥β,n ≥ ∥x∥β .

(2) Since ekxe
∗
l = xkl and ∥e∗k∥β = ∥el∥β = 1, ∥xkl∥β ≤ ∥[xij ]∥β,n, [xij ] =

∑n
i,j=1 Eij ⊗ xij ,

∥[xij ]∥β,n = ∥
n∑

i,j=1

Eij ⊗ xij∥β,n ≤
n∑

i,j=1

∥Eij ⊗ xij∥β,n =

n∑
i,j=1

∥xij∥β .
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(3) By (2), we have

∥xmkl − xkl∥β ≤ ∥[xmij − xij ]∥β,n = ∥[xmij ]− [xij ]∥β,n ≤
m∑

i,j=1

∥xmij − xij∥β .

We obtain the results. �
Jung [20] investigated the stability of the mixed additive-quadratic functional equation

f(x+ y + z) + f(x) + f(y) + f(z) = f(x+ y) + f(y + z) + f(z + x) (1.2)

and Jun, Shin and Kim [21] investigated the stability problem of the Pexider equation

f(x+ y) = g(x) + h(y). (1.3)

We prove the Hyers-Ulam stability of the mixed additive-quadratic functional equation (1.2)

in matrix β-normed spaces for an odd mapping in Section 2 and for an even mapping in Section

3. The Hyers-Ulam stability of the Pexider equation (1.3) in matrix β-normed spaces is proved

in Section 4.

Throughout this paper, assume that (X, {∥ · ∥β,n}) is a matrix β-normed space and (Y ,

{∥ · ∥β,n}) is a complete matrix β-normed space.

2. Stability of additive-quadratic functional equations: an odd mapping
case

In this section, we will investigate the stability of the additive-quadratic functional equation

for the odd case in matrix β-normed space.

For a mapping f : X → Y , define Df : X3 → Y by

Df(a, b, c) := f(a+ b+ c) + f(a) + f(b) + f(c)− f(a+ b)− f(b+ c)− f(a+ c)

and define Dfn : Mn(X
3) → Mn(Y ) by

Dfn([xij ], [yij ], [zij ]) :=fn([xij + yij + zij ]) + fn([xij ]) + fn([yij ]) + fn([zij ])−

fn([xij + yij ])− fn([yij + zij ])− fn([xij + zij ])

for all a, b, c ∈ X and all x = [xij ], y = [yij ], z = [zij ] ∈ Mn(X).

Theorem 2.1 Let f : X → Y be an odd mapping and ϕ : X3 → [0,∞) be a function such that

Φ(a, b, c) =
∞∑
k=0

2−(k+1)βϕ(2ka, 2kb, 2kc) < +∞, (2.1)

∥Dfn([xij ], [yij ], [zij ])∥β,n ≤
n∑

i,j=1

ϕ(xij , yij , zij) (2.2)

for all a, b, c ∈ X and all x = [xij ], y = [yij ], z = [zij ] ∈ Mn(X). Then there exists a unique

additive mapping A : X → Y such that

∥fn([xij ])−An([xij ])∥β,n ≤
n∑

i,j=1

Φ(xij , xij ,−xij) (2.3)
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for all x = [xij ] ∈ Mn(X).

Proof Let n = 1. Then (2.2) is equivalent to

∥Df(a, b, c)∥β ≤ ϕ(a, b, c) (2.4)

for all a, b, c ∈ X. Letting b = a, c = −a in (2.4), and multiplying both sides by 2−β , we get

∥2−1f(2a)− f(a)∥β ≤ 2−βϕ(a, a,−a) (2.5)

for all a ∈ X. Applying an induction argument to l, we will prove

∥2−lf(2la)− f(a)∥β ≤
l−1∑
k=0

2−(k+1)βϕ(2ka, 2ka,−2ka) (2.6)

for all a ∈ X and l ∈ N. Indeed,

∥2−(l+1)f(2l+1a)− f(a)∥β ≤ ∥2−(l+1)f(2l+1a)− 2−1f(2a)∥β + ∥2−1f(2a)− f(a)∥β

and by (2.5) and (2.6), we obtain

∥2−(l+1)f(2l+1a)− f(a)∥β

≤ 2−β
l−1∑
k=0

2−(k+1)βϕ(2k+1a, 2k+1a,−2k+1a) + 2−βϕ(a, a,−a)

= 2−β
l∑

k=1

2−kβϕ(2ka, 2ka,−2ka) + 2−βϕ(a, a,−a)

=
l∑

k=0

2−(k+1)βϕ(2ka, 2ka,−2ka)

for all a ∈ X and l ∈ N, which ends the proof of (2.6).

We will present that the sequence {2−lf(2la)} is a Cauchy sequence. For l > m > 0, we

have

∥2−lf(2la)− 2−mf(2ma)∥β = 2−mβ∥2−(l−m)f(2l−m · 2ma)− f(2ma)∥β

≤ 2−mβ
l−m−1∑
k=0

2−(k+1)βϕ(2k+ma, 2k+ma,−2k+ma)

=
l−1∑
k=m

2−(k+1)βϕ(2ka, 2ka,−2ka)

for all a ∈ X and l,m ∈ N. From (2.1), we obtain the sequence {2−lf(2la)} is a Cauchy sequence.

Since Y is complete, the sequence converges to some A(a) ∈ Y . So one can define the mapping

A : X → Y by A(a) = liml→∞ 2−lf(2la) for all a ∈ X and l ∈ N.
It follows from (2.4) that ∥Df(2la, 2lb, 2lc)∥β ≤ ϕ(2la, 2lb, 2lc) for all a, b, c ∈ X and l ∈ N.

Therefore,

∥2−lDf(2la, 2lb, 2lc)∥β ≤ 2−lβϕ(2la, 2lb, 2lc) (2.7)
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for all a, b, c ∈ X and l ∈ N. It follows from (2.1) that

lim
l→∞

2−lβϕ(2la, 2lb, 2lc) = 0

for all a, b, c ∈ X and l ∈ N. Thus, (2.7) implies that DA(a, b, c) = 0. Since f : X → Y is odd,

A : X → Y is odd. So the mapping A : X → Y is additive.

Taking the limit in (2.6) as l → ∞, we obtain

∥A(a)− f(a)∥β ≤
∞∑
k=0

2−(k+1)βϕ(2ka, 2ka,−2ka) = Φ(a, a,−a) (2.8)

for all a ∈ X.

It remains to show that A is uniquely defined. Let A′ : X → Y be another additive function

satisfying (2.8). Then we get

∥A(a)−A′(a)∥β = ∥2−lA(2la)− 2−lA′(2la)∥β
≤ ∥2−lA(2la)− 2−lf(2la)∥β + ∥2−lf(2la)− 2−lA′(2la)∥β
≤ 2 · 2−lβΦ(2la, 2la,−2la)

= 2

∞∑
k=l

2−(k+1)βϕ(2ka, 2ka,−2ka)

for all a ∈ X and l ∈ N. Taking the limit in the above inequality as l → ∞, we get A(a) = A′(a)

for all a ∈ X.

By Lemma 1.3 and (2.8),

∥fn([xij ])−An([xij ])∥β,n = ∥[f(xij)−A(xij)]∥β,n ≤
n∑

i,j=l

∥f(xij)−A(xij)∥β

≤
n∑

i,j=1

Φ(xij , xij ,−xij)

for all x = [xij ] ∈ Mn(X). �

Corollary 2.2 Let r, θ and β be positive real numbers with r < 1, 0 < β ≤ 1 and f : X → Y

be an odd mapping such that

∥Dfn([xij ], [yij ], [zij ])∥β,n ≤
n∑

i,j=1

θ(∥xij∥rβ + ∥yij∥rβ + ∥zij∥rβ) (2.9)

for all x = [xij ], y = [yij ], z = [zij ] ∈ Mn(X). Then there exists a unique additive mapping

A : X → Y such that

∥fn([xij ])−An([xij ])∥β,n ≤
n∑

i,j=1

3

2β − 2βr
θ∥xij∥rβ

for all x = [xij ] ∈ Mn(X).

Proof Letting ϕ(a, b, c) = θ(∥a∥rβ + ∥b∥rβ + ∥c∥rβ) in Theorem 2.1, we get the result. �

Theorem 2.3 Let f : X → Y be an odd mapping and ϕ : X3 → [0,∞) be a function satisfying



On the stability of the functional equation in matrix β-normed spaces 333

(2.2) and

Φ(a, b, c) =
∞∑
k=1

2(k−1)βϕ(2−ka, 2−kb, 2−kc) < +∞

for all a, b, c ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥fn([xij ])−An([xij ])∥β,n ≤
n∑

i,j=1

Φ(xij , xij ,−xij)

for all x = [xij ] ∈ Mn(X).

Proof The proof is similar to the proof of Theorem 2.1. �

Corollary 2.4 Let r, θ and β be positive real numbers with r > 1, 0 < β ≤ 1 and f : X → Y

be an odd mapping satisfying (2.9). Then there exists a unique additive mapping A : X → Y

such that

∥fn([xij ])−An([xij ])∥β,n ≤
n∑

i,j=1

3

2βr − 2β
θ∥xij∥rβ

for all x = [xij ] ∈ Mn(X).

Proof Letting ϕ(a, b, c) = θ(∥a∥rβ + ∥b∥rβ + ∥c∥rβ) in Theorem 2.3, we get the result. �

3. Stability of additive-quadratic functional equations: an even mapping
case

In this section, we will investigate the stability of the additive-quadratic functional equation

for the even case in matrix β-normed space.

Theorem 3.1 Let f : X → Y be an even mapping with f(0) = 0 and ϕ : X3 → [0,∞) be a

function satisfying (2.2) and

Φ(a, b, c) =
∞∑
k=0

4−(k+1)βϕ(2ka, 2kb, 2kc) < +∞ (3.1)

for all a, b, c ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

∥fn([xij ])−Qn([xij ])∥β,n ≤
n∑

i,j=1

Φ(xij , xij ,−xij) (3.2)

for all x = [xij ] ∈ Mn(X).

Proof Let n = 1. Then (2.2) is equivalent to

∥Df(a, b, c)∥β ≤ ϕ(a, b, c) (3.3)

for all a, b, c ∈ X. Letting b = a, c = −a in (3.3), and multiplying both sides by 4−β , we get

∥4−1f(2a)− f(a)∥β ≤ 4−βϕ(a, a,−a) (3.4)
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for all a ∈ X. Applying an induction argument to l, we will prove

∥4−lf(2la)− f(a)∥β ≤
l−1∑
k=0

4−(k+1)βϕ(2ka, 2ka,−2ka) (3.5)

for all a ∈ X and l ∈ N. Indeed,

∥4−(l+1)f(2l+1a)− f(a)∥β ≤ ∥4−(l+1)f(2l+1a)− 4−1f(2a)∥β + ∥4−1f(2a)− f(a)∥β

and by (3.4) and (3.5), we obtain

∥4−(l+1)f(2l+1a)− f(a)∥β

≤ 4−β
l−1∑
k=0

4−(k+1)βϕ(2k+1a, 2k+1a,−2k+1a) + 4−βϕ(a, a,−a)

= 4−β
l∑

k=1

4−kβϕ(2ka, 2ka,−2ka) + 4−βϕ(a, a,−a)

=

l∑
k=0

4−(k+1)βϕ(2ka, 2ka,−2ka)

for all a ∈ X and l ∈ N, which ends the proof of (3.5).

We will present that the sequence {4−lf(2la)} is a Cauchy sequence. For l > m > 0, we

have

∥4−lf(2la)− 4−mf(2ma)∥β = 4−mβ∥4−(l−m)f(2l−m · 2ma)− f(2ma)∥β

≤ 4−mβ
l−m−1∑
k=0

4−(k+1)βϕ(2k+ma, 2k+ma,−2k+ma)

=
l−1∑
k=m

4−(k+1)βϕ(2ka, 2ka,−2ka)

for all a ∈ X and l,m ∈ N. From (3.1), we obtain the sequence {4−lf(2la)} is a Cauchy sequence.

Since Y is complete, the sequence converges to some Q(a) ∈ Y . So one can define the mapping

Q(a) = lim
l→∞

4−lf(2la)

for all a ∈ X and l ∈ N.
It follows from (3.3) that ∥Df(2la, 2lb, 2lc)∥β ≤ ϕ(2la, 2lb, 2lc) for all a, b, c ∈ X and l ∈ N.

Therefore,

∥4−lDf(2la, 2lb, 2lc)∥β ≤ 4−lβϕ(2la, 2lb, 2lc) (3.6)

for all a, b, c ∈ X and l ∈ N. It follows from (3.1) that

lim
l→∞

4−lβϕ(2la, 2lb, 2lc) = 0

for all a, b, c ∈ X and l ∈ N. Thus, (3.6) implies that DQ(a, b, c) = 0, since f : X → Y is even

and f(0) = 0, we know Q : X → Y is even and Q(0) = 0. So the mapping Q : X → Y is

quadratic.
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Taking the limit in (3.6) as l → ∞, we obtain

∥Q(a)− f(a)∥β ≤
∞∑
k=0

4−(k+1)βϕ(2ka, 2ka,−2ka) = Φ(a, a,−a) (3.7)

for all a ∈ X.

It remains to show that Q is uniquely defined. Let Q′ : X → Y be another quadratic

function satisfying (3.7). Then we get

∥Q(a)−Q′(a)∥β = ∥4−lQ(2la)− 4−lQ
′
(2la)∥β

≤ ∥4−lQ(2la)− 4−lf(2la)∥β + ∥4−lf(2la)− 4−lQ′(2la)∥β
≤ 2 · 4−lβΦ(2la, 2la,−2la)

= 2

∞∑
k=l

4−(k+1)βϕ(2ka, 2ka,−2ka)

for all a ∈ X and l ∈ N. Taking the limit in the above inequality as l → ∞, we get Q(a) = Q′(a)

for all a ∈ X.

By Lemma 1.3 and (3.7),

∥fn([xij ])−Qn([xij ])∥β,n = ∥[f(xij)−Q(xij)]∥β,n

≤
n∑

i,j=l

∥f(xij)−Q(xij)∥β ≤
n∑

i,j=1

Φ(xij , xij ,−xij)

for all x = [xij ] ∈ Mn(X). �

Corollary 3.2 Let r, θ and β be positive real numbers with r < 2, 0 < β ≤ 1 and f : X → Y

be an even mapping satisfying (2.9). Then there exists a unique quadratic mapping Q : X → Y

such that

∥fn([xij ])−Qn([xij ])∥β,n ≤
n∑

i,j=1

3

4β − 2βr
θ∥xij∥rβ

for all x = [xij ] ∈ Mn(X).

Proof Letting ϕ(a, b, c) = θ(∥a∥rβ + ∥b∥rβ + ∥c∥rβ) in Theorem 3.1, we get the result. �

Theorem 3.3 Let f : X → Y be an even mapping with f(0) = 0 and ϕ : X3 → [0,∞) be a

function satisfying (2.2) and

Φ(a, b, c) =
∞∑
k=1

4(k−1)βϕ(2−ka, 2−kb, 2−kc) < +∞ (3.8)

for all a, b, c ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

∥fn([xij ])−Qn([xij ])∥β,n ≤
n∑

i,j=1

Φ(xij , xij ,−xij)

for all x = [xij ] ∈ Mn(X).

Proof The proof is similar to the proof of Theorem 3.1. �
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Corollary 3.4 Let r, θ and β be positive real numbers with r > 2, 0 < β ≤ 1 and f : X → Y

be an even mapping satisfying (2.9). Then there exists a unique quadratic mapping Q : X → Y

such that

∥fn([xij ])−Qn([xij ])∥β,n ≤
n∑

i,j=1

3

2βr − 4β
θ∥xij∥rβ

for all x = [xij ] ∈ Mn(X).

Proof Letting ϕ(a, b, c) = θ(∥a∥rβ + ∥b∥rβ + ∥c∥rβ) in Theorem 3.3, we get the result. �
Let fo([xij ]) =

f([xij ])−f([−xij ])
2 and fe([xij ]) =

f([xij ])+f([−xij ])
2 . Then fo is an odd mapping

and fe is an even mapping such that f = fo + fe. The above corollaries can be summarized as

follows.

Theorem 3.5 Let r, θ and β be positive real numbers with r < 1 or r > 2 and 0 < β ≤ 1.

Let f : X → Y be a mapping satisfying f(0) = 0 and (2.9). Then there exist a unique additive

mapping A : X → Y and a unique quadratic mapping Q : X → Y such that

∥fn([xij ])−An([xij ])−Qn([xij ])∥β,n ≤ 21−β
n∑

i,j=1

(
3

|2β − 2βr|
+

3

|4β − 2βr|
)θ∥xij∥rβ

for all x = [xij ] ∈ Mn(X).

4. The Pexider equation

In this section, using the direct method, we prove the generalized Hyers-Ulam-Rassias sta-

bility of the Pexider equation (1.3) in matrix β-normed space.

Theorem 4.1 Let φ : X2 → [0,∞) be a function satisfying

Φ(a) =
∞∑
k=0

2−(k+1)β(φ(0, 2ka) + φ(2ka, 0) + φ(2ka, 2ka)) < +∞; (4.1)

lim
k→∞

2−kβφ(2ka, 2kb) = 0 (4.2)

for all a, b ∈ X. If functions f, g, h : X → Y satisfy the inequality

∥fn([xij + yij ])− gn([xij ])− hn([yij ])∥β,n ≤
n∑

i,j=1

φ(xij , yij) (4.3)

for all x = [xij ], y = [yij ] ∈ Mn(X), there exists a unique additive function A : X → Y such that

∥fn([xij ])−An([xij ])∥β,n ≤ n2

2β − 1
(∥g(0)∥β + ∥h(0)∥β) +

n∑
i,j=1

Φ(xij),

∥gn([xij ])−An([xij ])∥β,n ≤ n2

2β − 1
∥g(0)∥β +

2β

2β − 1
∥h(0)∥β+

n∑
i,j=1

(φ(xij , 0) + Φ(xij)), (4.4)

∥hn([xij ])−An([xij ])∥β,n ≤ n2

2β − 1
∥h(0)∥β +

2β

2β − 1
∥g(0)∥β+
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n∑
i,j=1

(φ(0, xij) + Φ(xij)).

Proof Let n = 1. Then (4.3) is equivalent to

∥f(a+ b)− g(a)− h(b)∥β ≤ φ(a, b) (4.5)

for all a, b ∈ X. If we put b = a in (4.5), then we have

∥f(2a)− g(a)− h(a)∥β ≤ φ(a, a) (4.6)

for all a ∈ X. Putting b = 0 in (4.5) yields that

∥f(a)− g(a)− h(0)∥β ≤ φ(a, 0) (4.7)

for all a ∈ X. It follows from (4.7) that

∥g(a)− f(a)∥β ≤ ∥h(0)∥β + φ(a, 0) (4.8)

for all a ∈ X. If we put a = 0 in (4.5), then we get

∥f(b)− g(0)− h(b)∥β ≤ φ(0, b) (4.9)

for all b ∈ X. Thus, we obtain

∥h(a)− f(a)∥β ≤ ∥g(0)∥β + φ(0, a) (4.10)

for all a ∈ X. Using the inequalities (4.6), (4.7) and (4.10), we have

∥f(2a)− 2f(a)∥β ≤ ∥f(2a)− g(a)− h(a)∥β + ∥g(a)− f(a)∥β + ∥h(a)− f(a)∥β
≤ φ(a, a) + ∥h(0)∥β + φ(a, 0) + ∥g(0)∥β + φ(0, a) =: u(a) (4.11)

for all a ∈ X. Multiplying both sides by 2−β in (4.11), we get

∥2−1f(2a)− f(a)∥β ≤ 2−βu(a) (4.12)

for all a ∈ X. Replace a with 2la in (4.11) and multiplying both sides by 2−lβ , we get

∥2−(l+1)f(2l+1a)− 2−lf(2la)∥β ≤ 2−(l+1)βu(2la) (4.13)

for all a ∈ X and l ∈ N. Now, we get

∥2−lf(2la)− f(a)∥β ≤ ∥2−lf(2la)− 2−(l−1)f(2l−1a)∥β + · · ·+ ∥2−1f(2a)− f(a)∥β

≤ 2−lβu(2l−1a) + · · ·+ 2−βu(a) =
l−1∑
k=0

2−(k+1)βu(2ka) (4.14)

for all a ∈ X and l ∈ N. Moreover, if l > m > 0, then it follows from (4.13) that

∥2−lf(2la)− 2−mf(2ma)∥β
≤ ∥2−lf(2la)− 2−(l−1)f(2l−1a)∥β + · · ·+ ∥2−(m+1)f(2m+1a)− 2−mf(2ma)∥β
≤ 2−lβu(2l−1a) + · · ·+ 2−(m+1)βu(2ma)

=
l−1∑
k=m

2−(k+1)βu(2ka)
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=

l−1∑
k=m

2−(k+1)β(∥g(0)∥β + ∥h(0)∥β + φ(0, 2ka) + φ(2ka, 0) + φ(2ka, 2ka))

≤ 2−mβ(2β − 1)−1(∥g(0)∥β + ∥h(0)∥β)+
l−1∑
k=m

2−(k+1)β(φ(0, 2ka) + φ(2ka, 0) + φ(2ka, 2ka))

which tends to 0 as m → ∞ for all a ∈ X and l,m ∈ N. Hence, 2−lf(2la) is a Cauchy sequence

for every a ∈ X. Since Y is complete, the sequence converges to some A(a) ∈ Y . So one can

define a function A : X → Y by A(a) = liml→∞ 2−lf(2la) for all a ∈ X and l ∈ N. In view of

(4.5), we obtain

∥2−lf(2la+ 2lb)− 2−lg(2la)− 2−lh(2lb)∥β ≤ 2−lβφ(2la, 2lb)

for all a, b ∈ X and l ∈ N. It follows from (4.8) that

∥2−lg(2la)− 2−lf(2la)∥β ≤ 2−lβ(∥h(0)∥β + φ(2la, 0)) (4.15)

for all a ∈ X and l ∈ N. Since 2−lβφ(2la, 0) → 0 as n → ∞ for all a ∈ X, one has

lim
l→∞

2−lg(2la) = lim
l→∞

2−lf(2la) = A(a) (4.16)

for all a ∈ X. Also, by (4.10), we have

∥2−lh(2la)− 2−lf(2la)∥β ≤ 2−lβ(∥g(0)∥β + φ(0, 2la)) (4.17)

for all a ∈ X and l ∈ N. Similarly, it follows from (4.17) that

lim
l→∞

2−lh(2la) = lim
l→∞

2−lf(2la) = A(a) (4.18)

for all a ∈ X. Thus we get

0 = ∥ lim
l→∞

(2−lf(2la+ 2lb)− 2−lg(2la)− 2−lh(2lb))∥β = ∥A(a+ b)−A(a)−A(b)∥β

for all a, b ∈ X. Taking the limit in (4.14) as l → ∞ yields

∥A(a)− f(a)∥β ≤ lim
l→∞

l−1∑
k=0

2−(k+1)βu(2ka)

= lim
l→∞

l−1∑
k=0

2−(k+1)β(∥g(0)∥β + ∥h(0)∥β)+

lim
l→∞

l−1∑
k=0

2−(k+1)β(φ(0, 2ka) + φ(2ka, 0) + φ(2ka, 2ka))

≤ 1

2β − 1
(∥g(0)∥β + ∥h(0)∥β) + Φ(a) (4.19)

for all a ∈ X. So, we can obtain

∥g(a)−A(a)∥β ≤ 1

2β − 1
∥g(0)∥β +

2β

2β − 1
∥h(0)∥β + φ(a, 0) + Φ(a), (4.20)

∥h(a)−A(a)∥β ≤ 1

2β − 1
∥h(0)∥β +

2β

2β − 1
∥g(0)∥β + φ(0, a) + Φ(a) (4.21)
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for all a ∈ X.

It remains to prove the uniqueness of A. Assume that A′ : X → Y is another additive

function which satisfies the inequalities in (4.19). Then we have

∥A(a)−A′(a)∥β ≤ ∥2−lA(2la)− 2−lf(2la)∥β + ∥2−lf(2la)− 2−lA′(2la)∥β

≤ 2

2lβ(2β − 1)
(∥g(0)∥β + ∥h(0)∥β) +

2

2lβ
Φ(2la)

=
2

2lβ(2β − 1)
(∥g(0)∥β + ∥h(0)∥β) + 2

∞∑
k=l

2−(k+1)β(φ(0, 2ka) + φ(2ka, 0) + φ(2ka, 2ka))

which tends to 0 as l → ∞ for all a ∈ X, which implies that A(a) = A′(a). By Lemma 1.3,

(4.19)–(4.21), we have (4.4). �

Corollary 4.2 Let r, θ and β be positive real numbers with r < 1, 0 < β ≤ 1 and functions

f, g, h : X → Y satisfy the inequality

∥fn([xij + yij ])− gn([xij ])− hn([yij ])∥β,n ≤
n∑

i,j=1

θ(∥xij∥rβ + ∥yij∥rβ)

for all x = [xij ], y = [yij ] ∈ Mn(X), then there exists a unique additive function A : X → Y such

that

∥fn([xij ])−An([xij ])∥β,n ≤ n2

2β − 1
(∥g(0)∥β + ∥h(0)∥β) +

n∑
i,j=1

4θ

2β − 2βr
θ∥xij∥rβ ,

∥gn([xij ])−An([xij ])∥β,n ≤ n2

2β − 1
∥g(0)∥β +

2β

2β − 1
∥h(0)∥β +

n∑
i,j=1

θ(1 +
4θ

2β − 2βr
)∥xij∥rβ ,

∥hn([xij ])−An([xij ])∥β,n ≤ n2

2β − 1
∥h(0)∥β +

2β

2β − 1
∥g(0)∥β +

n∑
i,j=1

θ(1 +
4θ

2β − 2βr
)∥xij∥rβ

for all x = [xij ] ∈ Mn(X).
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[13] J. ACZÉL, J. DHOMBRES. Functional Equations in Several Variables. Cambridge University Press, Cam-

bridge, 1989.

[14] S. CZERWIK. Functional Equations and Inequalities in Several Variables. World Scientific Publishing Co.,

Inc., River Edge, NJ, 2002.

[15] D. H. HYERS, G. ISAC, TH. M. RASSIAS. Stability of Functional Equations in Several Variables. Birkhäuser
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