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Abstract In this paper, we consider the simultaneous stabilization of discrete linear time-

varying systems in an operator-theoretic framework. We give a criterion of simultaneous

stabilization on account of one kind of strong representation and also give a parametrization

for all the simultaneous stabilizing controllers.
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1. Introduction

Mathematical control theory is a field of combining engineering and mathematics. In control

theory, stabilizability and optimalizability of linear systems are hot topics. While stabilizability

is the necessity condition for the study. The stability of system means: if the input signals

are bounded, then system has bounded output signals. In order to achieve this property of

systems, people always study feedback configuration. Feedback stabilization is a basic concept

for the analysis of time-varying linear systems. The problem has been studied within various

frameworks and many equivalent conditions have been derived for judging whether a system can

be stabilized [1–4]. For finite-dimensional systems and infinite-dimensional discrete linear time-

varying systems, the stabilizability is equivalent to the existence of both strong left representation

and strong right representation (i.e., the doubly coprime factorization) [2–4]. Based on the

assumption that a plant admits a doubly coprime factorization, the parametrization theorem

gives the forms of all controllers stabilizing the plant in terms of both strong representations

[1–4]. As is well known, Youla parametrization is the important basis of robust stabilization,

simultaneous stabilization and optimizing problems (take [5–7] for example).

Attracted by the importance of Youla parametrization, several authors present some gener-

alizations of this theorem [8–10]. In [8], the author gives a parametrization method of stabilizing

controllers that requires only a singly coprime factorization of the given plant. The new method

is basically to extend the original plant by adding zeros to the transfer function to produce an
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extended plant which owns a doubly coprime factorization. Then the classical Youla parametriza-

tion can be used to obtain all the stabilizing controllers. An interesting result in [9] shows that

for a linear time-invariant single input single output plant defined in the field of fractions of

an integral domain with a unity, the existence of a doubly coprime factorization is not neces-

sary for the internal stability any more. And a parametrization for the stabilizing controllers is

exhibited in terms of two free parameters by using the fractional ideal approach. In [10], the

parametrization is generalized to multi input multi output plants within the lattice approach.

In the context of operator theory, causal linear time-varying systems are represented by the

algebra of lower triangular operators. As shown in [3], under this framework, we look at linear

systems not pointwise but in an operator space. The approach is purely operator theoretic and

does not use any state space realization. There have been numerous papers on time-varying

system in the framework of nest algebra. The common basis of these references is the well-

known Youla parametrization in terms of doubly coprime factorizations of given plants. An

interesting result in [11] shows that a plant is stabilizable if and only if it has one kind of strong

representation and gives a parametrization for the stabilizing controllers in terms of the given

single strong representation. Motivated by these works, we want to depict the simultaneous

stabilization of two plants on account of one kind of strong representation.

This paper is organized as follows. In Section 2, we recall some basic definitions and auxiliary

properties. In Section 3, we introduce the stabilization problem for linear systems and the

extension of Youla parametrization theorem. In Section 4, we draw our main results about the

simultaneous stabilizability of two plants and we give an example to show how our results can

be applied.

2. Preliminaries

In this section we introduce some basic concepts and results needed in the sequel. More

details can be found in [3,4,12,13].

Let C denote the set of complex numbers and Z+ denote the set of nonnegative integers.

Let Cd be the Cartesian product of d copies of C, here d is a fixed positive integer. Let H be

the complex infinite-dimensional sequence space

ℓ2(Z+ : Cd) =
{
(x0, x1, x2, . . .) : xi ∈ Cd,

∞∑
i=0

∥xi∥2d < ∞
}
,

where ∥ · ∥d denotes the standard Euclidean norm on Cd. Obviously, H is a separable Hilbert

space with the standard inner product ⟨{xi}∞i=0, {yi}∞i=0⟩ =
∑∞

i=1⟨xi, yi⟩cd .

Let B(H) denote the space of bounded linear operators on H. For T ∈ B(H), RanT denotes

the range {Tx : x ∈ H} of T and KerT denotes the kernel {x ∈ H : Tx = 0} of T .

Let He be the extended space of H

He = {(x0, x1, x2, . . .) : xi ∈ Cd}.
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For each n ≥ 0, we denote by Pn the standard truncation projection on H and He as

Pn(x0, x1, x2, . . . , xn, xn+1, . . .) = (x0, x1, x2, . . . , xn, 0, 0, 0, . . .)

with P−1 = 0, P∞ = I. Pn sets all outputs after time n to zero, so the projection sequence

{Pn}∞n=0 is crucial to the physical notion of causality for linear systems.

The following definitions show how discrete linear time-varying systems are defined in the

operator-theoretic framework.

Definition 2.1 ([3]) A linear transformation T on He is causal if PnT = PnTPn for each n.

A discrete linear time-varying system on He is a causal linear transformation on He, which is

continuous with respect to the resolution topology. A discrete linear time-varying system T is

stable if its restriction on H is a bounded operator.

We denote the set of all discrete linear time-varying systems on He by L. It is clear that

L is an algebra with standard addition and multiplication. And any element of L is an infinite-

dimensional lower triangular matrix (with respect to the standard basis of H, see Chapter 5 of

[3]). The set of stable discrete linear time-varying systems, denoted by S, is a weakly closed

algebra containing the identity. M2(S) denote the 2 × 2 operator matrices with entries in S.
Likewise, C2(S) denote the 2 × 1 operator matrices with entries in S, R2(S) denote the 1 × 2

operator matrices with entries in S.

Remark 2.2 Based on the fact that any element of L is an infinite-dimensional lower triangular

matrix, the invertibility in L is purely algebraic: T ∈ L is invertible in L if and only if it has no

singular elements on its diagonal. The following result can be easily obtained:

Given T ∈ S. For any ε > 0, there exists an operator ∆T ∈ S with ∥∆T∥ < ε such that

T +∆T is invertible in L.
For T ∈ L, the linear manifold D(T ) = {x ∈ H : Tx ∈ H} denotes the domain of operator

T . The graph of T is the set

G(T ) :=


[

x

Tx

]
: x ∈ D(T )

 ⊂ H⊕H.

And the inverse graph of T is

G−1(T ) :=


[

Tx

x

]
: x ∈ D(T )

 ⊂ H⊕H.

Here we use the symbol H⊕H to denote the direct sum of spaces H and H.

3. Stabilization and strong representation

In this section, we introduce the definitions of stabilization, strong representation and the

classical Youla parametrization theorem for discrete linear time-varying systems within the nest

algebra framework.
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Given L,C ∈ L, the closed-loop system {L,C} is defined by the following system of equation:[
u1

u2

]
=

[
I C

L I

] [
e1
e2

]
,

where u1, u2 denote the externally applied inputs; e1, e2 denote the inputs to the plant and

controller, respectively.

And the closed-loop system {L,C} is well-posed if the linear transformation[
I C

L I

]
: D(L)⊕D(C) → H⊕H

is invertible. This inverse is given by the transfer matrix

H(L,C) =

[
(I − CL)−1 −C(I − LC)−1

−L(I − CL)−1 (I − LC)−1

]
.

Definition 3.1 ([3]) The closed-loop system {L,C} is stable if

[
I C

L I

]
has a bounded causal

inverse defined on H ⊕ H, i.e., H(L,C) ∈ M2(S). A plant L is stabilizable if there exists a

controller C ∈ L such that {L,C} is stable.

A geometrical interpretation for the stability of {L,C} is given as follows.

Proposition 3.2 ([3]) {L,C} is stable if and only if H⊕H can be decomposed as the algebraic

direct sum G(L) +G−1(C).

For the purpose of characterizing the stabilizable linear systems, we need the following

notions of representations for a linear system.

Definition 3.3 ([3]) A plant L has a right representation

[
M

N

]
if M,N ∈ S such that

G(L) = Ran

[
M

N

]
.Moreover, a right representation

[
M

N

]
is strong if

[
M

N

]
has a causal bounded

left inverse, i.e., there exist X,Y ∈ S such that

[Y X ]

[
M

N

]
= I.

L has a left representation [−N̂ M̂ ] if N̂ , M̂ ∈ S such that G(L) = Ker [−N̂ M̂ ]. Moreover,

a left representation [−N̂ M̂ ] is strong if it has a causal bounded right inverse, i.e., there exist

X̂, Ŷ ∈ S such that

[−N̂ M̂ ]

[
−X̂

Ŷ

]
= I.

Theorem 3.4 ([3]) Suppose L ∈ L has a strong right representation

[
M

N

]
. Then any strong

right representation

[
M1

N1

]
of L is of the form

[
M

N

]
S with S invertible in S. Similarly, [−N̂ M̂ ]

is a strong left representation of L, then any strong left representation of L is of the form

T [−N̂ M̂ ] with T invertible in S.
We have the following proposition to characterize strong right representations of some L ∈ L.

Proposition 3.5 ([3]) Let M,N ∈ S. Then

[
M

N

]
is a strong right representation of L ∈ L if
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and only if the following statements hold:

(i) There exist X,Y ∈ S such that [Y X ]

[
M

N

]
= I.

(ii) M is invertible in L.
The stabilizability of linear systems is closely related to the existence of strong right and

strong left representations. The most famous theorem characterizing the relationship is the

classical Youla parametrization theorem [3, Theorem 6.4.8]. The following theorem extends

Youla parametrization theorem by only requiring one kind of strong representation but not

both.

Theorem 3.6 ([11]) A linear system L ∈ L is stabilizable if and only if L has a strong right

representation. Moreover, if

[
M

N

]
∈ C2(S) is a strong right representation for L with causal

bounded left inverse [Y X ] ∈ R2(S), then a controller C ∈ L stabilizes L if and only if it has

a strong right representation [
0 I

I 0

]
W−1

[
0

I

]
−

[
N

M

]
Q

for some Q ∈ S, where W is an invertible operator matrix in M2(S) satisfying

W

[
M

N

]
[Y X ]W−1 =

[
I 0

0 0

]
.

The advantage of this result is that the stabilizability of a plant and the parametrization form

of all stabilizing controllers only depend on the existence of one kind of strong representation.

Hence, it is natural to ask whether or not it is possible to depict simultaneous stabilizability of

two plants only depending on the existence of one kind of strong representation. The question

will be answered in the next section.

4. Main results

A family of plants L0, L1, . . . , Ln are simultaneously stabilizable if there exists a common

linear system C ∈ L such that {Li, C} is stable for all i = 0, 1, . . . , n. In this section, we will

give a necessary and sufficient condition for simultaneous stabilization in terms of only one kind

of strong representation, and give a parameter for all stabilizing controllers.

Theorem 4.1 If Li ∈ L has a strong right representation

[
Mi

Ni

]
with causal bounded left

inverse [Yi Xi ] , i = 0, 1. Then L0 and L1 are simultaneously stabilizable if and only if there

exists Q ∈ S such that

[ 0 I ]W1W
−1
0

[
0

I

]
− [ 0 I ]W1

[
M0

N0

]
Q

is invertible in S, where Wi is an invertible operator matrix in M2(S) such that

Wi

[
Mi

Ni

]
[Yi Xi ]W

−1
i =

[
I 0

0 0

]
. (1)

Proof Necessity. Suppose that L0 and L1 are simultaneously stabilized by a controller C ∈ L,
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by Theorem 3.6, C has a strong right representation[
0 I

I 0

]
W−1

0

[
0

I

]
−

[
N0

M0

]
Q

for some Q ∈ S, where W0 is an invertible operator matrix in M2(S) satisfying

W0

[
M0

N0

]
[Y0 X0 ]W

−1
0 =

[
I 0

0 0

]
.

Again applying Theorem 3.6, C has a strong right representation[
0 I

I 0

]
W−1

1

[
0

I

]
−
[
N1

M1

]
T

for some T ∈ S, where W1 is an invertible operator matrix in M2(S) satisfying

W1

[
M1

N1

]
[Y1 X1 ]W

−1
1 =

[
I 0

0 0

]
.

Since

[
0 I

I 0

]
W−1

0

[
0

I

]
−
[
N0

M0

]
Q and

[
0 I

I 0

]
W−1

1

[
0

I

]
−
[
N1

M1

]
T are both strong right rep-

resentations of C by Theorem 3.4, there exists an invertible element Z ∈ S such that[
0 I

I 0

]
W−1

0

[
0

I

]
−
[
N0

M0

]
Q =

([
0 I

I 0

]
W−1

1

[
0

I

]
−

[
N1

M1

]
T

)
Z.

By multiplying [ 0 I ]W1

[
0 I

I 0

]
to the preceding equation, we obtain that

[ 0 I ]W1

(
W−1

0

[
0

I

]
−
[
M0

N0

]
Q

)
=

(
I − [ 0 I ]W1

[
M1

N1

]
T

)
Z.

By Eq. (1), we have(
I − [ 0 I ]W1

[
M1

N1

]
T

)
Z =

(
I − [ 0 I ]W1

[
M1

N1

]
[Y1 X1 ]

[
M1

N1

]
T

)
Z

=

(
I − [ 0 I ]

[
I 0

0 0

]
W1

[
M1

N1

]
T

)
Z

= Z.

Since Z is invertible in S, [ 0 I ]W1W
−1
0

[
0

I

]
− [ 0 I ]W1

[
M0

N0

]
Q is invertible in S.

Sufficiency. Assume that there exists Q̂ ∈ S such that [ 0 I ]W1W
−1
0

[
0

I

]
− [ 0 I ]W1

[
M0

N0

]
Q̂

is invertible in S. Since the set of invertible elements in S is an open set in S, and by Remark 2.2,

there exists an operator Q ∈ S satisfying [ 0 I ]W1W
−1
0

[
0

I

]
− [ 0 I ]W1

[
M0

N0

]
Q invertible in

S and [ 0 I ]W−1
0

[
0

I

]
−
[
N0

M0

]
Q invertible in L. Define the operator matrix

[
M

N

]
:=

[
0 I

I 0

]
W−1

0

[
0

I

]
−
[
N0

M0

]
Q.
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Note that

[ 0 I ]W0

[
0 I

I 0

] [
M

N

]
= I − [ 0 I ]W0

[
M0

N0

]
Q

= I − [ 0 I ]W0

[
M0

N0

]
[Y0 X0 ]

[
M0

N0

]
Q

= I − [ 0 I ]

[
I 0

0 0

]
W0

[
M0

N0

]
Q

= I.

Hence

[
M

N

]
∈ C2(S) has a causal bounded left inverse. According to Proposition 3.4,

[
M

N

]
is a

strong right representation of some linear system C ∈ L. Next, we will show that C is a common

stabilizing controller for L0 and L1. By Theorem 3.6, it is obvious that C stabilizes L0. To prove

C stabilizes L1, it suffices to show

G−1(C) +G(L1) = H⊕H.

Since

G−1(C) = Ran

([
0 I

I 0

] [
M

N

])
= Ran

(
W−1

0

[
0

I

]
−
[
M0

N0

]
Q

)
,

then for any z ∈ G−1(C)
∩
G(L1), there exist x, y ∈ H such that

z =

(
W−1

0

[
0

I

]
−
[
M0

N0

]
Q

)
x =

[
M1

N1

]
y.

Observe that

[ 0 I ]W1

[
M1

N1

]
y = [ 0 I ]W1

[
M1

N1

]
[Y1 X1 ]

[
M1

N1

]
y

= [ 0 I ]

[
I 0

0 0

]
W1

[
M1

N1

]
y

= 0.

Combining the fact that [ 0 I ]W1(W
−1
0

[
0

I

]
−
[
M0

N0

]
Q) is invertible in S, we have x = 0, hence

z = 0. Therefore, G−1(C)
∩

G(L1) = {0}.

Next, we will prove the fact that G−1(C) +G(L1) = H⊕H. Since [ 0 I ]W1(W
−1
0

[
0

I

]
−[

M0

N0

]
Q) is invertible in S, there exists P ∈ S such that

[ 0 I ]W1

(
W−1

0

[
0

I

]
−
[
M0

N0

]
Q

)
P = I.

Then the operator W−1
1

[
0

I

]
can be rewritten as
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W−1
1

[
0

I

]
= W−1

1

[
0

I

]
[ 0 I ]W1(W

−1
0

[
0

I

]
−

[
M0

N0

]
Q)P

= W−1
1

[
0 0

0 I

]
W1

(
W−1

0

[
0

I

]
−
[
M0

N0

]
Q

)
P

= W−1
1

([
I 0

0 I

]
−
[
I 0

0 0

])
W1

(
W−1

0

[
0

I

]
−
[
M0

N0

]
Q

)
P

=

(
W−1

0

[
0

I

]
−
[
M0

N0

]
Q

)
P −W−1

1

[
I 0

0 0

]
W1

(
W−1

0

[
0

I

]
−
[
M0

N0

]
Q

)
P

=

(
W−1

0

[
0

I

]
−
[
M0

N0

]
Q

)
P −

[
M1

N1

]
[Y1 X1 ]

(
W−1

0

[
0

I

]
−
[
M0

N0

]
Q

)
P.

For any

[
x

y

]
in H⊕H,[
x

y

]
= W−1

1

[
I 0

0 0

]
W1

[
x

y

]
+W−1

1

[
0 0

0 I

]
W1

[
x

y

]
=

[
M1

N1

]
[Y1 X1 ]

[
x

y

]
+W−1

1

[
0

I

]
[ 0 I ]W1

[
x

y

]
=

[
M1

N1

]
[Y1 X1 ]

[
x

y

]
+

(
W−1

0

[
0

I

]
−
[
M0

N0

]
Q

)
P [ 0 I ]W1

[
x

y

]
−
[
M1

N1

]
[Y1 X1 ]

(
W−1

0

[
0

I

]
−
[
M0

N0

]
Q

)
P [ 0 I ]W1

[
x

y

]
,

thus,

[
x

y

]
∈ G(L1) +G−1(C). This implies H⊕H ⊆ G(L1) +G−1(C). The opposite inclusion

is obvious. Hence H⊕H = G(L1) +G−1(C).

Similarly to Theorem 4.1, we immediately get the following theorem for the simultaneous

stabilization problem of L0, L1, . . . , Ln ∈ L.

Theorem 4.2 If Li ∈ L has a strong right representation

[
Mi

Ni

]
with a causal bounded left

inverse [Yi Xi ] , i = 0, 1, 2, . . . , n. Then L0, L1, . . . , Ln are simultaneously stabilizable if and

only if there exists Q ∈ S such that

[ 0 I ]WiW
−1
0

[
0

I

]
− [ 0 I ]Wi

[
M0

N0

]
Q (2)

is invertible in S, where Wi is an invertible operator matrix in M2(S) such that

Wi

[
Mi

Ni

]
[Yi Xi ]W

−1
i =

[
I 0

0 0

]
.

Moreover, C stabilizes L if and only if C has a strong right representation

[
0 I

I 0

]
W−1

0

[
0

I

]
−[

N0

M0

]
Q for some Q satisfying (2).

At the end of the paper, we give an example to show the effectiveness and applicability of

the proposed method in Theorem 4.1.
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Example 4.3 Consider the following two linear time-varying systems:

L0 =


2

−4 2

8 −4 2

−16 8 −4 2
...

...
...

. . .
. . .


and

L1 =


3

−9 3

27 −9 3

−81 27 −9 3
...

...
...

. . .
. . .


It can be easily checked that strong right representation

[
Mi

Ni

]
i = 0, 1 as

M0 =



1
2

1 1
2

1 1
2

1 1
2

1 1
2

. . .
. . .


, M1 =



1
3

1 1
3

1 1
3

1 1
3

1 1
3

. . .
. . .


, N1 = N0 = I.

Set Wi =

[
0 I

−I Mi

]
, clearly, W−1

i =

[
Mi −I

I 0

]
and Wi satisfies

Wi

[
Mi

Ni

]
[Yi Xi ]W

−1
i =

[
I 0

0 0

]
,

where Xi = I, Yi = 0. Choose Q ∈ S with ∥ Q ∥< 6, then

[ 0 I ]W1W
−1
0

[
0

I

]
− [ 0 I ]W1

[
M0

N0

]
Q

= [ 0 I ]

[
0 I

−I M̂1

] [
M0 −I

I 0

] [
0

I

]
− [ 0 I ]

[
0 I

−I M̂1

] [
M0

I

]
Q

= [−I M̂1 ]

[
−I

0

]
− [−I M̂1 ]

[
M0

I

]
Q

= I − (M̂1 −M0)Q

= I −


−1

6

− 1
6

−1
6

. . .

Q

= I +
1

6
Q,

hence,

[ 0 I ]W1W
−1
0

[
0

I

]
− [ 0 I ]W1

[
M0

N0

]
Q
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is invertible. By Theorem 4.1, L0 and L1 can be simultaneously stabilized by some linear system

C ∈ L with a strong right representation:[
0 I

I 0

]
W−1

0

[
0

I

]
−
[
N0

M0

]
Q =

[
0 I

I 0

] [
M0 −I

I 0

] [
0

I

]
−
[

I

M0

]
Q

=

[
I 0

M0 I

] [
0

I

]
−
[

I

M0

]
Q

=

[
0

I

]
−

[
I

M0

]
Q.
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