On π-Semicommutative Rings

Weixing CHEN
School of Mathematics and Information Science, Shandong Institute of Business and Technology, Shandong 264005, P. R. China

Abstract

A ring R is said to be π-semicommutative if $a, b \in R$ satisfy $a b=0$ then there exists a positive integer n such that $a^{n} R b^{n}=0$. We study the properties of π-semicommutative rings and the relationship between such rings and other related rings. In particular, we answer a question on left GWZI rings negatively.

Keywords semicommutative rings; left GWZI rings; π-semicommutative rings
MR(2010) Subject Classification 13C99; 16D80; 16U80

1. Introduction

Throughout this note a ring is associative with identity unless otherwise stated. For a ring R, we use $N(R)$ to denote the set of nilpotent elements in $R, Z(R)$ its center, $N_{*}(R)$ its prime radical, and $J(R)$ its Jacobson radical. The symbol $T_{n}(R)$ stands for the ring of $n \times n$ upper triangular matrices over $R, S_{n}(R)$ its subring in which each matrix has the identical principal diagonal elements, I_{n} the $n \times n$ identity matrix, and $E_{i j}(i, j=1,2, \ldots, n)$ the $n \times n$ matrix units. For a nonempty subset X of R, we use $l(X)$ and $r(X)$ to denote the left and right annihilators of X in R, respectively. The ring of integers modulo a positive integer n is denoted by \mathbb{Z}_{n}.

A ring is reduced if it has no nonzero nilpotent elements, a ring is abelian if all idempotents are central, and a ring is 2-primal if its prime radical coincides with the set of nilpotent elements in it. Due to Bell [1], a ring R is called to satisfy the Insertion-of-Factors-Property (simply, an IFP ring) if $a b=0$ implies $a R b=0$ for $a, b \in R$. Shin [2] used the term SI for the IFP, while Narbonne [3] used semicommutative in place of the IFP, and Habeb [4] used the term zero insertive (simply, ZI) for the IFP. In this paper, we choose a semicommutative ring in the above names, so as to cohere with other related references. It is known by [2, Lemma 1.2] that a ring R is semicommutative if and only if for any $a \in R, l(a)$ (resp., $r(a))$ is an ideal in R. There are many authors to study semicommutative rings and their generalizations. Liang et al. [5] called a ring R weakly semicommutaive if $a b=0$ implies $a R b \subseteq N(R)$ for $a, b \in R$. Agayev et al. [6] defined a ring R to be central semicommutative if $a b=0$ implies $a R b \subseteq Z(R)$ for $a, b \in R$, and they proved that a central semicommutative ring is a 2 -primal ring.

According to Zhou [7], a left ideal L of R is called a generalized weak ideal (simply, a GWideal) if for any $a \in L$, there exists a positive integer n such that $a^{n} R \subseteq L$. Based on this notion,

[^0]Du et al. [8] called a ring R to be left generalized weak zero insertive (simply, left GWZI), if $l(a)$ is a GW-ideal for any $a \in R$. Similarly, a right ideal M of R is called a GW-ideal in case for any $a \in M, R a^{n} \subseteq M$ for some positive integer n, and a ring R is called right GWZI if $r(a)$ is a GW-ideal of R for any $a \in R$. If a ring R is a left and right GWZI ring, then it is said to be a GWZI ring. Some properties of left GWZI rings were investigated in [8]. However, it is a question whether a left GWZI ring is right GWZI. The main motivation of this note is to answer the question in the negative. Moreover we define a ring R to be π-semicommutative if $a, b \in R$ satisfy $a b=0$ then there exists a positive integer n such that $a^{n} R b^{n}=0$. It is proved that there exists a π-semicommutative ring which is neither left nor right GWZI, and that a ring R is π-semicommutative if and only if $S_{n}(R)$ is π-semicommutative for any positive integer $n \geq 2$.

2. Π-semicommutative rings

We start this section with the following observation.
Proposition 2.1 A ring R is left GWZI if and only if $a b=0$ implies that there exists a positive integer n such that $a^{n} R b=0$ for $a, b \in R$.

Proof It is clear.
Symmetrically, a ring R is right GWZI if and only if $a b=0$ implies that there exists a positive integer n such that $a R b^{n}=0$ for $a, b \in R$.

Definition 2.2 A ring R is called π-semicommutative if $a, b \in R$ satisfy $a b=0$ then there exists a positive integer n such that $a^{n} R b^{n}=0$.

Clearly, the class of π-semicommutative rings is closed under subrings and finite direct sums.
Proposition 2.3 Every central semicommutative ring is π-semicommutative.
Proof Let R be a central semicommutative ring. If $a, b \in R$ satisfy $a b=0$, then we have arb $\in Z(R)$ for any $r \in R$. This means that $a^{2} r b^{2}=a a r b b=a b a r b=0$. Thus R is a π-semicommutative ring by Definition 2.2 .

The converse of Proposition 2.3 is not true in general.
Example 2.4 A π-semicommutative ring need not be central semicommutative.
Proof It is known by [9, Corollary 13] that for every countable field F, there exists a nil algebra S over F such that $S[x]$ is not nil. Let $R=F+S$. Then R is a local ring with $J(R)=S$. We claim that R is a GWZI ring. Let $a, b \in R$ with $a b=0$. If $a \in J(R)$, then a is nilpotent. There exists a positive integer n such that $a^{n} R b=0$. If $a \notin J(R)$, then a is a unit. This implies that $b=0$, and so $a^{n} R b=0$. It follows that R is a left GWZI ring. Similarly, R is a right GWZI ring. Thus R is a π-semicommutative ring. Now we prove that R is not a 2 -primal ring. Assume on the contrary, then one has $N_{*}(R)=N(R)=S$. This means that $N_{*}(R[x])=N_{*}(R)[x]=S[x]$ is nil, a contradiction. Since a central semicommutative ring is 2 -primal by [6, Theorem 2.4], R is not central semicommutative.

The above proof shows that a GWZI ring need not be central semicommutative.
Clearly, a left (resp., right) GWZI ring is π-semicommutative, but the converse is not true by help of next example.

Example 2.5 There exists a right GWZI ring which is not left GWZI.
Proof Let F be a field and $A=F[a, b, c]$ the free algebra of polynomials with zero constant terms in noncommutative indeterminates a, b, c over F. Clearly, A is a ring without identity. Consider an ideal I of $F+A$ generated by $c c, a c$ and $c r c$ for all $r \in A$. Let $R=(F+A) / I$. We prove that R is a right GWZI ring but R is not a left GWZI ring. Let I_{1} be the linear space over F, of the monomials in A with exactly one c and $I_{2}=F[a, b]$, the free algebra of polynomials with zero constant terms in noncommuting indeterminates a, b over F. Certainly we have $A=I+I_{1}+I_{2}$. Let $A[x], I[x], I_{1}[x]$, and $I_{2}[x]$ denote the polynomial rings without identity over A, I, I_{1} and I_{2} respectively, where x is the indeterminate over R. For simplicity, in what follows we will use the claim which appears in the proof of [10, Example 14].

Claim. If $f(x), g(x) \in A[x]$ satisfy $f(x) g(x) \in I[x]$, then $f(x) \in I_{1}[x]+I[x]$ and $g(x) \in$ $I_{1}[x]+I[x]$ (when $f(x) \notin I[x]$), or $f(x) \in I_{1}[x]+I[x]+I_{2}[x] a$ (when $g(x) \notin I[x]$) and $g(x) \in$ $c I_{2}[x]+I[x]$. In particular, if $s, t \in A$ satisfy $s t \in I$, then $s, t \in I_{1}+I$ or $s \in I_{1}+I+I_{2} a$ and $t \in c I_{2}+I$ by taking into account the fact $s x, t x \in A[x]$ with $s x t x=s t x^{2} \in I[x]$.

We will prove that if $s, t \in F+A$ satisfy $s t \in I$, then either $s \in I$ or $t^{2} \in I$. First we show that the conclusion is true for $s, t \in A$. In this situation, we have $s, t \in I_{1}+I$ or $s \in I_{1}+I+I_{2} a$ and $t \in c I_{2}+I$ by the claim. Thus $t^{2} \in I$ holds in both cases by the definitions of I_{1}, I and I_{2}. Generally, let $s, t \in(F+A)$ with $s t \in I$. We may write $s=k_{1}+s_{1}, t=k_{2}+t_{2}$ where $k_{1}, k_{2} \in F$ and $s_{1}, t_{2} \in A$. Thus we have $s t=k_{1} k_{2}+k_{1} t_{2}+k_{2} s_{1}+s_{1} t_{2} \in I$. This means that $k_{1} k_{2}=0$ by the definition of I. If $k_{1}=k_{2}=0$, then we have $t^{2} \in I$ by the above argument. Assume that $k_{1}=0$ and $k_{2} \neq 0$. Then we have $s t=k_{2} s_{1}+s_{1} t_{2} \in I$. We claim that $s=s_{1} \in I$. In fact, let \hat{I}_{1} be the subspace in I_{1}, of the monomials in A with exactly one c but no $a c$ as a factor, for example, $k_{1} a c, k_{2} b a c, k_{3} b a c b \notin \hat{I_{1}}$ where $k_{1}, k_{2}, k_{3} \in F \backslash\{0\}$. Since $A=I+I_{1}+I_{2}$, we have $A=I \oplus \hat{I}_{1} \oplus I_{2}$ (as linear spaces). Let $s_{1}=i+i_{1}+i_{2}$, and $t_{2}=i^{\prime}+i_{1}^{\prime}+i_{2}^{\prime}$ where $i, i^{\prime} \in I, i_{1}, i_{1}^{\prime} \in \hat{I}_{1}, i_{2}, i_{2}^{\prime} \in I_{2}$. Then $s t=k_{2} s_{1}+s_{1} t_{2} \in I$ implies that $k_{2} i_{1}+i_{1} i_{2}^{\prime}+i_{2} i_{1}^{\prime}+k_{2} i_{2}+i_{2} i_{2}^{\prime} \in I$. It is easy to see that $k_{2} i_{1}+i_{1} i_{2}^{\prime}+i_{2} i_{1}^{\prime} \in \hat{I}_{1}$, and $k_{2} i_{2}+i_{2} i_{2}^{\prime} \in I_{2}$. Thus we have $k_{2} i_{1}+i_{1} i_{2}^{\prime}+i_{2} i_{1}^{\prime}=k_{2} i_{2}+i_{2} i_{2}^{\prime}=0$. Since $k_{2} \neq 0$, we get $i_{2}=0$. Now $k_{2} i_{1}+i_{1} i_{2}^{\prime}+i_{2} i_{1}^{\prime}=0$ gives that $i_{1}=0$. Similarly, if $k_{1} \neq 0$ and $k_{2}=0$ then we have $t \in I$. From the above discussion, we conclude that for any $s, t \in F+A$ with $s t \in I$, then either $s \in I$ or $t^{2} \in I$. Thus R is a right GWZI ring. On the other hand, since $a c \in I$ and $a^{n} b c \notin I$ for any positive integer n, we have $a^{n} R c \notin I$. This means that R is not a left GWZI ring.

Example 2.5 gives a negative answer to the question of [8, p.255] whether the property of GWZI is left-right symmetric. Moreover, let R_{1} be a right GWZI ring which is not left GWZI, and $R_{2}=R_{1}^{o p}$ be the opposite ring of R_{1}. Then it is easy to see that the ring direct sum $R=R_{1} \oplus R_{2}$ is a π-semicommutative ring which is neither a left nor a right GWZI ring.

Proposition 2.6 A π-semicommutative ring R is weakly semicommutative.

Proof Let $a, b \in R$ with $a b=0$. Then we have $(b a)^{2}=0$, and so $(r b a)(b a r)=0$ for any $r \in R$. There exists a positive integer n such that $(r b a)^{n} r(b a r)^{n}=0$ by the π-semicommutativity of R. Observing that $(b a r)^{n}=b a(r b a)^{n-1} r$, we have $0=(r b a)^{n} r(b a r)^{n}=(r b a)^{n} r b a(r b a)^{n-1} r=$ $(r b a)^{2 n} r$. It follows that $(r b a)^{2 n+1}=0$, i.e., $r b a \in N(R)$, equivalently, $a r b \in N(R)$ for any $r \in R$.

Proposition 2.7 $A \pi$-semicommutative ring R is abelian.
Proof For any $e^{2}=e$ and any $r \in R$, we have $e(1-e)=(1-e) e=0$. The π-semicommutativity of R implies that there exists a positive integer n such that $e^{n} r(1-e)^{n}=(1-e)^{n} r e^{n}=0$, i.e., $\operatorname{er}(1-e)=(1-e) r e=0$. This means that R is abelian.

The converse of Proposition 2.7 is not true as the next example shows.
Example 2.8 ([6, Example 2.7]) Let \mathbb{Z} be the ring of integers, and consider the ring $R=$

$$
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a \equiv d(\bmod 2), b \equiv c(\bmod 2), a, b, c, d \in \mathbb{Z}\right\}
$$

Then R is an abelian ring by the proof of [6, Example 2.7]. Let n be any positive integer, and

$$
A=\left(\begin{array}{ll}
2 & 2 \\
0 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & 2 \\
0 & -2
\end{array}\right), \quad C=\left(\begin{array}{cc}
2 & 4 \\
4 & -2
\end{array}\right)
$$

in R. Clearly we have $A B=0$, but $A^{2 n+1} C B^{2 n+1}=2^{4 n+2}\left(\begin{array}{ll}0 & 4 \\ 0 & 0\end{array}\right) \neq 0$. This means that R is not π-semicommutative.

A ring R is called locally finite if every finite subset of R generates a finite multiplicative semigroup. For example, an algebraic closure of a finite field is locally finite but not finite.

Proposition 2.9 A locally finite abelian ring R is a GWZI ring.
Proof Let $a, b \in R$ with $a b=0$. Since R is locally finite, there exist positive integers m, k such that $a^{m}=a^{m+k}$. This means that $a^{m}=a^{m} a^{k}=a^{m} a^{2 k}=\cdots=a^{m} a^{m k}=a^{m} a^{(k-1) m} a^{m}$, and so $a^{m} a^{(k-1) m}=a^{k m}$ is an idempotent. Thus we have $a^{k m} r b=r a^{k m} b=0$ for any $r \in R$ since R is abelian, and hence R is a left GWZI ring. Similarly, R is a right GWZI ring.

It is an open question in [8] whether $S_{n}(R)$ is left GWZI for any left GWZI ring R and any positive integer $n \geq 4$.

Corollary 2.10 Let R be a left GWZI ring. If R is a finite ring, then $S_{n}(R)$ is a left GWZI ring for any positive integer n.

Proof The hypothesis and Proposition 2.7 imply that R is abelian, and so is $S_{n}(R)$. Since R is a finite ring, $S_{n}(R)$ is a finite ring. Thus $S_{n}(R)$ is a left GWZI ring by Proposition 2.9.

A ring R is called π-regular if for any $a \in R$, there exist a positive integer n and $b \in R$ such that $a^{n}=a^{n} b a^{n}$, and R is called regular in case $n=1$ (see [11]).

Theorem 2.11 If R is an abelian π-regular ring, then $S_{n}(R)$ is a GWZI ring for any positive
integer n.
Proof First we show that R is a GWZI ring. Let $a, b \in R$ with $a b=0$. Since R is abelian π-regular, there exist a positive integer n and $c \in R$ such that $a^{n}=a^{n} c a^{n}$. Let $e=c a^{n}$. Then e is a central idempotent with $a^{n}=a^{n} e$. It follows that $a^{n} r b=a^{n} e r b=a^{n} r e b=a^{n} r c a^{n} b=0$ for any $r \in R$. Thus R is a left GWZI ring. Similarly, R is a right GWZI ring. To complete the proof, it suffices to show that $S_{n}(R)$ is abelian π-regular. It was proved in [11, Theorem 3] that an abelian ring R is π-regular if and only if $N(R)$ is an ideal of R and $R / N(R)$ is regular. Now it is easily checked that R is abelian if and only if $S_{n}(R)$ is abelian, and that $N(R)$ is an ideal of R if and only if $N\left(S_{n}(R)\right)$ is an ideal of $S_{n}(R)$. Moreover the ring isomorphism $S_{n}(R) / N\left(S_{n}(R)\right) \cong R / N(R)$ implies that $R / N(R)$ is regular if and only if $S_{n}(R) / N\left(S_{n}(R)\right)$ is regular. Thus R is abelian π-regular if and only if $S_{n}(R)$ is abelian π-regular. The proof is completed from the above argument.

Given a ring R and an (R, R)-bimodule M, the trivial extension of R by M is the ring $T(R, M)=R \oplus M$ with the usual addition and the following multiplication: $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=$ $\left(r_{1} r_{2}, r_{1} m_{2}+m_{1} r_{2}\right)$. It is easily checked that this ring is isomorphic to the formal matrix ring

$$
S=\left\{\left.\left(\begin{array}{cc}
a & m \\
0 & a
\end{array}\right) \right\rvert\, a, \in R, m \in M\right\}
$$

In what follows we will identify $T(R, R)$ with the ring $S_{2}(R)$ canonically.
Theorem $2.12 \quad A$ ring R is a π-semicommutative ring if and only if the trivial extension $T(R, R)$ of R by R is a π-semicommutative ring.

Proof Assume that R is π-semicommutative. Let $A, B \in T(R, R)$ with $A B=0$. We may write $A=\left(\begin{array}{ll}a & u \\ 0 & a\end{array}\right), B=\left(\begin{array}{ll}b & v \\ 0 & b\end{array}\right)$ where $a, u, b, v \in R$. Since $A B=0$, we have $a b=0$. There exists a positive integer n such that $a^{n} R b^{n}=0$ by the π-semicommutativity of R. Let $\delta_{k}(r, s)=r^{k} s+r^{k-1} s r+\cdots+r s r^{k-1}+s r^{k}$ where $r, s \in R$ and k is a positive integer. Clearly, $\delta_{2 n}(r, s)$ can be written as $\delta_{2 n}(r, s)=r^{n} s_{1}+s_{2} r^{n}$ for some $s_{1}, s_{2} \in R$. By a simple computation, we obtain that

$$
A^{2 n+1}=\left(\begin{array}{cc}
a^{2 n+1} & \delta_{2 n}(a, u) \\
0 & a^{2 n+1}
\end{array}\right), \quad B^{2 n+1}=\left(\begin{array}{cc}
b^{2 n+1} & \delta_{2 n}(b, v) \\
0 & b^{2 n+1}
\end{array}\right)
$$

For any $C \in T(R, R)$, there exist $c, w \in R$ such that $C=\left(\begin{array}{cc}c & w \\ 0 & c\end{array}\right)$. Thus we have

$$
A^{2 n+1} C B^{2 n+1}=\left(\begin{array}{cc}
a^{2 n+1} c b^{2 n+1} & \delta \\
0 & a^{2 n+1} c b^{2 n+1}
\end{array}\right)
$$

where $\delta=a^{2 n+1} c \delta_{2 n}(b, v)+a^{2 n+1} w b^{2 n+1}+\delta_{2 n}(a, u) c b^{2 n+1}$. Noticing that $\delta_{2 n}(a, u)=a^{n} c_{1}+c_{2} a^{n}$, and $\delta_{2 n}(b, v)=b^{n} d_{1}+d_{2} b^{n}$ for some $c_{1}, c_{2}, d_{1}, d_{2} \in R$, we get $a^{2 n+1} c b^{2 n+1}=\delta=0$ by applying $a^{n} R b^{n}=0$. Thus we have $A^{2 n+1} C B^{2 n+1}=0$ for any $C \in T(R, R)$, and so $T(R, R)$ is π semicommutative.

Conversely, suppose that $T(R, R)$ is π-semicommutative. Then its subring $R I_{2}=\left\{a I_{2} \mid a \in\right.$ $R\}$ is π-semicommutative, and thus $R \cong R I_{2}$ is π-semicommutative.

For a ring R, we write $R^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1}, a_{2}, \ldots, a_{n} \in R\right\}$.
Lemma 2.13 Let R be a π-semicommutative ring and $n \geq 2$ a positive integer. If $A, B \in S_{n}(R)$ satisfy $A B=0$, then there exists a positive integer q such that $a^{q} \gamma_{n} B^{q}=0$ for all $\gamma_{n} \in R^{n}$ where a is the principal diagonal element of A.

Proof We proceed by induction on n. First, let $A, B \in S_{2}(R)$ with $A B=0$. We may write

$$
A=\left(\begin{array}{ll}
a & u \\
0 & a
\end{array}\right), \quad B=\left(\begin{array}{ll}
b & v \\
0 & b
\end{array}\right)
$$

where $a, u, b, v \in R$. Thus $A B=0$ implies $a b=0$, and there exists a positive integer m such that $a^{m} R b^{m}=0$ by the π-semicommutativity of R. Using a simple computation, we obtain that

$$
B^{2 m+1}=\left(\begin{array}{cc}
b^{2 m+1} & \delta_{2 m} \\
0 & b^{2 m+1}
\end{array}\right)
$$

where $\delta_{2 m}=b^{m} r_{1}+r_{2} b^{m}$ for some $r_{1}, r_{2} \in R$. Now for any $\gamma_{2}=\left(c_{1}, c_{2}\right) \in R^{2}$, we may have

$$
\begin{aligned}
& a^{2 m+1} \gamma_{2} B^{2 m+1}=\left(a^{2 m+1} c_{1}, a^{2 m+1} c_{2}\right)\left(\begin{array}{cc}
b^{2 m+1} & \delta_{2 m} \\
0 & b^{2 m+1}
\end{array}\right) \\
& \quad=\left(a^{2 m+1} c_{1} b^{2 m+1}, a^{2 m+1} c_{1} \delta_{2 m}+a^{2 m+1} c_{2} b^{2 m+1}\right)=\left(0, a^{2 m+1} c_{1} \delta_{2 m}\right)
\end{aligned}
$$

by applying $a^{m} R b^{m}=0$.
Observing that $a^{2 m+1} c_{1} \delta_{2 m}=a^{2 m+1} c_{1}\left(b^{m} r_{1}+r_{2} b^{m}\right)=0$, we have $a^{2 m+1} \gamma_{2} B^{2 m+1}=0$. Assume that the conclusion of the lemma is true for $n=k-1$. Let $A, B \in S_{k}(R)$ with $A B=0$. We may write $A=\left(\begin{array}{cc}a & \alpha \\ 0 & A_{1}\end{array}\right), B=\left(\begin{array}{cc}b & \beta \\ 0 & B_{1}\end{array}\right)$ where $a, b \in R, \alpha, \beta \in R^{k-1}$, and $A_{1}, B_{1} \in$ $S_{k-1}(R)$. Since $A B=0$, we have $a b=0$ and $A_{1} B_{1}=0$. There exist positive integers p_{1}, p_{2} such that $a^{p_{1}} R b^{p_{1}}=0$ and $a^{p_{2}} \gamma_{k-1} B_{1}^{p_{2}}=0$ for any $\gamma_{k-1} \in R^{k-1}$ by the π-semicommutativity of R and induction hypothesis. Let $p=\max \left\{p_{1}, p_{2}\right\}$. It follows that $a^{p} R b^{p}=0$ and $a^{p} \gamma_{k-1} B_{1}^{p}=0$. By a simple computation, we have

$$
B^{2 p+1}=\left(\begin{array}{cc}
b^{2 p+1} & \Delta \\
0 & B_{1}^{2 p+1}
\end{array}\right)
$$

where $\Delta=b^{2 p} \beta+b^{2 p-1} \beta B_{1}+\cdots+b^{l} \beta B_{1}^{2 p-l}+\cdots+\beta B_{1}^{2 p}$. For any $\gamma_{k}=\left(c_{1}, c_{2}, \ldots, c_{k}\right) \in R^{k}$, we may write $\gamma_{k}=\left(c_{1}, \gamma_{k-1}\right)$ with $\gamma_{k-1} \in R^{k-1}$. A direct computation yields that $a^{2 p+1} \gamma_{k} B^{2 p+1}=$ $\left(a^{2 p+1} c_{1}, a^{2 p+1} \gamma_{k-1}\right)\left(\begin{array}{cc}b^{2 p+1} & \Delta \\ 0 & B_{1}^{2 p+1}\end{array}\right)=\left(a^{2 p+1} c_{1} b^{2 p+1}, a^{2 p+1} c_{1} \Delta+a^{2 p+1} \gamma_{k-1} B_{1}^{2 p+1}\right)$. Using the facts $a^{p} R b^{p}=0$ and $a^{p} \gamma_{k-1} B_{1}^{p}=0$, we have $a^{2 p+1} c_{1} b^{2 p+1}=0, a^{2 p+1} \gamma_{k-1} B_{1}^{2 p+1}=0$, and $a^{2 p+1} c_{1} \Delta=a^{2 p+1} c_{1}\left(b^{p-1} \beta B_{1}^{p}+\cdots+\beta B_{1}^{2 p}\right)$. Noticing that $c_{1} b^{p-1} \beta, \ldots, c_{1} \beta$ are all in R^{k-1}, we get $a^{2 p+1} c_{1} \Delta=0$ by induction hypothesis. This means that $a^{2 p+1} \gamma_{k} B^{2 p+1}=0$ for all $\gamma_{k} \in R^{k}$, and the proof is completed.

Theorem 2.14 Let R be a ring and $n \geq 2$ be a positive integer. Then R is π-semicommutative if and only if $S_{n}(R)$ is π-semicommutative.

Proof Assume that R is a π-semicommutative ring. To prove $S_{n}(R)$ is π-semicommutative, we proceed by induction on n. The conclusion is true in the case $n=2$ by Theorem 2.12. Assume that $S_{k-1}(R)$ is a π-semicommutative ring. Now let $A, B \in S_{k}(R)$ with $A B=0$. We may write $A=\left(\begin{array}{cc}a & \alpha \\ 0 & A_{1}\end{array}\right), B=\left(\begin{array}{cc}b & \beta \\ 0 & B_{1}\end{array}\right)$ where $a, b \in R, \alpha, \beta \in R^{k-1}$, and $A_{1}, B_{1} \in S_{k-1}(R)$. Since $A B=0$, we have $a b=0$ and $A_{1} B_{1}=0$. There exist positive integers p_{1}, p_{2} such that $a^{p_{1}} R b^{p_{1}}=0$ and $A_{1}^{p_{2}} S_{k-1}(R) B_{1}^{p_{2}}=0$ by the π-semicommutativity of R and induction hypothesis. Applying Lemma 2.13, there exists a positive integer q such that $a^{q} \gamma_{k-1} B^{q}=0$ for any $\gamma_{k-1} \in R^{k-1}$. Let $m=\max \left\{p_{1}, p_{2}, q\right\}$. We have $a^{m} R b^{m}=0, A_{1}^{m} S_{k-1}(R) B_{1}^{m}=0$, and $a^{m} \gamma_{k-1} B^{m}=0$ for any $\gamma_{k-1} \in R^{k-1}$. By using a direct computation, we may obtain the following two equalities

$$
A^{2 m+1}=\left(\begin{array}{cc}
a^{2 m+1} & \Delta(A) \\
0 & A_{1}^{2 m+1}
\end{array}\right), \quad B^{2 m+1}=\left(\begin{array}{cc}
b^{2 m+1} & \Delta(B) \\
0 & B_{1}^{2 m+1}
\end{array}\right)
$$

where $\Delta(A)=a^{2 m} \alpha+a^{2 m-1} \alpha A_{1}+\cdots+\alpha A_{1}^{2 m}, \Delta(B)=b^{2 m} \beta+b^{2 m-1} \beta B_{1}+\cdots+\beta B_{1}^{2 m}$. For any $C \in S_{k}(R)$, it can be written as $C=\left(\begin{array}{cc}c & \gamma \\ 0 & C_{1}\end{array}\right)$ where $c \in R, C_{1} \in S_{k-1}(R)$, and $\gamma \in R^{k-1}$. By a simple computation, we have the following equalities

$$
\begin{gathered}
A^{2 m+1} C B^{2 m+1}=\left(\begin{array}{cc}
a^{2 m+1} c & a^{2 m+1} \gamma+\Delta(A) C_{1} \\
0 & A_{1}^{2 m+1} C_{1}
\end{array}\right)\left(\begin{array}{cc}
b^{2 m+1} & \Delta(B) \\
0 & B_{1}^{2 m+1}
\end{array}\right) \\
=\left(\begin{array}{cc}
a^{2 m+1} c b^{2 m+1} & a^{2 m+1} c \Delta(B)+a^{2 m+1} \gamma B_{1}^{2 m+1}+\Delta(A) C_{1} B_{1}^{2 m+1} \\
0 & A_{1}^{2 m+1} C_{1} B_{1}^{2 m+1}
\end{array}\right) .
\end{gathered}
$$

Applying the facts $a^{m} R b^{m}=0, A_{1}^{m} S_{k-1}(R) B_{1}^{m}=0$, and $a^{m} \gamma_{k-1} B^{m}=0$, we get $A^{2 m+1} C B^{2 m+1}=$ $\left(\begin{array}{cc}0 & \Delta_{1} \\ 0 & 0\end{array}\right)$ where $\Delta_{1}=a^{2 m+1} c \Delta(B)+\Delta(A) C_{1} B_{1}^{2 m+1}$. Since $c b^{m-1} \beta, \ldots, c \beta$ are in R^{k-1}, we have $a^{2 m+1} c \Delta(B)=a^{2 m+1} c\left(b^{m-1} \beta B_{1}^{m+1}+\cdots+\beta B_{1}^{2 m}\right)=0$. Similarly, since $\alpha C_{1}, \ldots, \alpha A_{1}^{m-1} C_{1}$ are in $R^{k-1}, A_{1}^{m} S_{k-1}(R) B_{1}^{m}=0$, and $a^{m} \gamma_{k-1} B^{m}=0$, we get $\Delta(A) C_{1} B_{1}^{2 m+1}=\left(a^{2 m} \alpha+\right.$ $\left.a^{2 m-1} \alpha A_{1}+\cdots+a^{m+1} \alpha A_{1}^{m-1}\right) C_{1} B_{1}^{2 m+1}=0$. It follows that $A^{2 m+1} C B^{2 m+1}=0$ for any $C \in S_{k}(R)$. This completes the induction steps.

Conversely, if $S_{n}(R)$ is π-semicommutative, then R is π-semicommutative since $R \cong R I_{n}=$ $\left\{r I_{n} \mid r \in R\right\}$ which is a subring of $S_{n}(R)$.

Corollary 2.15 A ring R is π-semicommutative if and only if $R[x] /\left(x^{n}\right)$ is π-semicommutative for any positive integer $n \geq 2$ where $\left(x^{n}\right)$ is the ideal of $R[x]$ generated by x^{n} in $R[x]$.

Proof Let $V=\sum_{i=1}^{n-1} E_{i, i+1}$, and $V_{n}(R)=R I_{n}+R V+\cdots+R V^{n-1}$ where $R V^{k}=\{r A \mid r \in$ $\left.R, A \in V^{k}\right\}$ for $1 \leq k \leq n-1$. Then we have $R[x] /\left(x^{n}\right) \cong V_{n}(R)$ in a natural way. If R is π-semicommutative, then $S_{n}(R)$ is π-semicommutative by Theorem 2.14 , and so is $V_{n}(R)$ as a subring of $S_{n}(R)$. The validity of the converse of the corollary is rather obvious.

A ring R in [12] is called linearly weak Armendariz (simply, LWA) if $f(x)=a_{0}+a_{1} x, g(x)=$ $b_{0}+b_{1} x \in R[x]$ satisfy $g(x) f(x)=0$ then $a_{i} b_{j} \in N(R)$ for all i and j, equivalently, if $a, b \in R$ satisfy $a^{2}=b^{2}=0$ then $a+b \in N(R)$ by [12, Proposition 2.2]. Thus a weakly semicommutative ring is LWA.

In the light of Theorem 2.14, it is natural to ask the question whether the subring

$$
S(R)=\left\{\left.\left(\begin{array}{cccc}
a & a_{12} & a_{13} & \cdots \\
0 & a & a_{23} & \cdots \\
0 & 0 & a & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \right\rvert\, a, a_{i j} \in R\right\}
$$

of the countable infinite upper triangular matrix ring is a π-semicommutative ring in case R is a π-semicommutative ring. The answer to this question is negative. In fact, $S(R)$ is not π-semicommutative for any ring R. Otherwise $S(R)$ is weakly semicommutative and so is LWA. Take $A=\sum_{i=1}^{\infty} E_{2 i-1,2 i}$ and $B=\sum_{i=1}^{\infty} E_{2 i, 2 i+1}$ in $S(R)$, then clearly we have $A^{2}=B^{2}=0$. But $A+B$ is not a nilpotent element, this shows that $S(R)$ is not LWA by [12, Proposition 2.2], a desried contradiction.

If R is a local ring with $J(R)$ nil, then R is π-semicommutative. In this case, $S(R)$ is a local ring since $S(R) / J(S(R)) \cong R / J(R)$. Thus $S(R)$ is an abelian ring, but $S(R)$ is not π semicommutative from the above argument. This enables us to get more examples of anelian rings which are not π-semicommutative.

Example 2.16 There is a π-semicommutative ring R over which the polynomial ring $R[x]$ is not a π-semicommutative ring.

Proof By [12, Theorem 3.8], there exists a nil algebra S over some countable field F such that $S[x]$ is not LWA. Let $R=F+S$. Then R is a local ring with $J(R)=S$, and so R is π-semicommutative. We claim that $R[x]$ is not π-semicommutative. Otherwise $R[x]$ is weakly semicommutative, and so is LWA. This means that $S[x]$ is LWA as a subring of $R[x]$ without identity, a desired contradiction.

As any ring is a factor of a polynomial domain containing sufficiently many noncommutative indeterminates, the homomorphic image of a π-semicommutative ring need not be π semicommutative.

Proposition 2.17 Let R be a ring and I an ideal of R. If I is reduced as a ring without identity and R / I is π-semicommutative, then R is π-semicommutative.

Proof Write $\bar{R}=R / I$ and $\bar{r}=r+I$ for any $r \in R$. If $a, b \in R$ satisfy $a b=0$, then $\bar{a} \bar{b}=\overline{0}$ in \bar{R}. There exists a positive integer n such that $\bar{a}^{n} \bar{r} \bar{b}^{n}=\overline{0}$, i.e., $a^{n} r b^{n} \in I$ for any $r \in R$ by the π-semicommutativity of \bar{R}. Since I is reduced and $\left(b a^{n} r b^{n} a\right)^{2}=0$ in I, we get $b a^{n} r b^{n} a=0$. It follows that $\left(a^{n} r b^{n}\right)^{3}=a^{n} r b^{n-1}\left(b a^{n} r b^{n} a\right) a^{n-1} r b^{n}=0$ in I. This gives $a^{n} r b^{n}=0$ for any $r \in R$ by the reduceness of I.

Proposition 2.18 Let R be a left (resp., right) GWZI ring and I an ideal of R. Then $R / l(I)$
(resp., $R / r(I)$) is a left (resp., right) GWZI ring.
Proof Write $\bar{R}=R / l(I)$ and $\bar{r}=r+l(I)$ where $r \in R$. For any $a, b \in R$, if $\bar{a} \bar{b}=\overline{0}$ in \bar{R}, then we have $a b \in l(I)$, and so $a b v=0$ for all $v \in I$. Since R is a left GWZI ring, there exists a positive integer n such that $a^{n} c b v=0$ for any $c \in R$. This means that $a^{n} c b \in l(I)$, i.e., $\bar{a}^{n} \bar{c} \bar{b}=\overline{0}$ in \bar{R} for any $\bar{c} \in \bar{R}$. The validity of the right version of the proposition is now clear.

For any ring, reduced \Rightarrow semicommutative \Rightarrow GWZI $\Rightarrow \pi$-semicommutative \Rightarrow weakly semicommutative, and no converse implication holds. For example, \mathbb{Z}_{4} is a semicommutative ring which is not reduced, $R=S_{4}\left(\mathbb{Z}_{2}\right)$ is a GWZI ring but not semicommutative, and $R=T_{2}\left(\mathbb{Z}_{2}\right)$ is a weakly semicommutative ring and not π-semicommutative [8]. Of course, there exists a π-semicommutative ring R which is neither left nor right GWZI by Example 2.5.

We conclude this note with the following proposition.
Proposition 2.19 The following are equivalent for a ring R with $J(R)=0$.
(1) R is reduced;
(2) R is semicommutative;
(3) R is central semicommutative;
(4) R is left (right) GWZI;
(5) R is π-semicommutative;
(6) R is weakly semicommutative.

Proof It suffices to prove that (6) implies (1). Let $a \in R$ with $a^{2}=0$. Then we have $r a a=0$ for any $r \in R$, and so rara $\in N(R)$. Thus $R a$ is a nil left ideal in R. This means that $R a \subseteq J(R)=0$. Thus we have $a=0$, and so R is reduced.

Acknowledgements The author would like to thank the referees for their valuable comments.

References

[1] H. E. BELL. Near-rings in which each element is a power of itself. Bull. Austral. Math. Soc., 1970, 2(3): 363-368.
[2] G. SHIN. Prime ideals and sheaf representation of a pseudo symmetric ring. Trans. Amer. Math. Soc., 1973, 184: 43-60.
[3] L. MOTAIS DE NARBONNE. Anneaux semi-commutatifs et unisériels anneaux dont les idéaux principaux sont idempotents. Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), Bib. Nat., Paris, 1982, 71-73.
[4] J. M. HABEB. A note on zero commutative and duo rings. Math. J. Okayama Univ., 1990, 32: 73-76.
[5] Li LIANG, Limin WANG, Zhongkui LIU. On a generalization of semicommutative rings. Taiwanese J. Math., 2007, 11(5): 1359-1368.
[6] N. AGAYEV, T. OZEN, A. HARMANCI. On a class of semicommutative rings. Kyungpook Math. J., 2011, 51: 283-291.
[7] Haiyan ZHOU. Left SF-rings and regular rings. Comm. Algebra, 2007, 35(12): 3842-3850.
[8] Cuizhen DU, Long WANG, Junchao WEI. On a generalization of semicommutative rings. J. Math. Res. Appl., 2014, 34(3): 253-264.
[9] A. SMOKTUNOWICZ. Polynomial ring over nil rings need not be nil. J. Algebra, 2003, 233: 427-436.
[10] C. HUH, Y. LEE, A. SMOKTUNOWICZ. Armendariz rings and semicommutative rings. Comm. Algebra, 2002, 30: 751-761.
[11] A. BADAWI. On abelian π-regular rings. Comm. Algebra, 1997, 25(4): 1009-1021.
[12] Weixing CHEN. On linearly weak Armendariz rings. J. Pure Appl. Algebra, 2015, 219: 1122-1130.

[^0]: Received August 26, 2015; Accepted December 3, 2015
 Supported by the Natural Foundation of Shandong Province (Grant Nos. ZR2013AL013; ZR2014AL001).
 E-mail address: wxchen5888@163.com

