Journal of Mathematical Research with Applications Jul., 2016, Vol. 36, No. 4, pp. 441–449 DOI:10.3770/j.issn:2095-2651.2016.04.006 Http://jmre.dlut.edu.cn

Gröbner-Shirshov Basis for Degenerate Ringel-Hall Algebra of Type C_3

Zhenzhen GAO¹, Shilin YANG^{1,*}, Abdukadir OBUL²

1. College of Applied Sciences, Beijing University of Technology, Beijing 100124, P. R. China;

2. College of Mathematics and System Sciences, Xinjiang University, Xinjiang 830046, P. R. China

Abstract The Gröbner-Shirshov basis of the degenerate Ringel-Hall Algebras of type C_3 is obtained by studying the generic extension monoid algebra.

Keywords Gröbner-Shirshov basis; Frobenius map; degenerate Ringel-Hall algebras; monoid algebra

MR(2010) Subject Classification 16S15; 17B37; 16G20

1. Introduction

The Gröbner-Shirshov basis theory was suggested by Shirshov [1] in 1962 for Lie algebras, by Buchberger [2] for commutative algebras and by Bergman [3] for associative algebras. It was proved to be a powerful tool for the solution of reduction problem in many algebraic structures. Ringel [4] established the concept of the generic Ringel-Hall algebra by the existence of Hall polynomials of a Dynkin quiver Q with automorphism σ . The case when the indeterminate specializes to zero is called the degenerate Ringel-Hall algebra. It was studied by Reineke in [5,6].

Fan and Zhao have given a presentation of the degenerate Ringel-Hall algebra of type B_n in [7]. It is easy to give a presentation of the degenerate Ringel-Hall algebra of type C_3 . By studying the Frobenius morphism [8] and the generic extension monoid algebra [5], we obtain the Gröbner-Shirshov basis of the degenerate Ringel-Hall algebra of type C_3 .

2. Some preliminaries

Let (Q, σ) be a quiver Q with an automorphism σ . $\Gamma = (\Gamma_0, \Gamma_1) := \Gamma(Q, \sigma)$ denotes the associated valued quiver, where Γ_0 and Γ_1 are the sets of σ -orbits in Q_0 and Q_1 , respectively. For any $\rho : i \to j \in \Gamma_1(i, j \in \Gamma_0)$, its tail and head are the σ -orbit of tails and heads of arrows in ρ , respectively. Denote

 $m_{\rho} = |\{\text{arrows in } \sigma \text{-orbit } \rho\}|, \ m_{ji} = m_{\rho}/\varepsilon_j \text{ and } m_{ij} = m_{\rho}/\varepsilon_i,$

Received July 25, 2015; Accepted March 8, 2016

Supported by the National Natural Science Foundation of China (Grant Nos. 11471186; 11361056) and the Natural Science Foundation of Beijing (Grant No. 1162002).

^{*} Corresponding author

E-mail address: gaozhenzhen1224@163.com (Zhenzhen GAO); slyang@bjut.edu.cn (Shilin YANG)

where $\varepsilon_t = |\{\text{vertices in } \sigma \text{-orbit } t\}| \text{ for } t \in \Gamma_0$. The valuation of Γ is given by $\{\varepsilon_t\}_{t\in\Gamma_0}, \{(m_{ji}, m_{ij})\}_{\rho\in\Gamma_1}$. **Example 2.1** Let $Q = D_4$ be the following quiver:

Figure 1 Quiver of type D_4

where σ is the automorphism of D_4 such that $\sigma(1) = 1$, $\sigma(2) = 2$, $\sigma(3) = 4$, $\sigma(4) = 3$, $\sigma(\alpha) = \alpha$, $\sigma(\beta) = \gamma$, $\sigma(\gamma) = \beta$. Then the associated valued quiver $\Gamma = C_3$ with $\varepsilon_1 = 1$, $\varepsilon_2 = 1$, $\varepsilon_3 = 2$, $m_{21} = m_{12} = 1$, $m_{32} = 1$, $m_{23} = 2$ is as follows:

Figure 2 Quiver of type C_3

We now recall some concepts about Frobenius morphism, degenerate Ringel-Hall algebra, monoid algebra, and Gröbner-Shirshov basis theory.

Let \mathbb{F}_q be the finite field of q elements and $\mathcal{K} = \overline{\mathbb{F}}_q$ the algebraic closure of \mathbb{F}_q .

Definition 2.2 ([8,9]) Let V be a vector-space over the field K. An \mathbb{F}_q -linear isomorphism $F: V \longrightarrow V$ is called a Frobenius map if it satisfies:

(i) $F(av) = a^q F(v)$ for all $v \in V$ and $a \in \mathcal{K}$;

(ii) For any $v \in V$, $F^n(v) = v$ for some n > 0.

Let \mathcal{A} be a \mathcal{K} -algebra with the identity 1. A map $F_{\mathcal{A}} : \mathcal{A} \longrightarrow \mathcal{A}$ is called a Frobenius morphism if $F_{\mathcal{A}}$ is a Frobenius map on the \mathcal{K} -space \mathcal{A} and

$$F_{\mathcal{A}}(ab) = F_{\mathcal{A}}(a)F_{\mathcal{A}}(b), \text{ for all } a, b \in \mathcal{A}.$$

Let $A := \mathcal{K}Q$ be the path algebra of Q over \mathcal{K} . Then σ induces a Frobenius morphism $F = F_{Q,\sigma;q} : A \longrightarrow A$ given by $\sum_s x_s p_s \longmapsto \sum_s x_s^q \sigma(p_s)$, where $\sum_s x_s p_s$ is a \mathcal{K} -linear combination of paths p_s and $\sigma(p_s) = \sigma(\rho_t) \cdots \sigma(\rho_1)$ if $p_s = \rho_t \cdots \rho_1$ for arrows $\rho_1, \ldots, \rho_t \in Q_1$. Then the fixed-point algebra

$$A(q) := A^F = \{ a \in A | F(a) = a \}.$$

Note that it is an algebra over the field \mathbb{F}_q .

Definition 2.3 ([8]) A representation $M = (M_i, \phi_\rho)$ of Q is called an F-stable A-module if there is a Frobenius map $F_M : \bigoplus_{i \in Q_0} M_i \longrightarrow \bigoplus_{i \in Q_0} M_i$ satisfying $F_M(M_i) = M_{\sigma(i)}$ for all $i \in Q_0$ such that $F_M \circ \phi_\rho = \phi_{\sigma(\rho)} \circ F_M$ for each arrow $\rho \in Q_1$. An F-stable A-module is called *indecomposable* if it is nonzero and cannot be written as a direct sum of two nonzero F-stable A-modules.

Lemma 2.4 There is a one-to-one correspondence between isomorphic classes (or isoclasses, for short) of indecomposable A^F -modules and isoclasses of indecomposable F-stable A-modules.

We always assume that (Q, σ) is a Dynkin quiver Q with automorphism σ . It is well-known that there exists Hall polynomials of Q and $\Gamma = \Gamma(Q, \sigma)$ (see [10]). Let $\Phi^+ = \Phi^+(Q, \sigma)$ be the set of positive roots for the valued quiver $\Gamma = \Gamma(Q, \sigma)$. By [11,12], there is a bijection between the isoclasses of indecomposable A(q)-modules and Φ^+ . Let $M_q(\alpha)$ be an indecomposable A(q)module corresponding to $\alpha \in \Phi^+$. Any A(q)-module M can be decomposed as a direct sum of indecomposable A(q)-modules. That is

$$M_q(\lambda) := \bigoplus_{\alpha \in \Phi^+} \lambda(\alpha) M_q(\alpha)$$

for some function $\lambda: \Phi^+ \longrightarrow \mathbb{N}$. Thus, the isoclasses of A(q)-modules are indexed by the set

$$\mathcal{B} = \mathcal{B}(Q, \sigma) =: \{\lambda | \lambda : \Phi^+ \longrightarrow \mathbb{N}\} = \mathbb{N}^{\Phi^+},$$

which is independent of q. By Lemma 2.4, the set of the isoclasses of F-stable A-modules can also be identified with the set \mathcal{B} . The simple A(q)-module S_i corresponding to vertices $i \in \Gamma_0$ forms a complete set.

The generic Ringel-Hall algebra $\mathcal{H} = \mathcal{H}_{\mathfrak{q}}(\Gamma)$ (see [13]) is defined as follows. It is the free module over the polynomial ring $\mathbb{Z}[\mathfrak{q}]$ (\mathfrak{q} is an indeterminate) with basis $\{u_{\lambda}|\lambda \in \mathcal{B}\}$ and its multiplication is

$$u_{\mu}u_{\nu} = \sum_{\lambda \in \mathcal{B}} \varphi_{\mu,\nu}^{\lambda}(\mathfrak{q})u_{\lambda},$$

where $\varphi_{\mu,\nu}^{\lambda}(\mathfrak{q}) \in \mathbb{Z}[\mathfrak{q}]$ is a Hall polynomial of Γ . It is noted that $\varphi_{\mu,\nu}^{\lambda}(q)$ is equal to the number of A(q)-submodules X of A(q)-module $M_q(\lambda)$ satisfying $X \cong M_q(\nu)$ and $M_q(\lambda)/X \cong M_q(\mu)$.

By specializing \mathfrak{q} to 0, we obtain the degenerate Ringel-Hall Z-algebra $\mathcal{H}_0(\Gamma)$ of $\Gamma = \Gamma(Q, \sigma)$. By [7], the set $\{u_{\lambda} | \lambda \in \mathcal{B}\}$ is a Z-basis of $\mathcal{H}_0(\Gamma)$. As a Z-algebra, $\mathcal{H}_0(\Gamma)$ is generated by $u_i = u_{[S_i]}$, $i \in \Gamma_0$.

Let M and N be A-modules, and let M * N denote the generic extension of M by N, which is unique, up to isomorphism, and whose endomorphism algebra has minimal dimension [14].

Proposition 2.5 If M and N are two F-stable A-modules, so is M * N.

By this proposition, we can define a monoid $\mathcal{M}_{Q,\sigma}$ by [M] * [N] = [M * N] with the unit element [0], where [M] is isoclass of *F*-stable *A*-module *M*. By [6,8], the monoid $\mathcal{M}_{Q,\sigma}$ of *F*stable *A*-modules can be generated by $[S_i], i \in \Gamma_0$. For each $\lambda \in \mathcal{B}$, let $M_q(\lambda)_{\mathcal{K}} := M_q(\lambda) \otimes_{\mathbb{F}_q} \mathcal{K}$ be the *F*-stable *A*-module corresponding to λ , $\{[M_q(\lambda)_{\mathcal{K}}] | \lambda \in \mathcal{B}\}$ is a \mathbb{Z} -basis of $\mathbb{Z}\mathcal{M}_{Q,\sigma}$.

Let Y be a well ordered set, Y^* the free monoid on Y, and $\mathcal{K}\langle Y \rangle$ the free associative algebra generated by Y over \mathcal{K} . Giving an ordering " \prec " on Y^* by the length-lexicographic order. For any nonzero polynomial $f \in \mathcal{K}\langle Y \rangle$ with the leading term \overline{f} , we denote the length of f by l(f), f is called monic if the coefficient of \overline{f} equals to 1. In [15], let $f, g \in \mathcal{K}\langle Y \rangle$ be two monic polynomials and $\omega \in Y^*$. If $\omega = \overline{f}y_1 = y_2\overline{g}$ for some $y_1, y_2 \in Y^*$ such that $l(\overline{f}) > l(y_2)$, then $(f, g)_{\omega} = fy_1 - y_2g$ is called the intersection composition of f, g. If $\omega = \overline{f} = y_1\overline{g}y_2$ for some $y_1, y_2 \in Y^*$, then $(f, g)_{\omega} = f - y_1gy_2$ is called the inclusion composition of f, g.

Let $G \subset \mathcal{K}\langle Y \rangle$ be the set of monic polynomials. A composition $(f,g)_{\omega}$ is said to be trivial with respect to G if

$$(f,g)_{\omega} = \sum k_i y_i g_i y'_i,$$

where $k_i \in \mathcal{K}, g_i \in G, y_i, y'_i \in Y^*$ and $\overline{y_i g_i y'_i} < \omega$.

G is called a Gröbner-Shirshov basis if any composition of polynomials from G is trivial with respect to G.

3. Presentation of degenerate Ringel-Hall algebra $\mathcal{H}_0(C_3)$

We fix $Q = (Q, \sigma)$ and $\Gamma = \Gamma(Q, \sigma)$ as in Example 2.1. Set

$$\begin{split} X_1 &= u_1 u_3 - u_3 u_1, \\ X_2 &= u_1^2 u_2 - (\mathfrak{q} + 1) u_1 u_2 u_1 + \mathfrak{q} u_2 u_1^2, \\ X_3 &= u_1 u_2^2 - (\mathfrak{q} + 1) u_2 u_1 u_2 + \mathfrak{q} u_2^2 u_1, \\ X_4 &= u_2^3 u_3 - (1 + \mathfrak{q} + \mathfrak{q}^2) u_2^2 u_3 u_2 + \mathfrak{q} (1 + \mathfrak{q} + \mathfrak{q}^2) u_2 u_3 u_2^2 - \mathfrak{q}^3 u_3 u_2^3, \\ X_5 &= u_2 u_3^2 - (1 + \mathfrak{q}^2) u_3 u_2 u_3 + \mathfrak{q}^2 u_3^2 u_2, \\ X_6 &= u_2^2 u_3 u_2 u_3 - (1 + \mathfrak{q} + \mathfrak{q}^2) u_2 u_3 u_2^2 u_3 + \mathfrak{q}^2 u_3 u_2^3 u_3 + \mathfrak{q} u_2^2 u_3^2 u_2. \end{split}$$

By [4], Ringel-Hall algebra $\mathcal{H}_{\mathfrak{q}}(C_3)$ is generated by u_1, u_1, u_3 satisfying the relations $X_i = 0$ (i = 1, 2, ..., 6).

Set q = 0, we get the degenerate Ringel-Hall algebra $\mathcal{H}_0(C_3)$ generated by u_1, u_1, u_3 with the following defining relations:

(F1)	$u_1u_3=u_3u_1,$	(F2)	$u_1^2 u_2 = u_1 u_2 u_1,$
(F3)	$u_1 u_2^2 = u_2 u_1 u_2,$	(F4)	$u_3 u_2 u_3 = u_2 u_3^2,$
(F5)	$u_2^2 u_3 u_2 = u_2^3 u_3,$	(F6)	$u_2 u_3 u_2^2 u_3 = u_2^3 u_3^2.$

Remark 3.1 The relations $X_i = 0$ (i = 1, 2, ..., 5) are the basic relations in $\mathcal{H}_{\mathfrak{q}}(C_3)$ and $-\mathfrak{q}X_6 = X_4u_3 - u_2^2X_5$. Therefore, $X_6 = 0$ is automatically true. Moreover, (F4) and (F6) are equivlent to (F4) and $u_2u_3u_2^2u_3 = u_2^2u_3u_2u_3$.

Consider the corresponding monoid algebra $\mathbb{Z}\mathcal{M}_{D_4,\sigma}$. By [6], the following relations hold in $\mathbb{Z}\mathcal{M}_{D_4,\sigma}$:

$$(\mathcal{F}1) \ [S_1] * [S_3] = [S_3] * [S_1] (\mathcal{F}2) \ [S_1]^{*2} * [S_2] = [S_1] * [S_2] * [S_1], (\mathcal{F}3) \ [S_1] * [S_2]^{*2} = [S_2] * [S_1] * [S_2],$$

Gröbner-Shirshov basis for degenerate Ringel-Hall algebra of type C_3

$$(\mathcal{F}4) \ [S_3] * [S_2] * [S_3] = [S_2] * [S_3]^{*2}, \\ (\mathcal{F}5) \ [S_2]^{*2} * [S_3] * [S_2] = [S_2]^{*3} * [S_3], \\ (\mathcal{F}6) \ [S_2] * [S_3] * [S_2]^{*2} * [S_3] = [S_2]^{*3} * [S_3]^{*2}.$$

Proposition 3.2 The monoid algebra $\mathbb{Z}\mathcal{M}_{D_4,\sigma}$ has a presentation with generators $[S_i]$ $(1 \le i \le 3)$ and relations $(\mathcal{F}1) - (\mathcal{F}6)$.

Proof For convenience, set $\mathbb{Z}\mathcal{M} = \mathbb{Z}\mathcal{M}_{D_4,\sigma}$. Let \mathcal{S} be the free \mathbb{Z} -algebra with generators s_i $(1 \leq i \leq 3)$. Consider the ideal \mathfrak{J} generated by the following elements,

$$\begin{array}{lll} (F'1) & s_1s_3-s_3s_1, & (F'2) & s_1^2s_2-s_1s_2s_1, \\ (F'3) & s_1s_2^2-s_2s_1s_2, & (F'4) & s_3s_2s_3-s_2s_3^2, \\ (F'5) & s_2^2s_3s_2-s_2^3s_3, & (F'6) & s_2s_3s_2^2s_3-s_2^3s_3^2. \end{array}$$

Then, a surjective monoid algebra homomorphisms $\eta : S \longrightarrow \mathbb{Z}M$ given by $s_i \longmapsto [S_i]$ with $1 \leq i \leq 3$ induces a surjective algebra homomorphism $\bar{\eta} : S/\mathfrak{J} \longrightarrow \mathbb{Z}M$ given by $s_i + \mathfrak{J} \longmapsto [S_i]$ $(1 \leq i \leq 3)$. To complete the proof, it suffices to show that $\bar{\eta}$ is injective.

Set $f_i = s_i + \mathfrak{J}$ $(1 \le i \le 3)$. Given a $\mathcal{K}C_3$ -module M with dimension vector dim M := (a, b, c), we define a monomial in \mathcal{S}/\mathfrak{J} as $\mathfrak{n}(M) = f_1^a f_2^b f_3^c$.

The Auslander-Reiten quiver for $\mathcal{K}D_4$ is as follows:

$$[P_3] [\tau^{-1}P_3] [\tau^{-2}P_3]$$

$$[P_2] [\tau^{-1}P_2] [\tau^{-2}P_2]$$

$$[P_4] [\tau^{-1}P_4] [\tau^{-2}P_4]$$

 $[P_1] [\tau^{-1}P_1] [\tau^{-2}P_1]$

Figure 3 The AR-quiver of the path algebra $\mathcal{K}D_4$

where each P_i $(1 \le i \le 4)$ is the indecomposable projective $\mathcal{K}D_4$ -module corresponding to vertex i and τ is the Auslander-Reiten translation.

Using the Frobenius morphism $F = F_{D_4,\sigma}$ introduced in Section 2, it is easy to see that P_1, P_2 are *F*-stable and all other P_i have *F*-period 2 with $P_3^{[1]} = P_4$. By folding the Auslander-Reiten quiver of $\mathcal{K}D_4$, we obtain the Auslander-Reiten quiver of $A^F = (\mathcal{K}D_4)^F \cong \mathcal{K}C_3$:

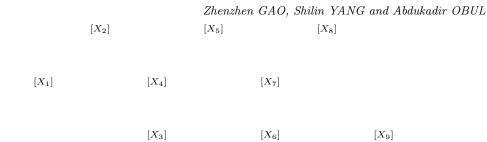


Figure 4 The AR-quiver of the path algebra $\mathcal{K}C_3$

where X_i $(1 \leq i \leq 9)$ denote all the indecomposable $\mathcal{K}C_3$ -modules. Here $X_3 = P_1^F, X_2 = P_2^F, X_1 = (P_3 \oplus P_4)^F$, and $\tau = \tau_{A^F}$ is the Auslander-Reiten translation of A^F (see [9] for details). Moreover, the dimension vectors of X_i $(1 \leq i \leq 9)$ and associated monomials in \mathcal{S}/\mathfrak{J} are given by

dim $X_1 = (0, 0, 1)$ and $\mathfrak{n}(X_1) = f_3$, dim $X_2 = (0, 1, 1)$ and $\mathfrak{n}(X_2) = f_2 f_3$, dim $X_3 = (1, 1, 1)$ and $\mathfrak{n}(X_3) = f_1 f_2 f_3$, dim $X_4 = (0, 2, 1)$ and $\mathfrak{n}(X_4) = f_2^2 f_3$, dim $X_5 = (1, 2, 1)$ and $\mathfrak{n}(X_5) = f_1 f_2^2 f_3$, dim $X_6 = (0, 1, 0)$ and $\mathfrak{n}(X_6) = f_2$, dim $X_7 = (2, 2, 1)$ and $\mathfrak{n}(X_7) = f_1^2 f_2^2 f_3$, dim $X_8 = (1, 1, 0)$ and $\mathfrak{n}(X_8) = f_1 f_2$, dim $X_9 = (1, 0, 0)$ and $\mathfrak{n}(X_9) = f_1$.

Now we give an enumeration of indecomposable A^F -modules in Figure 4:

$$X_1 \prec X_2 \prec X_3 \prec X_4 \prec X_5 \prec X_6 \prec X_7 \prec X_8 \prec X_9. \tag{(*)}$$

Then, by using the relations (F'1) - (F'6), we compute the relations between $\mathfrak{n}(X_i)$ $(1 \le i \le 9)$ in \mathcal{S}/\mathfrak{J} :

$$\begin{split} \mathfrak{n}(X_3)\mathfrak{n}(X_1) &= f_1 f_2 f_3 \cdot f_3 = f_1 f_3 f_2 f_3 \text{ (by } (F'4)) \\ &= f_3 f_1 f_2 f_3 \text{ (by } (F'1)) \\ &= \mathfrak{n}(X_1)\mathfrak{n}(X_3), \\ \mathfrak{n}(X_7)\mathfrak{n}(X_2) &= f_1^2 f_2^2 f_3 \cdot f_2 f_3 = f_1^2 f_2^3 f_3^2 \text{ (by } (F'5)) \\ &= f_1^2 f_2 f_3 f_2^2 f_3 \text{ (by } (F'6)) \\ &= f_1 f_2 f_1 f_3 f_2^2 f_3 \text{ (by } (F'2)) \\ &= f_1 f_2 f_3 f_1 f_2^2 f_3 \text{ (by } (F'1)) \\ &= \mathfrak{n}(X_3)\mathfrak{n}(X_5), \\ \mathfrak{n}(X_8)\mathfrak{n}(X_4) &= f_1 f_2 \cdot f_2^2 f_3 = f_1 f_2^2 f_3 f_2 \text{ (by } (F'5)) \\ &= \mathfrak{n}(X_5)\mathfrak{n}(X_6). \end{split}$$

446

By this way, we get the set R of following equalities in S/\mathfrak{J} :

$$\begin{split} \mathfrak{n}(X_2)\mathfrak{n}(X_1) &= \mathfrak{n}(X_1)\mathfrak{n}(X_2), \quad \mathfrak{n}(X_3)\mathfrak{n}(X_1) &= \mathfrak{n}(X_1)\mathfrak{n}(X_3), \\ \mathfrak{n}(X_4)\mathfrak{n}(X_1) &= \mathfrak{n}(X_2)\mathfrak{n}(X_2), \quad \mathfrak{n}(X_5)\mathfrak{n}(X_1) &= \mathfrak{n}(X_2)\mathfrak{n}(X_3), \\ \mathfrak{n}(X_6)\mathfrak{n}(X_1) &= \mathfrak{n}(X_2), \qquad \mathfrak{n}(X_7)\mathfrak{n}(X_1) &= \mathfrak{n}(X_3)\mathfrak{n}(X_3), \\ \mathfrak{n}(X_8)\mathfrak{n}(X_1) &= \mathfrak{n}(X_3), \qquad \mathfrak{n}(X_9)\mathfrak{n}(X_1) &= \mathfrak{n}(X_1)\mathfrak{n}(X_9), \\ \mathfrak{n}(X_3)\mathfrak{n}(X_2) &= \mathfrak{n}(X_2)\mathfrak{n}(X_3), \quad \mathfrak{n}(X_4)\mathfrak{n}(X_2) &= \mathfrak{n}(X_2)\mathfrak{n}(X_4), \\ \mathfrak{n}(X_5)\mathfrak{n}(X_2) &= \mathfrak{n}(X_3)\mathfrak{n}(X_4), \quad \mathfrak{n}(X_6)\mathfrak{n}(X_2) &= \mathfrak{n}(X_4), \\ \mathfrak{n}(X_7)\mathfrak{n}(X_2) &= \mathfrak{n}(X_3)\mathfrak{n}(X_5), \quad \mathfrak{n}(X_8)\mathfrak{n}(X_2) &= \mathfrak{n}(X_5), \\ \mathfrak{n}(X_9)\mathfrak{n}(X_2) &= \mathfrak{n}(X_3)\mathfrak{n}(X_5), \quad \mathfrak{n}(X_6)\mathfrak{n}(X_3) &= \mathfrak{n}(X_3)\mathfrak{n}(X_4), \\ \mathfrak{n}(X_5)\mathfrak{n}(X_3) &= \mathfrak{n}(X_3)\mathfrak{n}(X_5), \quad \mathfrak{n}(X_6)\mathfrak{n}(X_3) &= \mathfrak{n}(X_5), \\ \mathfrak{n}(X_7)\mathfrak{n}(X_3) &= \mathfrak{n}(X_3)\mathfrak{n}(X_7), \quad \mathfrak{n}(X_8)\mathfrak{n}(X_3) &= \mathfrak{n}(X_7), \\ \mathfrak{n}(X_9)\mathfrak{n}(X_3) &= \mathfrak{n}(X_3)\mathfrak{n}(X_6), \quad \mathfrak{n}(X_7)\mathfrak{n}(X_4) &= \mathfrak{n}(X_4)\mathfrak{n}(X_5), \\ \mathfrak{n}(X_6)\mathfrak{n}(X_4) &= \mathfrak{n}(X_5)\mathfrak{n}(X_6), \quad \mathfrak{n}(X_7)\mathfrak{n}(X_4) &= \mathfrak{n}(X_5)\mathfrak{n}(X_5), \\ \mathfrak{n}(X_6)\mathfrak{n}(X_5) &= \mathfrak{n}(X_5)\mathfrak{n}(X_6), \quad \mathfrak{n}(X_7)\mathfrak{n}(X_5) &= \mathfrak{n}(X_5)\mathfrak{n}(X_7), \\ \mathfrak{n}(X_8)\mathfrak{n}(X_5) &= \mathfrak{n}(X_6)\mathfrak{n}(X_7), \quad \mathfrak{n}(X_8)\mathfrak{n}(X_6) &= \mathfrak{n}(X_6)\mathfrak{n}(X_8), \\ \mathfrak{n}(X_9)\mathfrak{n}(X_6) &= \mathfrak{n}(X_6)\mathfrak{n}(X_7), \quad \mathfrak{n}(X_8)\mathfrak{n}(X_6) &= \mathfrak{n}(X_6)\mathfrak{n}(X_8), \\ \mathfrak{n}(X_9)\mathfrak{n}(X_6) &= \mathfrak{n}(X_8)\mathfrak{n}(X_7) &= \mathfrak{n}(X_7)\mathfrak{n}(X_8), \\ \mathfrak{n}(X_9)\mathfrak{n}(X_6) &= \mathfrak{n}(X_6)\mathfrak{n}(X_7), \quad \mathfrak{n}(X_8)\mathfrak{n}(X_6) &= \mathfrak{n}(X_6)\mathfrak{n}(X_8), \\ \mathfrak{n}(X_9)\mathfrak{n}(X_6) &= \mathfrak{n}(X_6)\mathfrak{n}(X_7), \quad \mathfrak{n}(X_8)\mathfrak{n}(X_6) &= \mathfrak{n}(X_6)\mathfrak{n}(X_8), \\ \mathfrak{n}(X_9)\mathfrak{n}(X_6) &= \mathfrak{n}(X_7)\mathfrak{n}(X_9), \quad \mathfrak{n}(X_9)\mathfrak{n}(X_8) &= \mathfrak{n}(X_8)\mathfrak{n}(X_9). \\ \mathfrak{n}(X_9)\mathfrak{n}(X_7) &= \mathfrak{n}(X_7)\mathfrak{n}(X_9), \quad \mathfrak{n}(X_9)\mathfrak{n}(X_8) &= \mathfrak{n}(X_8)\mathfrak{n}(X_9). \\ \mathfrak{n}(X_9)\mathfrak{n}(X_7) &= \mathfrak{n}(X_7)\mathfrak{n}(X_9), \quad \mathfrak{n}(X_9)\mathfrak{n}(X_8) &= \mathfrak{n}(X_8)\mathfrak{n}(X_9). \\ \mathfrak{n}(X_9)\mathfrak{n}(X_7) &= \mathfrak{n}(X_7)\mathfrak{n}(X_9), \quad \mathfrak{n}(X_9)\mathfrak{n}(X_8) &= \mathfrak{n}(X_8)\mathfrak{n}(X_9). \\ \mathfrak{n}(X_9)\mathfrak{n}(X_9)\mathfrak{n}(X_9) &= \mathfrak{n}(X_9)\mathfrak{n}(X_9). \\ \mathfrak{n}(X_9)\mathfrak{n}(X_9)\mathfrak{n}(X_9) &= \mathfrak{n}(X_9)\mathfrak{n}(X_9). \\ \mathfrak{n}(X_9)\mathfrak{n}(X_9)\mathfrak{n}(X_9) &= \mathfrak{n}(X_9)\mathfrak{n}(X_9). \\ \mathfrak{n}(X_9)\mathfrak{n}(X_9)\mathfrak{n}($$

Let V_1, \ldots, V_9 be all the non-isomorphic indecomposable A^F -modules. We assume that they are enumerated by $V_1 \prec \cdots \prec V_9$ as given in (*). Repeatedly applying above equalities, we get the following result:

For $1 \le i < j \le 9$, there exist $1 \le j_1 \le j_2 \le \cdots \le j_m \le 9$ such that

$$\mathfrak{n}(V_j)\mathfrak{n}(V_i) = \mathfrak{n}(V_{j_1})\mathfrak{n}(V_{j_2})\cdots\mathfrak{n}(V_{j_m}).$$

Now we are ready to prove the injectivity of

$$\bar{\eta}: \mathcal{S}/\mathfrak{J} \longrightarrow \mathbb{Z}\mathcal{M}, \ s_i + \mathfrak{J} \longmapsto [S_i], \ 1 \le i \le 3.$$

Given a monomial $\omega = f_{i_1} \cdots f_{i_m}$ $(1 \leq i_1 \leq \cdots \leq i_m \leq 3)$, we have $\omega = f_{i_1} \cdots f_{i_m} = \mathfrak{n}(S_{i_1}) \cdots \mathfrak{n}(S_{i_m})$. Applying above result repeatedly, we finally get $\omega = \mathfrak{n}(V_1)^{n_1} \cdots \mathfrak{n}(V_\mu)^{n_9}$ for some $n_1, \ldots, n_9 \geq 0$. Hence, all the monomials $\mathfrak{n}(V_1)^{n_1} \cdots \mathfrak{n}(V_\mu)^{n_9}$ with $n_1, \ldots, n_9 \geq 0$ span \mathcal{S}/\mathfrak{J} .

On the other hand, by ([6, Lemma 4.9]) $(n_1, \ldots, n_9 \ge 0)$,

$$\bar{\eta}(\mathfrak{n}(V_1)^{n_1}\cdots\mathfrak{n}(V_9)^{n_9})=[V_1]^{*n_1}*\cdots*[V_9]^{*n_9}.$$

By ([5, Proposition 3.3]), the elements $[V_1]^{*n_1} * \cdots * [V_9]^{*n_9}$ with $n_1, \ldots, n_9 \ge 0$ form a basis of $\mathbb{Z}\mathcal{M}_{D_4,\sigma}$. Consequently, the morphism $\bar{\eta}$ is injective. \Box

Proposition 3.3 There are \mathbb{Z} -algebra isomorphism

$$\Psi: \mathbb{Z}\mathcal{M}_{D_4,\sigma} \longrightarrow \mathcal{H}_0(C_3), \ [S_i] \longmapsto u_i, \ 1 \le i \le 3.$$

Proof By Proposition 3.2, there is a surjective \mathbb{Z} -algebra homomorphism $\Psi : \mathbb{Z}\mathcal{M}_{D_4,\sigma} \longrightarrow \mathcal{H}_0(C_3)$ given by $[S_i] \longmapsto u_i$ with $1 \leq i \leq 3$. Since $\{[M_q(\lambda)_{\mathcal{K}}] | \lambda \in \mathcal{B}\}$ and $\{u_\lambda | \lambda \in \mathcal{B}\}$ are bases for $\mathbb{Z}\mathcal{M}_{D_4,\sigma}$ and $\mathcal{H}_0(C_3)$, respectively. Moreover, the algebra $\mathbb{Z}\mathcal{M}_{D_4,\sigma}$ and $\mathcal{H}_0(C_3)$ have the same defining relations. So, Ψ is an isomorphism. \Box

4. Gröbner-Shirshov basis of $\mathcal{H}_0(C_3)$

Though the set R which is the set of equalities in S/\mathfrak{J} from the proof of the presentation of the monoid algebra $\mathbb{Z}\mathcal{M}_{D_4,\sigma}$ and Proposition 3.3, we give Gröbner-Shirshov basis of $\mathcal{H}_0(C_3)$.

First, we define a degree lexicographic order \prec as follows:

$$u \prec v$$
 if and only if $l(u) < l(v)$ or $l(u) = l(v)$ and $u < v$,

then it is a monomial order [16].

We have already shown that $\mathcal{H}_0(C_3)$ is an associative algebra over \mathbb{Z} generated by $C = \{u_1, u_2, u_3\}$ with generating relations

$$\mathcal{F}' = \begin{cases} u_1 u_3 = u_3 u_1, & u_1^2 u_2 = u_1 u_2 u_1, \\ u_1 u_2^2 = u_2 u_1 u_2, & u_3 u_2 u_3 = u_2 u_3^2, \\ u_2^2 u_3 u_2 = u_2^3 u_3, & u_2 u_3 u_2^2 u_3 = u_2^3 u_3^2. \end{cases}$$

By Propositions 3.2 and 3.3, if we apply the algebra isomorphism $\Psi \circ \overline{\eta}$ to the relations in the set R, then we get a new set \mathcal{F}'' of relations in $\mathcal{H}_0(C_3)$ $(u_1 \succ u_2 \succ u_3)$:

$$\begin{array}{ll} u_1u_3 = u_3u_1, & u_1^2u_2 = u_1u_2u_1, \\ u_1u_2^2 = u_2u_1u_2, & u_1u_2u_3^2 = u_3u_1u_2u_3, \\ u_1^2u_2u_3 = u_1u_2u_3u_1, & u_1u_2^2u_3 = u_1u_2^2u_3u_2, \\ u_1u_2^2u_3^2 = u_2u_3u_1u_2u_3, & u_1^2u_2^2u_3^2 = u_1u_2u_3u_1u_2u_3, \\ u_1u_2^2u_3u_2 = u_2u_1u_2^2u_3, & u_1u_2u_1u_2^2u_3 = u_2u_1^2u_2^2u_3, \\ u_1u_2u_3u_2u_3 = u_2u_3u_1u_2u_3, & u_1u_2u_3u_2^2u_3 = u_2^2u_3u_1u_2u_3, \\ u_1u_2^2u_3u_2u_3 = u_1u_2u_3u_2^2u_3, & u_1u_2^2u_3u_1u_2u_3 = u_1u_2u_3u_1u_2^2u_3, \\ u_1u_2^2u_3u_2u_3 = u_2^2u_3u_1u_2^2u_3, & u_1^2u_2^2u_3u_2u_3 = u_1u_2u_3u_1u_2^2u_3, \\ u_1^2u_2^2u_3u_2u_3 = u_1u_2u_1^2u_2^2u_3, & u_1^2u_2^2u_3u_2u_3 = u_1u_2u_3u_1u_2^2u_3, \\ u_1^2u_2^2u_3u_1u_2 = u_1u_2u_1^2u_2^2u_3, & u_1^2u_2^2u_3u_2u_3 = u_1u_2u_3u_1u_2^2u_3, \\ u_1^2u_2^2u_3u_1u_2u_3 = u_1u_2u_3u_1^2u_2^2u_3, & u_1^2u_2^2u_3u_2u_3 = u_1u_2u_3u_1u_2^2u_3, \\ u_1^2u_2^2u_3u_1u_2u_3 = u_1u_2u_3u_1^2u_2^2u_3, & u_1^2u_2^2u_3u_2u_3 = u_1u_2u_3u_1u_2^2u_3, \\ u_1^2u_2^2u_3u_1u_2u_3 = u_1u_2u_3u_1^2u_2^2u_3, & u_1^2u_2u_3u_2u_3 = u_1u_2u_3u_1u_2^2u_3, \\ u_1^2u_2^2u_3u_1u_2u_3 = u_1u_2u_3u_1^2u_2^2u_3, & u_1^2u_2u_3u_2u_3 = u_1u_2u_3u_1u_2u_3, \\ u_1^2u_2^2u_3u_1u_2u_3 = u_1u_2u_3u_1^2u_2u_3, & u_1^2u_2u_3u_2u_3 = u_1u_2u_3u_1u_2u_3, \\ u_1^2u_2^2u_3u_1u_2u_3, & u_2^2u_3u_2u_3 = u_2u_3u_2u_3, \\ u_2^2u_3^2u_3 = u_2u_3u_2u_3, & u_2^2u_3u_2u_3 = u_2u_3u_2u_3, \\ u_2^2u_3u_2u_3 = u_2u_3u_$$

By a routine check of compositions between the elements of $\mathcal{F}' \cup \mathcal{F}''$, we get following new set \mathcal{F}''' of relations in $\mathcal{H}_0(C_3)$:

 $u_1u_2u_1u_2u_3u_2 = u_2u_1u_2u_1u_2u_3, \qquad u_1u_2u_1u_2u_3u_1u_2u_3 = u_1u_2u_3u_1u_2u_1u_2u_3,$

 $u_1u_2u_1u_2u_1u_2u_3 = u_1u_2u_1u_2u_3u_1u_2, \quad u_2u_1u_2u_3u_2 = u_2u_1u_2^2u_3,$

 $u_1u_2u_3u_2u_1u_2u_3 = u_2u_1u_2u_3u_1u_2u_3, \quad u_1u_2^2u_3u_2u_1u_2^2u_3 = u_2u_1u_2^2u_3u_1u_2^2u_3.$

Let $\mathcal{F} = \mathcal{F}' \cup \mathcal{F}'' \cup \mathcal{F}'''$. Then by the construction of the set \mathcal{F} of relations in $\mathcal{H}_0(C_3)$, we get our main result:

Theorem 4.1 With notations above, \mathcal{F} is a Gröbner-Shirshov basis of $\mathcal{H}_0(C_3)$.

Acknowledgements We are very grateful to the referees for the useful comments and suggestions.

References

- [1] A. I. SHIRSHOV. Some algorithmic problems for Lie algebras. Siberian Math. J., 1962, 3: 292–296.
- B. BUCHBERGER. An algorithm for finding a basis for the residue class ring of a zero-dimensional ideal. Ph. D. Thesis, University of Innsbruck, 1965.
- [3] G. M. BERGMAN. The diamond lemma for ring theory. Adv. in Math., 1978, 29(2): 178–218.
- [4] C. M. RINGEL. Hall algebras and quantum groups. Invent. Math., 1990, **101**(3): 583–591.
- [5] M. REINEKE. Generic extensions and multiplicative bases of quantum groups at q = 0. Represent. Theory, 2001, 5: 147–163.
- [6] M. REINEKE. The quantic monoid and degenerate quantized enveloping algebras. arXiv: math/0206095v1.
- [7] Lijuan FAN, Zhonghua ZHAO. Presenting degenerate Ringel-Hall algebras of type B. Sci. China Math., 2012, 55(5): 949–960.
- [8] Bangming DENG, Jie DU. Frobenius morphisms and representations of algebras. Trans. Amer. Math. Soc., 2006, 358(8): 3591–3622.
- [9] Bangming DENG, Jie DU, B. PARSHALL, et al. Finite Dimensional Algebras and Quantum Groups. Mathematical Surveys and Monographs, 150. American Mathematical Society, Providence, RI, 2008.
- [10] C. M. RINGEL. Hall polynomials for the representation-finite hereditary algebras. Adv. Math., 1990, 84(2): 137–178.
- [11] P. GABRIEL. Unzerlegbare Darstellungen I. Manuscripta Math., 1972, 6: 71–103.
- [12] V. DLAB, C. M. RINGEL. Indecomposable representations of graphs and algebras. Mem. Amer. Math. Soc., 1976, 6(173): 1–63.
- [13] C. M. RINGEL. The composition algebra of a cyclic quiver. Towards an explicit description of the quantum group of type $\widetilde{A_n}$. Proc. London Math. Soc.(3), 1993, **66**(3): 507–537.
- [14] K. BONGARTZ. On degenerations and extensions of finite dimensional modules. Adv. Math., 1996, 121(2): 245–287.
- [15] L. A. BOKUT, Yuqun CHEN. Gröbner-Shirshov bases for Lie algebras: after A. I. Shirshov. Southeast Asian Bull. Math., 2007, 31(6): 1057–1076.
- [16] S. KANG, K. LEE. Gröbner-Shirshov bases for representation theory. J. Korean Math. Soc., 2000, 37(1): 55–72.