Gröbner-Shirshov Basis for Degenerate Ringel-Hall Algebra of Type C_{3}

Zhenzhen GAO ${ }^{1}$, Shilin YANG ${ }^{1, *}$, Abdukadir OBUL 2
1. College of Applied Sciences, Beijing University of Technology, Beijing 100124, P. R. China;
2. College of Mathematics and System Sciences, Xinjiang University, Xinjiang 830046, P. R. China

Abstract

The Gröbner-Shirshov basis of the degenerate Ringel-Hall Algebras of type C_{3} is obtained by studying the generic extension monoid algebra.

Keywords Gröbner-Shirshov basis; Frobenius map; degenerate Ringel-Hall algebras; monoid algebra

MR(2010) Subject Classification 16S15; 17B37; 16G20

1. Introduction

The Gröbner-Shirshov basis theory was suggested by Shirshov [1] in 1962 for Lie algebras, by Buchberger [2] for commutative algebras and by Bergman [3] for associative algebras. It was proved to be a powerful tool for the solution of reduction problem in many algebraic structures. Ringel [4] established the concept of the generic Ringel-Hall algebra by the existence of Hall polynomials of a Dynkin quiver Q with automorphism σ. The case when the indeterminate specializes to zero is called the degenerate Ringel-Hall algebra. It was studied by Reineke in [5,6].

Fan and Zhao have given a presentation of the degenerate Ringel-Hall algebra of type B_{n} in [7]. It is easy to give a presentation of the degenerate Ringel-Hall algebra of type C_{3}. By studying the Frobenius morphism [8] and the generic extension monoid algebra [5], we obtain the Gröbner-Shirshov basis of the degenerate Ringel-Hall algebra of type C_{3}.

2. Some preliminaries

Let (Q, σ) be a quiver Q with an automorphism $\sigma . \quad \Gamma=\left(\Gamma_{0}, \Gamma_{1}\right):=\Gamma(Q, \sigma)$ denotes the associated valued quiver, where Γ_{0} and Γ_{1} are the sets of σ-orbits in Q_{0} and Q_{1}, respectively. For any $\rho: i \rightarrow j \in \Gamma_{1}\left(i, j \in \Gamma_{0}\right)$, its tail and head are the σ-orbit of tails and heads of arrows in ρ, respectively. Denote

$$
m_{\rho}=\mid\{\text { arrows in } \sigma \text {-orbit } \rho\} \mid, m_{j i}=m_{\rho} / \varepsilon_{j} \text { and } m_{i j}=m_{\rho} / \varepsilon_{i},
$$

[^0]where $\varepsilon_{t}=\mid\{$ vertices in σ-orbit $t\} \mid$ for $t \in \Gamma_{0}$. The valuation of Γ is given by $\left\{\varepsilon_{t}\right\}_{t \in \Gamma_{0}},\left\{\left(m_{j i}, m_{i j}\right)\right\}_{\rho \in \Gamma_{1}}$.
Example 2.1 Let $Q=D_{4}$ be the following quiver:

		β	
	α		
1	2		
		γ	
			4

Figure 1 Quiver of type D_{4}
where σ is the automorphism of D_{4} such that $\sigma(1)=1, \sigma(2)=2, \sigma(3)=4, \sigma(4)=3, \sigma(\alpha)=\alpha$, $\sigma(\beta)=\gamma, \sigma(\gamma)=\beta$. Then the associated valued quiver $\Gamma=C_{3}$ with $\varepsilon_{1}=1, \varepsilon_{2}=1, \varepsilon_{3}=2$, $m_{21}=m_{12}=1, m_{32}=1, m_{23}=2$ is as follows:

	$(1,2)$	
1	2	

Figure 2 Quiver of type C_{3}
We now recall some concepts about Frobenius morphism, degenerate Ringel-Hall algebra, monoid algebra, and Gröbner-Shirshov basis theory.

Let \mathbb{F}_{q} be the finite field of q elements and $\mathcal{K}=\overline{\mathbb{F}}_{q}$ the algebraic closure of \mathbb{F}_{q}.
Definition $2.2([8,9])$ Let V be a vector-space over the field \mathcal{K}. An \mathbb{F}_{q}-linear isomorphism $F: V \longrightarrow V$ is called a Frobenius map if it satisfies:
(i) $F(a v)=a^{q} F(v)$ for all $v \in V$ and $a \in \mathcal{K}$;
(ii) For any $v \in V, F^{n}(v)=v$ for some $n>0$.

Let \mathcal{A} be a \mathcal{K}-algebra with the identity 1. A map $F_{\mathcal{A}}: \mathcal{A} \longrightarrow \mathcal{A}$ is called a Frobenius morphism if $F_{\mathcal{A}}$ is a Frobenius map on the \mathcal{K}-space \mathcal{A} and

$$
F_{\mathcal{A}}(a b)=F_{\mathcal{A}}(a) F_{\mathcal{A}}(b), \text { for all } a, b \in \mathcal{A}
$$

Let $A:=\mathcal{K} Q$ be the path algebra of Q over \mathcal{K}. Then σ induces a Frobenius morphism $F=$ $F_{Q, \sigma ; q}: A \longrightarrow A$ given by $\sum_{s} x_{s} p_{s} \longmapsto \sum_{s} x_{s}^{q} \sigma\left(p_{s}\right)$, where $\sum_{s} x_{s} p_{s}$ is a \mathcal{K}-linear combination of paths p_{s} and $\sigma\left(p_{s}\right)=\sigma\left(\rho_{t}\right) \cdots \sigma\left(\rho_{1}\right)$ if $p_{s}=\rho_{t} \cdots \rho_{1}$ for arrows $\rho_{1}, \ldots, \rho_{t} \in Q_{1}$. Then the fixed-point algebra

$$
A(q):=A^{F}=\{a \in A \mid F(a)=a\} .
$$

Note that it is an algebra over the field \mathbb{F}_{q}.
Definition 2.3 ([8]) A representation $M=\left(M_{i}, \phi_{\rho}\right)$ of Q is called an F-stable A-module if there is a Frobenius map $F_{M}: \bigoplus_{i \in Q_{0}} M_{i} \longrightarrow \bigoplus_{i \in Q_{0}} M_{i}$ satisfying $F_{M}\left(M_{i}\right)=M_{\sigma(i)}$ for all $i \in Q_{0}$ such that $F_{M} \circ \phi_{\rho}=\phi_{\sigma(\rho)} \circ F_{M}$ for each arrow $\rho \in Q_{1}$.

An F-stable A-module is called indecomposable if it is nonzero and cannot be written as a direct sum of two nonzero F-stable A-modules.

Lemma 2.4 There is a one-to-one correspondence between isomorphic classes (or isoclasses, for short) of indecomposable A^{F}-modules and isoclasses of indecomposable F-stable A-modules.

We always assume that (Q, σ) is a Dynkin quiver Q with automorphism σ. It is well-known that there exists Hall polynomials of Q and $\Gamma=\Gamma(Q, \sigma)$ (see [10]). Let $\Phi^{+}=\Phi^{+}(Q, \sigma)$ be the set of positive roots for the valued quiver $\Gamma=\Gamma(Q, \sigma)$. By [11,12], there is a bijection between the isoclasses of indecomposable $A(q)$-modules and Φ^{+}. Let $M_{q}(\alpha)$ be an indecomposable $A(q)$ module corresponding to $\alpha \in \Phi^{+}$. Any $A(q)$-module M can be decomposed as a direct sum of indecomposable $A(q)$-modules. That is

$$
M_{q}(\lambda):=\bigoplus_{\alpha \in \Phi^{+}} \lambda(\alpha) M_{q}(\alpha)
$$

for some function $\lambda: \Phi^{+} \longrightarrow \mathbb{N}$. Thus, the isoclasses of $A(q)$-modules are indexed by the set

$$
\mathcal{B}=\mathcal{B}(Q, \sigma)=:\left\{\lambda \mid \lambda: \Phi^{+} \longrightarrow \mathbb{N}\right\}=\mathbb{N}^{\Phi^{+}}
$$

which is independent of q. By Lemma 2.4, the set of the isoclasses of F-stable A-modules can also be identified with the set \mathcal{B}. The simple $A(q)$-module S_{i} corresponding to vertices $i \in \Gamma_{0}$ forms a complete set.

The generic Ringel-Hall algebra $\mathcal{H}=\mathcal{H}_{\mathfrak{q}}(\Gamma)$ (see [13]) is defined as follows. It is the free module over the polynomial ring $\mathbb{Z}[\mathfrak{q}]$ (\mathfrak{q} is an indeterminate) with basis $\left\{u_{\lambda} \mid \lambda \in \mathcal{B}\right\}$ and its multiplication is

$$
u_{\mu} u_{\nu}=\sum_{\lambda \in \mathcal{B}} \varphi_{\mu, \nu}^{\lambda}(\mathfrak{q}) u_{\lambda},
$$

where $\varphi_{\mu, \nu}^{\lambda}(\mathfrak{q}) \in \mathbb{Z}[\mathfrak{q}]$ is a Hall polynomial of Γ. It is noted that $\varphi_{\mu, \nu}^{\lambda}(q)$ is equal to the number of $A(q)$-submodules X of $A(q)$-module $M_{q}(\lambda)$ satisfying $X \cong M_{q}(\nu)$ and $M_{q}(\lambda) / X \cong M_{q}(\mu)$.

By specializing \mathfrak{q} to 0 , we obtain the degenerate Ringel-Hall \mathbb{Z}-algebra $\mathcal{H}_{0}(\Gamma)$ of $\Gamma=\Gamma(Q, \sigma)$. By [7], the set $\left\{u_{\lambda} \mid \lambda \in \mathcal{B}\right\}$ is a \mathbb{Z}-basis of $\mathcal{H}_{0}(\Gamma)$. As a \mathbb{Z}-algebra, $\mathcal{H}_{0}(\Gamma)$ is generated by $u_{i}=u_{\left[S_{i}\right]}$, $i \in \Gamma_{0}$.

Let M and N be A-modules, and let $M * N$ denote the generic extension of M by N, which is unique, up to isomorphism, and whose endomorphism algebra has minimal dimension [14].

Proposition 2.5 If M and N are two F-stable A-modules, so is $M * N$.
By this proposition, we can define a monoid $\mathcal{M}_{Q, \sigma}$ by $[M] *[N]=[M * N]$ with the unit element [0], where $[M]$ is isoclass of F-stable A-module M. By [6,8], the monoid $\mathcal{M}_{Q, \sigma}$ of F stable A-modules can be generated by $\left[S_{i}\right], i \in \Gamma_{0}$. For each $\lambda \in \mathcal{B}$, let $M_{q}(\lambda)_{\mathcal{K}}:=M_{q}(\lambda) \otimes_{\mathbb{F}_{q}} \mathcal{K}$ be the F-stable A-module corresponding to $\lambda,\left\{\left[M_{q}(\lambda)_{\mathcal{K}}\right] \mid \lambda \in \mathcal{B}\right\}$ is a \mathbb{Z}-basis of $\mathbb{Z} \mathcal{M}_{Q, \sigma}$.

Let Y be a well ordered set, Y^{*} the free monoid on Y, and $\mathcal{K}\langle Y\rangle$ the free associative algebra generated by Y over \mathcal{K}. Giving an ordering " \prec " on Y^{*} by the length-lexicographic order. For any nonzero polynomial $f \in \mathcal{K}\langle Y\rangle$ with the leading term \bar{f}, we denote the length of f by $l(f)$, f is called monic if the coefficient of \bar{f} equals to 1 .

In [15], let $f, g \in \mathcal{K}\langle Y\rangle$ be two monic polynomials and $\omega \in Y^{*}$. If $\omega=\bar{f} y_{1}=y_{2} \bar{g}$ for some $y_{1}, y_{2} \in Y^{*}$ such that $l(\bar{f})>l\left(y_{2}\right)$, then $(f, g)_{\omega}=f y_{1}-y_{2} g$ is called the intersection composition of f, g. If $\omega=\bar{f}=y_{1} \bar{g} y_{2}$ for some $y_{1}, y_{2} \in Y^{*}$, then $(f, g)_{\omega}=f-y_{1} g y_{2}$ is called the inclusion composition of f, g.

Let $G \subset \mathcal{K}\langle Y\rangle$ be the set of monic polynomials. A composition $(f, g)_{\omega}$ is said to be trivial with respect to G if

$$
(f, g)_{\omega}=\sum k_{i} y_{i} g_{i} y_{i}^{\prime}
$$

where $k_{i} \in \mathcal{K}, g_{i} \in G, y_{i}, y_{i}^{\prime} \in Y^{*}$ and $\overline{y_{i} g_{i} y_{i}^{\prime}}<\omega$.
G is called a Gröbner-Shirshov basis if any composition of polynomials from G is trivial with respect to G.

3. Presentation of degenerate Ringel-Hall algebra $\mathcal{H}_{0}\left(C_{3}\right)$

We fix $Q=(Q, \sigma)$ and $\Gamma=\Gamma(Q, \sigma)$ as in Example 2.1. Set

$$
\begin{aligned}
& X_{1}=u_{1} u_{3}-u_{3} u_{1}, \\
& X_{2}=u_{1}^{2} u_{2}-(\mathfrak{q}+1) u_{1} u_{2} u_{1}+\mathfrak{q} u_{2} u_{1}^{2}, \\
& X_{3}=u_{1} u_{2}^{2}-(\mathfrak{q}+1) u_{2} u_{1} u_{2}+\mathfrak{q} u_{2}^{2} u_{1}, \\
& X_{4}=u_{2}^{3} u_{3}-\left(1+\mathfrak{q}+\mathfrak{q}^{2}\right) u_{2}^{2} u_{3} u_{2}+\mathfrak{q}\left(1+\mathfrak{q}+\mathfrak{q}^{2}\right) u_{2} u_{3} u_{2}^{2}-\mathfrak{q}^{3} u_{3} u_{2}^{3}, \\
& X_{5}=u_{2} u_{3}^{2}-\left(1+\mathfrak{q}^{2}\right) u_{3} u_{2} u_{3}+\mathfrak{q}^{2} u_{3}^{2} u_{2}, \\
& X_{6}=u_{2}^{2} u_{3} u_{2} u_{3}-\left(1+\mathfrak{q}+\mathfrak{q}^{2}\right) u_{2} u_{3} u_{2}^{2} u_{3}+\mathfrak{q}^{2} u_{3} u_{2}^{3} u_{3}+\mathfrak{q} u_{2}^{2} u_{3}^{2} u_{2} .
\end{aligned}
$$

By [4], Ringel-Hall algebra $\mathcal{H}_{\mathfrak{q}}\left(C_{3}\right)$ is generated by u_{1}, u_{1}, u_{3} satisfying the relations $X_{i}=$ $0(i=1,2, \ldots, 6)$.

Set $\mathfrak{q}=0$, we get the degenerate Ringel-Hall algebra $\mathcal{H}_{0}\left(C_{3}\right)$ generated by u_{1}, u_{1}, u_{3} with the following defining relations:
(F1) $u_{1} u_{3}=u_{3} u_{1}$,
(F2) $u_{1}^{2} u_{2}=u_{1} u_{2} u_{1}$,
(F3) $u_{1} u_{2}^{2}=u_{2} u_{1} u_{2}$,
(F4) $u_{3} u_{2} u_{3}=u_{2} u_{3}^{2}$,
(F5) $u_{2}^{2} u_{3} u_{2}=u_{2}^{3} u_{3}$,
(F6) $u_{2} u_{3} u_{2}^{2} u_{3}=u_{2}^{3} u_{3}^{2}$.

Remark 3.1 The relations $X_{i}=0(i=1,2, \ldots, 5)$ are the basic relations in $\mathcal{H}_{\mathfrak{q}}\left(C_{3}\right)$ and $-\mathfrak{q} X_{6}=X_{4} u_{3}-u_{2}^{2} X_{5}$. Therefore, $X_{6}=0$ is automatically true. Moreover, (F4) and (F6) are equivlent to (F4) and $u_{2} u_{3} u_{2}^{2} u_{3}=u_{2}^{2} u_{3} u_{2} u_{3}$.

Consider the corresponding monoid algebra $\mathbb{Z} \mathcal{M}_{D_{4}, \sigma}$. By [6], the following relations hold in $\mathbb{Z} \mathcal{M}_{D_{4}, \sigma}$:
$(\mathcal{F} 1)\left[S_{1}\right] *\left[S_{3}\right]=\left[S_{3}\right] *\left[S_{1}\right]$
$(\mathcal{F} 2)\left[S_{1}\right]^{* 2} *\left[S_{2}\right]=\left[S_{1}\right] *\left[S_{2}\right] *\left[S_{1}\right]$,
(F3) $\left[S_{1}\right] *\left[S_{2}\right]^{* 2}=\left[S_{2}\right] *\left[S_{1}\right] *\left[S_{2}\right]$,

$$
\begin{aligned}
& (\mathcal{F} 4)\left[S_{3}\right] *\left[S_{2}\right] *\left[S_{3}\right]=\left[S_{2}\right] *\left[S_{3}\right]^{* 2}, \\
& (\mathcal{F} 5)\left[S_{2}\right]^{* 2} *\left[S_{3}\right] *\left[S_{2}\right]=\left[S_{2}\right]^{* 3} *\left[S_{3}\right] \\
& (\mathcal{F} 6)\left[S_{2}\right] *\left[S_{3}\right] *\left[S_{2}\right]^{* 2} *\left[S_{3}\right]=\left[S_{2}\right]^{* 3} *\left[S_{3}\right]^{* 2}
\end{aligned}
$$

Proposition 3.2 The monoid algebra $\mathbb{Z} \mathcal{M}_{D_{4}, \sigma}$ has a presentation with generators $\left[S_{i}\right](1 \leq i \leq$ $3)$ and relations $(\mathcal{F} 1)-(\mathcal{F} 6)$.

Proof For convenience, set $\mathbb{Z M}=\mathbb{Z} \mathcal{M}_{D_{4}, \sigma}$. Let \mathcal{S} be the free \mathbb{Z}-algebra with generators $s_{i}(1 \leq i \leq 3)$. Consider the ideal \mathfrak{J} generated by the following elements,

$\left(F^{\prime} 1\right)$	$s_{1} s_{3}-s_{3} s_{1}$,	$\left(F^{\prime} 2\right)$	$s_{1}^{2} s_{2}-s_{1} s_{2} s_{1}$,
$\left(F^{\prime} 3\right)$	$s_{1} s_{2}^{2}-s_{2} s_{1} s_{2}$,	$\left(F^{\prime} 4\right)$	$s_{3} s_{2} s_{3}-s_{2} s_{3}^{2}$,
$\left(F^{\prime} 5\right)$	$s_{2}^{2} s_{3} s_{2}-s_{2}^{3} s_{3}$,	$\left(F^{\prime} 6\right)$	$s_{2} s_{3} s_{2}^{2} s_{3}-s_{2}^{3} s_{3}^{2}$.

Then, a surjective monoid algebra homomorphisms $\eta: \mathcal{S} \longrightarrow \mathbb{Z} \mathcal{M}$ given by $s_{i} \longmapsto\left[S_{i}\right]$ with $1 \leq i \leq 3$ induces a surjective algebra homomorphism $\bar{\eta}: \mathcal{S} / \mathfrak{J} \longrightarrow \mathbb{Z} \mathcal{M}$ given by $s_{i}+\mathfrak{J} \longmapsto$ $\left[S_{i}\right](1 \leq i \leq 3)$. To complete the proof, it suffices to show that $\bar{\eta}$ is injective.

Set $f_{i}=s_{i}+\mathfrak{J}(1 \leq i \leq 3)$. Given a $\mathcal{K} C_{3}$-module M with dimension vector $\operatorname{dim} M:=(a, b, c)$, we define a monomial in $\mathcal{S} / \mathfrak{J}$ as $\mathfrak{n}(M)=f_{1}^{a} f_{2}^{b} f_{3}^{c}$.

The Auslander-Reiten quiver for $\mathcal{K} D_{4}$ is as follows:

Figure 3 The AR-quiver of the path algebra $\mathcal{K} D_{4}$
where each $P_{i}(1 \leq i \leq 4)$ is the indecomposable projective $\mathcal{K} D_{4}$-module corresponding to vertex i and τ is the Auslander-Reiten translation.

Using the Frobenius morphism $F=F_{D_{4}, \sigma}$ introduced in Section 2, it is easy to see that P_{1}, P_{2} are F-stable and all other P_{i} have F-period 2 with $P_{3}^{[1]}=P_{4}$. By folding the AuslanderReiten quiver of $\mathcal{K} D_{4}$, we obtain the Auslander-Reiten quiver of $A^{F}=\left(\mathcal{K} D_{4}\right)^{F} \cong \mathcal{K} C_{3}$:

Figure 4 The AR-quiver of the path algebra $\mathcal{K} C_{3}$
where $X_{i}(1 \leq i \leq 9)$ denote all the indecomposable $\mathcal{K} C_{3}$-modules. Here $X_{3}=P_{1}^{F}, X_{2}=$ $P_{2}^{F}, X_{1}=\left(P_{3} \oplus P_{4}\right)^{F}$, and $\tau=\tau_{A^{F}}$ is the Auslander-Reiten translation of A^{F} (see [9] for details). Moreover, the dimension vectors of $X_{i}(1 \leq i \leq 9)$ and associated monomials in $\mathcal{S} / \mathfrak{J}$ are given by

$$
\begin{aligned}
\operatorname{dim} X_{1} & =(0,0,1) \text { and } \mathfrak{n}\left(X_{1}\right)=f_{3} \\
\operatorname{dim} X_{2} & =(0,1,1) \text { and } \mathfrak{n}\left(X_{2}\right)=f_{2} f_{3} \\
\operatorname{dim} X_{3} & =(1,1,1) \text { and } \mathfrak{n}\left(X_{3}\right)=f_{1} f_{2} f_{3} \\
\operatorname{dim} X_{4} & =(0,2,1) \text { and } \mathfrak{n}\left(X_{4}\right)=f_{2}^{2} f_{3} \\
\operatorname{dim} X_{5} & =(1,2,1) \text { and } \mathfrak{n}\left(X_{5}\right)=f_{1} f_{2}^{2} f_{3} \\
\operatorname{dim} X_{6} & =(0,1,0) \text { and } \mathfrak{n}\left(X_{6}\right)=f_{2} \\
\operatorname{dim} X_{7} & =(2,2,1) \text { and } \mathfrak{n}\left(X_{7}\right)=f_{1}^{2} f_{2}^{2} f_{3} \\
\operatorname{dim} X_{8} & =(1,1,0) \text { and } \mathfrak{n}\left(X_{8}\right)=f_{1} f_{2} \\
\operatorname{dim} X_{9} & =(1,0,0) \text { and } \mathfrak{n}\left(X_{9}\right)=f_{1}
\end{aligned}
$$

Now we give an enumeration of indecomposable A^{F}-modules in Figure 4:

$$
\begin{equation*}
X_{1} \prec X_{2} \prec X_{3} \prec X_{4} \prec X_{5} \prec X_{6} \prec X_{7} \prec X_{8} \prec X_{9} . \tag{*}
\end{equation*}
$$

Then, by using the relations $\left(F^{\prime} 1\right)-\left(F^{\prime} 6\right)$, we compute the relations between $\mathfrak{n}\left(X_{i}\right)(1 \leq i \leq 9)$ in $\mathcal{S} / \mathfrak{J}$:

$$
\begin{aligned}
\mathfrak{n}\left(X_{3}\right) \mathfrak{n}\left(X_{1}\right) & =f_{1} f_{2} f_{3} \cdot f_{3}=f_{1} f_{3} f_{2} f_{3}\left(\text { by }\left(F^{\prime} 4\right)\right) \\
& =f_{3} f_{1} f_{2} f_{3}\left(\text { by }\left(F^{\prime} 1\right)\right) \\
& =\mathfrak{n}\left(X_{1}\right) \mathfrak{n}\left(X_{3}\right) \\
\mathfrak{n}\left(X_{7}\right) \mathfrak{n}\left(X_{2}\right) & =f_{1}^{2} f_{2}^{2} f_{3} \cdot f_{2} f_{3}=f_{1}^{2} f_{2}^{3} f_{3}^{2}\left(\text { by }\left(F^{\prime} 5\right)\right) \\
& =f_{1}^{2} f_{2} f_{3} f_{2}^{2} f_{3}\left(\text { by }\left(F^{\prime} 6\right)\right) \\
& =f_{1} f_{2} f_{1} f_{3} f_{2}^{2} f_{3}\left(\text { by }\left(F^{\prime} 2\right)\right) \\
& =f_{1} f_{2} f_{3} f_{1} f_{2}^{2} f_{3}\left(\text { by }\left(F^{\prime} 1\right)\right) \\
& =\mathfrak{n}\left(X_{3}\right) \mathfrak{n}\left(X_{5}\right) \\
\mathfrak{n}\left(X_{8}\right) \mathfrak{n}\left(X_{4}\right) & =f_{1} f_{2} \cdot f_{2}^{2} f_{3}=f_{1} f_{2}^{2} f_{3} f_{2}\left(\text { by }\left(F^{\prime} 5\right)\right) \\
& =\mathfrak{n}\left(X_{5}\right) \mathfrak{n}\left(X_{6}\right)
\end{aligned}
$$

By this way, we get the set R of following equalities in $\mathcal{S} / \mathfrak{J}$:

$$
\begin{array}{lll}
\mathfrak{n}\left(X_{2}\right) \mathfrak{n}\left(X_{1}\right)=\mathfrak{n}\left(X_{1}\right) \mathfrak{n}\left(X_{2}\right), & \mathfrak{n}\left(X_{3}\right) \mathfrak{n}\left(X_{1}\right)=\mathfrak{n}\left(X_{1}\right) \mathfrak{n}\left(X_{3}\right), \\
\mathfrak{n}\left(X_{4}\right) \mathfrak{n}\left(X_{1}\right)=\mathfrak{n}\left(X_{2}\right) \mathfrak{n}\left(X_{2}\right), & \mathfrak{n}\left(X_{5}\right) \mathfrak{n}\left(X_{1}\right)=\mathfrak{n}\left(X_{2}\right) \mathfrak{n}\left(X_{3}\right), \\
\mathfrak{n}\left(X_{6}\right) \mathfrak{n}\left(X_{1}\right)=\mathfrak{n}\left(X_{2}\right), & \mathfrak{n}\left(X_{7}\right) \mathfrak{n}\left(X_{1}\right)=\mathfrak{n}\left(X_{3}\right) \mathfrak{n}\left(X_{3}\right), \\
\mathfrak{n}\left(X_{8}\right) \mathfrak{n}\left(X_{1}\right)=\mathfrak{n}\left(X_{3}\right), & \mathfrak{n}\left(X_{9}\right) \mathfrak{n}\left(X_{1}\right)=\mathfrak{n}\left(X_{1}\right) \mathfrak{n}\left(X_{9}\right), \\
\mathfrak{n}\left(X_{3}\right) \mathfrak{n}\left(X_{2}\right)=\mathfrak{n}\left(X_{2}\right) \mathfrak{n}\left(X_{3}\right), & \mathfrak{n}\left(X_{4}\right) \mathfrak{n}\left(X_{2}\right)=\mathfrak{n}\left(X_{2}\right) \mathfrak{n}\left(X_{4}\right), \\
\mathfrak{n}\left(X_{5}\right) \mathfrak{n}\left(X_{2}\right)=\mathfrak{n}\left(X_{3}\right) \mathfrak{n}\left(X_{4}\right), & \mathfrak{n}\left(X_{6}\right) \mathfrak{n}\left(X_{2}\right)=\mathfrak{n}\left(X_{4}\right), \\
\mathfrak{n}\left(X_{7}\right) \mathfrak{n}\left(X_{2}\right)=\mathfrak{n}\left(X_{3}\right) \mathfrak{n}\left(X_{5}\right), & \mathfrak{n}\left(X_{8}\right) \mathfrak{n}\left(X_{2}\right)=\mathfrak{n}\left(X_{5}\right), \\
\mathfrak{n}\left(X_{9}\right) \mathfrak{n}\left(X_{2}\right)=\mathfrak{n}\left(X_{3}\right), & & \mathfrak{n}\left(X_{4}\right) \mathfrak{n}\left(X_{3}\right)=\mathfrak{n}\left(X_{3}\right) \mathfrak{n}\left(X_{4}\right), \\
\mathfrak{n}\left(X_{5}\right) \mathfrak{n}\left(X_{3}\right)=\mathfrak{n}\left(X_{3}\right) \mathfrak{n}\left(X_{5}\right), & \mathfrak{n}\left(X_{6}\right) \mathfrak{n}\left(X_{3}\right)=\mathfrak{n}\left(X_{5}\right), \\
\mathfrak{n}\left(X_{7}\right) \mathfrak{n}\left(X_{3}\right)=\mathfrak{n}\left(X_{3}\right) \mathfrak{n}\left(X_{7}\right), & \mathfrak{n}\left(X_{8}\right) \mathfrak{n}\left(X_{3}\right)=\mathfrak{n}\left(X_{7}\right), \\
\mathfrak{n}\left(X_{9}\right) \mathfrak{n}\left(X_{3}\right)=\mathfrak{n}\left(X_{3}\right) \mathfrak{n}\left(X_{9}\right), & \mathfrak{n}\left(X_{5}\right) \mathfrak{n}\left(X_{4}\right)=\mathfrak{n}\left(X_{4}\right) \mathfrak{n}\left(X_{5}\right), \\
\mathfrak{n}\left(X_{6}\right) \mathfrak{n}\left(X_{4}\right)=\mathfrak{n}\left(X_{4}\right) \mathfrak{n}\left(X_{6}\right), & \mathfrak{n}\left(X_{7}\right) \mathfrak{n}\left(X_{4}\right)=\mathfrak{n}\left(X_{5}\right) \mathfrak{n}\left(X_{5}\right), \\
\mathfrak{n}\left(X_{8}\right) \mathfrak{n}\left(X_{4}\right)=\mathfrak{n}\left(X_{5}\right) \mathfrak{n}\left(X_{6}\right), & \mathfrak{n}\left(X_{9}\right) \mathfrak{n}\left(X_{4}\right)=\mathfrak{n}\left(X_{5}\right), \\
\mathfrak{n}\left(X_{6}\right) \mathfrak{n}\left(X_{5}\right)=\mathfrak{n}\left(X_{5}\right) \mathfrak{n}\left(X_{6}\right), & \mathfrak{n}\left(X_{7}\right) \mathfrak{n}\left(X_{5}\right)=\mathfrak{n}\left(X_{5}\right) \mathfrak{n}\left(X_{7}\right), \\
\mathfrak{n}\left(X_{8}\right) \mathfrak{n}\left(X_{5}\right)=\mathfrak{n}\left(X_{6}\right) \mathfrak{n}\left(X_{7}\right), & \mathfrak{n}\left(X_{9}\right) \mathfrak{n}\left(X_{5}\right)=\mathfrak{n}\left(X_{7}\right), \\
\mathfrak{n}\left(X_{7}\right) \mathfrak{n}\left(X_{6}\right)=\mathfrak{n}\left(X_{6}\right) \mathfrak{n}\left(X_{7}\right), & \mathfrak{n}\left(X_{8}\right) \mathfrak{n}\left(X_{6}\right)=\mathfrak{n}\left(X_{6}\right) \mathfrak{n}\left(X_{8}\right), \\
\mathfrak{n}\left(X_{9}\right) \mathfrak{n}\left(X_{6}\right)=\mathfrak{n}\left(X_{8}\right), & & \mathfrak{n}\left(X_{8}\right) \mathfrak{n}\left(X_{7}\right)=\mathfrak{n}\left(X_{7}\right) \mathfrak{n}\left(X_{8}\right), \\
\mathfrak{n}\left(X_{9}\right) \mathfrak{n}\left(X_{7}\right)=\mathfrak{n}\left(X_{7}\right) \mathfrak{n}\left(X_{9}\right), & \mathfrak{n}\left(X_{9}\right) \mathfrak{n}\left(X_{8}\right)=\mathfrak{n}\left(X_{8}\right) \mathfrak{n}\left(X_{9}\right) .
\end{array}
$$

Let V_{1}, \ldots, V_{9} be all the non-isomorphic indecomposable A^{F}-modules. We assume that they are enumerated by $V_{1} \prec \cdots \prec V_{9}$ as given in $(*)$. Repeatedly applying above equalities, we get the following result:

For $1 \leq i<j \leq 9$, there exist $1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{m} \leq 9$ such that

$$
\mathfrak{n}\left(V_{j}\right) \mathfrak{n}\left(V_{i}\right)=\mathfrak{n}\left(V_{j_{1}}\right) \mathfrak{n}\left(V_{j_{2}}\right) \cdots \mathfrak{n}\left(V_{j_{m}}\right)
$$

Now we are ready to prove the injectivity of

$$
\bar{\eta}: \mathcal{S} / \mathfrak{J} \longrightarrow \mathbb{Z} \mathcal{M}, s_{i}+\mathfrak{J} \longmapsto\left[S_{i}\right], \quad 1 \leq i \leq 3 .
$$

Given a monomial $\omega=f_{i_{1}} \cdots f_{i_{m}}\left(1 \leq i_{1} \leq \cdots \leq i_{m} \leq 3\right)$, we have $\omega=f_{i_{1}} \cdots f_{i_{m}}=$ $\mathfrak{n}\left(S_{i_{1}}\right) \cdots \mathfrak{n}\left(S_{i_{m}}\right)$. Applying above result repeatedly, we finally get $\omega=\mathfrak{n}\left(V_{1}\right)^{n_{1}} \cdots \mathfrak{n}\left(V_{\mu}\right)^{n_{9}}$ for some $n_{1}, \ldots, n_{9} \geq 0$. Hence, all the monomials $\mathfrak{n}\left(V_{1}\right)^{n_{1}} \cdots \mathfrak{n}\left(V_{\mu}\right)^{n_{9}}$ with $n_{1}, \ldots, n_{9} \geq 0$ span $\mathcal{S} / \mathfrak{J}$.

On the other hand, by ([6, Lemma 4.9]) $\left(n_{1}, \ldots, n_{9} \geq 0\right)$,

$$
\bar{\eta}\left(\mathfrak{n}\left(V_{1}\right)^{n_{1}} \cdots \mathfrak{n}\left(V_{9}\right)^{n_{9}}\right)=\left[V_{1}\right]^{* n_{1}} * \cdots *\left[V_{9}\right]^{* n_{9}} .
$$

By ([5, Proposition 3.3]), the elements $\left[V_{1}\right]^{* n_{1}} * \cdots *\left[V_{9}\right]^{* n_{9}}$ with $n_{1}, \ldots, n_{9} \geq 0$ form a basis of $\mathbb{Z} \mathcal{M}_{D_{4}, \sigma}$. Consequently, the morphism $\bar{\eta}$ is injective.

Proposition 3.3 There are \mathbb{Z}-algebra isomorphism

$$
\Psi: \mathbb{Z} \mathcal{M}_{D_{4}, \sigma} \longrightarrow \mathcal{H}_{0}\left(C_{3}\right), \quad\left[S_{i}\right] \longmapsto u_{i}, \quad 1 \leq i \leq 3
$$

Proof By Proposition 3.2, there is a surjective \mathbb{Z}-algebra homomorphism $\Psi: \mathbb{Z} \mathcal{M}_{D_{4}, \sigma} \longrightarrow$ $\mathcal{H}_{0}\left(C_{3}\right)$ given by $\left[S_{i}\right] \longmapsto u_{i}$ with $1 \leq i \leq 3$. Since $\left\{\left[M_{q}(\lambda)_{\mathcal{K}}\right] \mid \lambda \in \mathcal{B}\right\}$ and $\left\{u_{\lambda} \mid \lambda \in \mathcal{B}\right\}$ are bases for $\mathbb{Z} \mathcal{M}_{D_{4}, \sigma}$ and $\mathcal{H}_{0}\left(C_{3}\right)$, respectively. Moreover, the algebra $\mathbb{Z} \mathcal{M}_{D_{4}, \sigma}$ and $\mathcal{H}_{0}\left(C_{3}\right)$ have the same defining relations. So, Ψ is an isomorphism.

4. Gröbner-Shirshov basis of $\mathcal{H}_{0}\left(C_{3}\right)$

Though the set R which is the set of equalities in $\mathcal{S} / \mathfrak{J}$ from the proof of the presentation of the monoid algebra $\mathbb{Z} \mathcal{M}_{D_{4}, \sigma}$ and Proposition 3.3, we give Gröbner-Shirshov basis of $\mathcal{H}_{0}\left(C_{3}\right)$.

First, we define a degree lexicographic order \prec as follows:

$$
u \prec v \text { if and only if } l(u)<l(v) \text { or } l(u)=l(v) \text { and } u<v
$$

then it is a monomial order [16].
We have already shown that $\mathcal{H}_{0}\left(C_{3}\right)$ is an associative algebra over \mathbb{Z} generated by $C=$ $\left\{u_{1}, u_{2}, u_{3}\right\}$ with generating relations

$$
\mathcal{F}^{\prime}= \begin{cases}u_{1} u_{3}=u_{3} u_{1}, & u_{1}^{2} u_{2}=u_{1} u_{2} u_{1} \\ u_{1} u_{2}^{2}=u_{2} u_{1} u_{2}, & u_{3} u_{2} u_{3}=u_{2} u_{3}^{2} \\ u_{2}^{2} u_{3} u_{2}=u_{2}^{3} u_{3}, & u_{2} u_{3} u_{2}^{2} u_{3}=u_{2}^{3} u_{3}^{2}\end{cases}
$$

By Propositions 3.2 and 3.3, if we apply the algebra isomorphism $\Psi \circ \bar{\eta}$ to the relations in the set R, then we get a new set $\mathcal{F}^{\prime \prime}$ of relations in $\mathcal{H}_{0}\left(C_{3}\right)\left(u_{1} \succ u_{2} \succ u_{3}\right)$:

$$
\begin{array}{ll}
u_{1} u_{3}=u_{3} u_{1}, & u_{1}^{2} u_{2}=u_{1} u_{2} u_{1}, \\
u_{1} u_{2}^{2}=u_{2} u_{1} u_{2}, & u_{1} u_{2} u_{3}^{2}=u_{3} u_{1} u_{2} u_{3}, \\
u_{1}^{2} u_{2} u_{3}=u_{1} u_{2} u_{3} u_{1}, & u_{1} u_{2}^{3} u_{3}=u_{1} u_{2}^{2} u_{3} u_{2}, \\
u_{1} u_{2}^{2} u_{3}^{2}=u_{2} u_{3} u_{1} u_{2} u_{3}, & u_{1}^{2} u_{2}^{2} u_{3}^{2}=u_{1} u_{2} u_{3} u_{1} u_{2} u_{3}, \\
u_{1} u_{2}^{2} u_{3}=u_{2} u_{1} u_{2} u_{3}, & u_{1}^{2} u_{2}^{2} u_{3}=u_{1} u_{2} u_{1} u_{2} u_{3}, \\
u_{1} u_{2}^{2} u_{3} u_{2}=u_{2} u_{1} u_{2}^{2} u_{3}, & u_{1} u_{2} u_{1} u_{2}^{2} u_{3}=u_{2} u_{1}^{2} u_{2}^{2} u_{3}, \\
u_{1} u_{2} u_{3} u_{2} u_{3}=u_{2} u_{3} u_{1} u_{2} u_{3}, & u_{1} u_{2} u_{3} u_{2}^{2} u_{3}=u_{2}^{2} u_{3} u_{1} u_{2} u_{3}, \\
u_{1} u_{2}^{2} u_{3} u_{2} u_{3}=u_{1} u_{2} u_{3} u_{2}^{2} u_{3}, & u_{1} u_{2}^{2} u_{3} u_{1} u_{2} u_{3}=u_{1} u_{2} u_{3} u_{1} u_{2}^{2} u_{3}, \\
u_{1} u_{2}^{2} u_{3} u_{2}^{2} u_{3}=u_{2}^{2} u_{3} u_{1} u_{2}^{2} u_{3}, & u_{1}^{2} u_{2}^{2} u_{3} u_{2}=u_{2} u_{1}^{2} u_{2}^{2} u_{3}, \\
u_{1}^{2} u_{2}^{2} u_{3} u_{1} u_{2}=u_{1} u_{2} u_{1}^{2} u_{2}^{2} u_{3}, & u_{1}^{2} u_{2}^{2} u_{3} u_{2} u_{3}=u_{1} u_{2} u_{3} u_{1} u_{2}^{2} u_{3}, \\
u_{1}^{2} u_{2}^{2} u_{3} u_{1} u_{2} u_{3}=u_{1} u_{2} u_{3} u_{1}^{2} u_{2}^{2} u_{3}, & u_{1}^{2} u_{2}^{2} u_{3} u_{2}^{2} u_{3}=u_{1} u_{2}^{2} u_{3} u_{1} u_{2}^{2} u_{3}, \\
u_{1}^{2} u_{2}^{2} u_{3} u_{1} u_{2}^{2} u_{3}=u_{1} u_{2}^{2} u_{3} u_{1}^{2} u_{2}^{2} u_{3} u_{2}^{2} u_{3}=u_{1}^{2} u_{2}^{2} u_{3} u_{1}, \\
u_{2} u_{3}^{2}=u_{3} u_{2} u_{3}, & u_{2}^{2} u_{3}=u_{2}^{2} u_{3} u_{2} u_{3}=u_{2} u_{3} u_{2}^{2} u_{3}, \\
u_{2}^{2} u_{3}^{2}=u_{2} u_{3} u_{2} u_{3},
\end{array}
$$

By a routine check of compositions between the elements of $\mathcal{F}^{\prime} \cup \mathcal{F}^{\prime \prime}$, we get following new set $\mathcal{F}^{\prime \prime \prime}$ of relations in $\mathcal{H}_{0}\left(C_{3}\right)$:

$$
\begin{array}{ll}
u_{1} u_{2} u_{1} u_{2} u_{3} u_{2}=u_{2} u_{1} u_{2} u_{1} u_{2} u_{3}, & u_{1} u_{2} u_{1} u_{2} u_{3} u_{1} u_{2} u_{3}=u_{1} u_{2} u_{3} u_{1} u_{2} u_{1} u_{2} u_{3} \\
u_{1} u_{2} u_{1} u_{2} u_{1} u_{2} u_{3}=u_{1} u_{2} u_{1} u_{2} u_{3} u_{1} u_{2}, & u_{2} u_{1} u_{2} u_{3} u_{2}=u_{2} u_{1} u_{2}^{2} u_{3} \\
u_{1} u_{2} u_{3} u_{2} u_{1} u_{2} u_{3}=u_{2} u_{1} u_{2} u_{3} u_{1} u_{2} u_{3}, & u_{1} u_{2}^{2} u_{3} u_{2} u_{1} u_{2}^{2} u_{3}=u_{2} u_{1} u_{2}^{2} u_{3} u_{1} u_{2}^{2} u_{3}
\end{array}
$$

Let $\mathcal{F}=\mathcal{F}^{\prime} \cup \mathcal{F}^{\prime \prime} \cup \mathcal{F}^{\prime \prime \prime}$. Then by the construction of the set \mathcal{F} of relations in $\mathcal{H}_{0}\left(C_{3}\right)$, we get our main result:

Theorem 4.1 With notations above, \mathcal{F} is a Gröbner-Shirshov basis of $\mathcal{H}_{0}\left(C_{3}\right)$.
Acknowledgements We are very grateful to the referees for the useful comments and suggestions.

References

[1] A. I. SHIRSHOV. Some algorithmic problems for Lie algebras. Siberian Math. J., 1962, 3: 292-296.
[2] B. BUCHBERGER. An algorithm for finding a basis for the residue class ring of a zero-dimensional ideal. Ph. D. Thesis, University of Innsbruck, 1965.
[3] G. M. BERGMAN. The diamond lemma for ring theory. Adv. in Math., 1978, 29(2): 178-218.
[4] C. M. RINGEL. Hall algebras and quantum groups. Invent. Math., 1990, 101(3): 583-591.
[5] M. REINEKE. Generic extensions and multiplicative bases of quantum groups at $q=0$. Represent. Theory, 2001, 5: 147-163.
[6] M. REINEKE. The quantic monoid and degenerate quantized enveloping algebras. arXiv: math/0206095v1.
[7] Lijuan FAN, Zhonghua ZHAO. Presenting degenerate Ringel-Hall algebras of type B. Sci. China Math., 2012, 55(5): 949-960.
[8] Bangming DENG, Jie DU. Frobenius morphisms and representations of algebras. Trans. Amer. Math. Soc., 2006, 358(8): 3591-3622.
[9] Bangming DENG, Jie DU, B. PARSHALL, et al. Finite Dimensional Algebras and Quantum Groups. Mathematical Surveys and Monographs, 150. American Mathematical Society, Providence, RI, 2008.
[10] C. M. RINGEL. Hall polynomials for the representation-finite hereditary algebras. Adv. Math., 1990, 84(2): 137-178.
[11] P. GABRIEL. Unzerlegbare Darstellungen I. Manuscripta Math., 1972, 6: 71-103.
[12] V. DLAB, C. M. RINGEL. Indecomposable representations of graphs and algebras. Mem. Amer. Math. Soc., 1976, 6(173): 1-63.
[13] C. M. RINGEL. The composition algebra of a cyclic quiver. Towards an explicit description of the quantum group of type $\widetilde{A_{n}}$. Proc. London Math. Soc.(3), 1993, 66(3): 507-537.
[14] K. BONGARTZ. On degenerations and extensions of finite dimensional modules. Adv. Math., 1996, 121(2): 245-287.
[15] L. A. BOKUT, Yuqun CHEN. Gröbner-Shirshov bases for Lie algebras: after A. I. Shirshov. Southeast Asian Bull. Math., 2007, 31(6): 1057-1076.
[16] S. KANG, K. LEE. Gröbner-Shirshov bases for representation theory. J. Korean Math. Soc., 2000, 37(1): 55-72.

[^0]: Received July 25, 2015; Accepted March 8, 2016
 Supported by the National Natural Science Foundation of China (Grant Nos. 11471186; 11361056) and the Natural Science Foundation of Beijing (Grant No. 1162002).

 * Corresponding author

 E-mail address: gaozhenzhen1224@163.com (Zhenzhen GAO); slyang@bjut.edu.cn (Shilin YANG)

