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1. Introduction

Let D be the open unit disk in the complex plane C and dA be the normalized area measure

on D. L2(D, dA) is the Hilbert space of Lebesgue square integrable functions on D with the

inner product

⟨f, g⟩ =
∫
D

f(z)g(z)dA(z).

The Bergman space L2
a(D) is the closed subspace of all analytic functions in L2(D, dA) and

harmonic Bergman space L2
h(D) is the closed subspace of L2(D, dA) consisting of the harmonic

functions on D. There is the relation that

L2
h(D) = L2

a(D) + L2
a(D),

where L2
a(D) = {f |f ∈ L2

a(D), f(0) = 0}. It is well known that each point evaluation in L2
h(D)

is a bounded linear functional on D, there exists a unique function Rz ∈ L2
h(D) which has the

reproducing property f(z) = ⟨f,Rz⟩ for every f ∈ L2
h(D).

Since L2
h(D) = L2

a(d) + L2
a(D), there is a relation

Rz(w) = Kz(w) +Kz(w)− 1, z, w ∈ D. (1)

where Kz is the reproducing kernal for L2
a(D) and given by

Kz(w) =
1

(1− zω)2
, z, w ∈ D.
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Let P be the orthogonal projection from L2(D, dA) onto L2
a(D) and Q denote the orthogonal

projection from L2(D, dA) onto L2
h(D). Since Pφ(z) = ⟨g,Kz⟩ for φ ∈ L2(D, dA) and z ∈ D,

then by (1), we have

Qφ(z) = Pφ(z) + P (φ)(z)− Pφ(0). (2)

For a function φ ∈ L∞(D), the Toeplitz operator Tφ : L2
h(D) → L2

h(D) with symbol φ is defined

by

Tφ(f) = Q(φf)(z) =

∫
D

f(w)φ(w)Rz(w)dA(w).

In 1964, Brown and Halmos [1] proved that if TfTg = 0 on the Hardy space H2(T ), then

either f or g must be identically zero. In [2], Ahern and Čučković showed the result analogous

to that in [1] for two Toeplitz operators with harmonic symbols on the Bergman space of unit

disk. Moreover in [3] they proved that if TfTg = 0, where f is arbitrary bounded and g is

radial, then either f ≡ 0 or g ≡ 0. Recently, those zero product results have been generalized to

finite rank product result in [4]. Čučković and Louhichi [5] studied finite rank product of several

quasihomogeneous Toeplitz operators on the Bergman space of the unit disk.

For two Toeplitz operators Tφ and Tψ the commutator and semi-commutator are defined

by [Tφ, Tψ] = TφTψ − TψTφ, (Tφ, Tψ] = Tφψ − TφTψ.

On the Hardy space the problem of finite rank commutator or semi-commutator has been

completely solved [6,7]. On the Bergman space the problem seems to be far from solution. Guo,

Sun and Zheng [8] completely characterized the finite rank commutator and semi-commutator of

two Toeplitz operators with bounded harmonic symbols on the Bergman space of the unit disk.

Čučković and Louhichi [5] investigated the finite rank semi-commutators and commutators of

Toeplitz operators with quasihomogeneous symbols on the Bergman space of the unit disk and

obtained different results from the case of harmonic Toeplitz operators. Lu and Zhang [9] studied

finite rank commutators and semi-commutators of two quasihomogeneous Toeplitz operators on

the Bergman space of the polydisk.

The theory of Toeplitz operators on the harmonic Bergman space is quite different from

that on L2
a. For example, Choe and Lee [10] showed that two analytic Toeplitz operators on

L2
h commute only when their symbols and the constant function 1 are linearly dependent, but

analytic Toeplitz operators always commute on L2
a. Motivated by Čučković and Louhichi [5] and

Choe, Lee [10], we will discuss the finite rank (semi-)commutators of quasihomogeneous Toeplitz

operators on the harmonic Bergman space of unit disk in this paper.

2. The Mellin transform and Mellin convolution

Mellin transform is a useful tool in the following calculations.

Definition 2.1 Let f ∈ L1([0, 1], rdr). The Mellin transform f̂ of a function f is defined by

f̂(z) =

∫ 1

0

f(r)rz−1dr.
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It is clear that f̂ is well defined on the right half-plane {z : Re z ≥ 2} and analytic on {z : Re z >
2}. It is important and helpful to know that the Mellin transform f̂ is uniquely determined by

its value on an arithmetic sequence of integers. In fact, we have the following classical theorem

[11, p. 102].

Theorem 2.2 Suppose that f is a bounded analytic function on {z : Re z > 0} which vanishes

at the pairwise distinct points z1, z2, . . ., where

(i) inf{|zn|} > 0;

(ii)
∑
n≥1 Re(

1
zn
) = ∞.

Then f vanishes identically on {z : Re z > 0}.

Remark 2.3 We shall often use this theorem to show that if f ∈ L1([0, 1], rdr) and if there

exists a sequence (nk)k≥0 ⊂ N such that

f̂(nk) = 0,
∑
k≥0

1

nk
= ∞,

then f̂(z) = 0 for all z ∈ {z : Re (z) > 2} and so f = 0.

If f and g are defined on [0, 1), then their Mellin convolution is defined by

(f ∗M g)(r) =

∫ 1

r

f(
r

t
)g(t)

dt

t
, 0 ≤ r < 1.

The Mellin convolution theorem states that

f̂ ∗M g(s) = f̂(s)ĝ(s),

and that, if f and g are in L1([0, 1], rdr), then so is f ∗M g.

3. Finite rank product of n Toeplitz operators

We will discuss the finite rank product of Toeplitz operators with quasihomogeneous symbols

in this section.

Definition 3.1 Let p ∈ Z. A function φ ∈ L1(D, dA) is called a quasihomogeneous function of

degree p if φ is of the form eipθf , where f is a radial function, i.e., φ(reiθ) = eipθf(r).

The main reason for many researchers to study Toeplitz operators with quasihomogeneous

symbols is that any function f in L2(D, dA) has the polor decomposition

f(reiθ) =
∑
k∈Z

eikθfk(r),

where fk are radial functions in L2([0, 1], rdr).

Lemma 3.2 ([12, Lemma 2.1]) Let p ∈ Z and let φ be a bounded radial function. Then for

each k ∈ N ,

Teipθφ(z
k) =

{
2(k + p+ 1)φ̂(2k + p+ 2)zk+p, k ≥ −p;
2(−k − p+ 1)φ̂(−p+ 2)z−k−p, k < −p.



498 Jingyu YANG, Yufeng LU and Xiaoying WANG

Teipθφ(z
k) =

{
2(k − p+ 1)φ̂(2k − p+ 2)zk−p, k ≥ p;

2(p− k + 1)φ̂(p+ 2)zp−k, k < p.

Theorem 3.3 Let p1, . . . , pm ∈ Z and let f1, . . . , fm be bounded radial functions. If Teipmθfm · · ·
Teip1θf1 is of finite rank M , then fi = 0 for some i ∈ {1, 2, . . . ,m}.

Proof We denote by S the product of Toeplitz operators Teipmθfm · · ·Teip1θf1 . By Lemma 3.2,

for k ≥
∑m
j=i |pj |, we have

S(zk) =2(k + p1 + 1)f̂1(2k + p1 + 2)2(k + p1 + p2 + 1)f̂2(2k + 2p1 + p2 + 2) · · ·

2(k + p1 + · · ·+ pm + 1)f̂m(2k + 2p1 + · · ·+ 2pm−1 + pm + 2)zk+p1+···+pm ,

S(zk) =2(k − p1 + 1)f̂1(2k +−p1 + 2)2(k − p1 − p2 + 1)f̂2(2k − 2p1 − p2 + 2) · · ·

2(k − p1 − · · · − pm + 1)f̂m(2k − 2p1 − · · · − 2pm−1 − pm + 2)zk−p1−···−pm .

Thus the sets {S(zk) : k ≥
∑m
j=i |pj |} and {S(zk) : k ≥

∑m
j=i |pj |} are linearly independent sets

which are included in the rang of S. Hence {S(zk) : k ≥
∑m
j=i |pj |} and {S(zk) : k ≥

∑m
j=i |pj |}

contain at most M elements.

Since {S(zk) : k ≥
∑m
j=i |pj |} contain at mostM elements, there exists some positive integer

n0 >
∑m
j=i |pj | such that S(zk) = 0, ∀ k ≥ n0, which is equivalent to

f̂1(2k + p1 + 2) · · · f̂m(2k + 2p1 + 2p2 + · · ·+ 2pm−1 + pm + 2) = 0, ∀ k ≥ n0. (3)

Let l = min{p1, 2p1 + p2 · · · 2p1 + 2p2 + · · ·+ 2pm−1 + pm}. Then (3) implies that

̂rp1−lf1(2k + l + 2) · · · ̂r2p1+2p2+···+2pm−1+pm−lfm(2k + l + 2) = 0, ∀ k ≥ n0.

Since {2k + l + 2}k≥n0 is an arithmetic sequence, by Theorem 2.2 we know that there exists at

least one of fi, i ∈ {1, 2, . . . ,m} such that fi = 0.

Since {S(zk) : k ≥
∑m
j=i |pj |} contains at most M elements, using the same method derives

that there exists some i ∈ {1, 2, . . . ,m} such that fi = 0. The proof of this Theorem is completed.

�

4. Finite rank commutator

In this section, we investigate the commutator [Teipθφ, Teisθψ] and [Teipθφ, Te−isθψ], p, s ≥ 0.

We show that these commutators are nonzero finite rank operators.

Theorem 4.1 Let p, s be non-negative integers and at least one of them is nonzero. Let f and

g be two integrable radial functions on D such that Teipθφ and Teisθψ are bounded operators. If

the commutator [Teipθφ, Teisθψ] has finite rank M , then M is at most equal to s+ p− 1.

Proof Let S denote the commutator [Teipθφ, Teisθψ]. Since S has finite rank on L2
h(D), we know

that {S(zk)}k≥0 and {S(zk)}k>0 must have finite rank. If S has rankM , the rank of {S(zk)}k≥0

is equal to N1 and the rank of {S(zk)}k>0 is equal to N2, then M = N1 + N2. Using Lemma

3.2, we obtain

S(zk) =2(k + p+ s+ 1)[2(k + s+ 1)ψ̂(2k + s+ 2)φ̂(2k + 2s+ p+ 2)−
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2(k + p+ 1)φ̂(2k + p+ 2)ψ̂(2k + 2p+ s+ 2)]zk+p+s,

S(zk) =2(k − p− s+ 1)[2(k − s+ 1)ψ̂(2k − s+ 2)φ̂(2k − 2s− p+ 2)−

2(k − p+ 1)φ̂(2k − p+ 2)ψ̂(2k − 2p− s+ 2)]zk−p−s, k ≥ p+ s.

Since {S(zk)}k≥0 has finite rank N1, there exists n0 ≥ N1 such that

S(zk) = 0, ∀ k ≥ n0,

which is equivalent to

2(k + s+ 1)ψ̂(2k + s+ 2)φ̂(2k + 2s+ p+ 2) = 2(k + p+ 1)φ̂(2k + p+ 2)ψ̂(2k + 2p+ s+ 2),

for all k ≥ n0. Using 1̂(2k + 2s+ 2) = 1
2(k+s+1) and 1̂(2k + 2p+ 2) = 1

2(k+p+1) , we have

r̂2p1(2k + 2)r̂sψ(2k + 2)r̂2s+pφ(2k + 2) = r̂2s1(2k + 2)r̂2p+sψ(2k + 2)r̂pφ(2k + 2), (4)

for all k ≥ n0. Since {2k + 2}k≥n0 is arithmetic, Remark 2.3 and (4) imply that

r̂2p1(z)r̂sψ(z)r̂2s+pφ(z) = r̂2s1(z)r̂2p+sψ(z)r̂pφ(z),

for all Re z > 2. In particular, if z = 2k + 2 with k ≥ 0, we have

r̂2p1(2k + 2)r̂sψ(2k + 2)r̂2s+pφ(2k + 2) = r̂2s1(2k + 2)r̂2p+sψ(2k + 2)r̂pφ(2k + 2).

Hence, we have S(zk) = 0, ∀ k ≥ 0. Therefore, the rank of {S(zk)}k≥0 is equal to zero.

Since {S(zk)}k>0 has finite rank, there exists n1 ≥ s+ p such that

S(zk) = 0, ∀ k ≥ n1,

which is equivalent to

2(k − s+ 1)ψ̂(2k − s+ 2)φ̂(2k − 2s− p+ 2) = 2(k − p+ 1)φ̂(2k − p+ 2)ψ̂(2k − 2p− s+ 2),

for all k ≥ n1.

Similarly to the discussion for {S(zk)}k≥0, we get

S(zk) = 0, ∀ k ≥ p+ s,

which means that the rank of {S(zk)}k>0 is at most equal to s + p − 1. So the rank of S is at

most equal to s+ p− 1. This completes the proof of Theorem. �

Corollary 4.2 Let p > 0 and let φ and ψ be two integrable radial functions on D such that Tφ

and Teipθψ are bounded operators. If the commutator [Tφ, Teipθψ] has finite rank, its rank is at

most equal to p− 1.

Theorem 4.3 Let p, s ≥ 0 and at least one of them is nonzero. Let φ and ψ be two integrable

radial functions on D such that Teipθφ and Te−isθψ are bounded operators. If the commutator

[Teipθφ, Te−isθψ] has finite rank, then the rank is equal to p+ s− 1.

Proof Let S denote the commutator [Teipθφ, Te−isθψ].
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If s ≥ p, using Lemma 3.2, we have

S(zk) =



2(k − s+ p+ 1)[2(k − s+ 1)ψ̂(2k − s+ 2)φ̂(2k − 2s+ p+ 2)−
2(k + p+ 1)φ̂(2k + p+ 2)ψ̂(2k + 2p− s+ 2)]zk+p−s, k ≥ s,

2(k − s+ p+ 1)[2(s− k + 1)ψ̂(s+ 2)φ̂(p+ 2)−
2(k + p+ 1)φ̂(2k + p+ 2)ψ̂(2k + 2p− s+ 2)]zk+p−s, s− p ≤ k ≤ s− 1,

2(s− p− k + 1)[2(s− k + 1)ψ̂(s+ 2)φ̂(2s− 2k − p+ 2)−
2(k + p+ 1)φ̂(2k + p+ 2)ψ̂(s+ 2)]zs−p−k, 0 ≤ k ≤ s− p− 1,

S(zk) =


2(k + s− p+ 1)[2(k + s+ 1)ψ̂(2k + s+ 2)φ̂(2k + 2s− p+ 2)−
2(k − p+ 1)φ̂(2k − p+ 2)ψ̂(2k − 2p+ s+ 2)]zk+s−p, k ≥ p,

2(k + s− p+ 1)[2(s+ k + 1)ψ̂(2k + s+ 2)φ̂(2k + 2s− p+ 2)−
2(p− k + 1)φ̂(p+ 2)ψ̂(s+ 2)]zk+s−p, 0 < k ≤ p− 1.

Since S has finite rank, similar to the discussion of Theorem 4.1, we deduce that

S(zk) = 0, ∀ k ≥ s, S(zk) = 0, ∀ k ≥ p.

These indicate that the rank of the commutator S is at most equal to s+ p− 1.

If s < p, we have

S(zk) =


2(k − s+ p+ 1)[2(k − s+ 1)ψ̂(2k − s+ 2)φ̂(2k − 2s+ p+ 2)−
2(k + p+ 1)φ̂(2k + p+ 2)ψ̂(2k + 2p− s+ 2)]zk+p−s, k ≥ s,

2(k − s+ p+ 1)[2(s− k + 1)ψ̂(s+ 2)φ̂(p+ 2)−
2(k + p+ 1)φ̂(2k + p+ 2)ψ̂(2k + 2p− s+ 2)]zk+p−s, 0 ≤ k ≤ s− 1,

S(zk) =



2(k + s− p+ 1)[2(k + s+ 1)ψ̂(2k + s+ 2)φ̂(2k + 2s− p+ 2)−
2(k − p+ 1)φ̂(2k − p+ 2)ψ̂(2k − 2p+ s+ 2)]zk+s−p, k ≥ p,

2(k + s− p+ 1)[2(s+ k + 1)ψ̂(2k + s+ 2)φ̂(2k + 2s− p+ 2)−
2(p− k + 1)φ̂(p+ 2)ψ̂(s+ 2)]zk+s−p, p− s ≤ k ≤ p− 1,

2(p− k − s+ 1)[2(s+ k + 1)ψ̂(2k + s+ 2)φ̂(p+ 2)−
2(p− k + 1)φ̂(p+ 2)ψ̂(2p− 2k − s+ 2)]zp−k−s, 0 < k ≤ p− s− 1.

In this case, if S has finite rank, we obtain

S(zk) = 0, ∀ k ≥ s, S(zk) = 0, ∀ k ≥ p.

These also imply that the rank of S is at most equal to p+ s− 1. The proof is completed. �

Example 4.4 We give an example about Theorem 4.1.

From the proof of Theorem 4.1 we know that

TeipθrmTeisθf (z
k) = TeisθfTeipθrm(zk), ∀ k ≥ 0.

Next we will construct a radial function f , such that

TeipθrmTeisθf (z
k) = TeisθfTeipθrm(zk), ∀ k ≥ p+ s, (5)

where p > 0, s > 0 and m ≥ 0.
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Eq. (5) implies that for k ≥ p+ s,

k − p+ 1

2k − p+m+ 2
f̂(2k − 2p− s+ 2) =

k − s+ 1

2k − 2s− p+m+ 2
f̂(2k − s+ 2).

Thus for k ≽ p+ s,

̂r−s−2pf(2k + 2 + 2p)

̂r−s−2pf(2k + 2)
=

(2k + 2− 2p)(2k + 2− p+m− 2s)

(2k + 2− 2s))(2k + 2− p+m)
.

Now, using Remark 2.3, we obtain that

̂r−s−2pf(z + 2p)

̂r−s−2pf(z)
=

(z − 2p)(z − p+m− 2s)

(z − 2s))(z − p+m)
, (6)

for all Rez ≥ 2p+ 2s+ 2.

Let F be the analytic function defined for Re z ≥ 2p+ 2s by

F (z) =
Γ( z−2p

2p )Γ( z−p−2s+m
2p )

Γ( z−2s
2p )Γ( z−p+m2p )

,

where Γ denotes the gamma function. Then by using the well-known identity Γ(z + 1) = zΓ(z),

(6) implies that
̂r−s−2pf(z + 2p)

̂r−s−2pf(z)
=
F (z + 2p)

F (z)
, Re z > 2p+ 2s. (7)

Eq. (7) combined with [13, Lemma 6] gives that there exists a constant c such that

̂r−s−2pf(z) = cF (z), Re z > 2p+ 2s. (8)

For a choice of p = 2, s = 1 and m = 6, and again using the identity Γ(z + 1) = zΓ(z), one

can see that

F (z) =
4(z − 2)

z(z − 4)
= 2[

1

z
+

1

z − 4
].

Since 1̂(z) = 1
z ,r̂

−4(z) = 1
z−4 , (4) becomes

r̂−5f(z) = c[1̂(z) + r̂−4(z)], Re z > 6.

Now the proceeding equation and Remark 2.3 imply that

f(r) = c(r5 + r),

where c is a constant. It is clear that the function f is bounded, so Toeplitz operator Teiθf is

bounded.

Finally, by taking the constant c to be equal to 1, the radial function f(r) = r5 + r satisfies

Te2iθr6Teiθ(r5+r)(z
k) = Teiθ(r5+r)Te2iθr6(z

k), ∀ k ≥ 0,

Te2iθr6Teiθ(r5+r)(z
k) = Teiθ(r5+r)Te2iθr6(z

k), ∀ k ≥ 3.

However, using Lemma 3.2, it is easy to see that

Te2iθr6Teiθ(r5+r)(z) =
9

20
z2, Teiθ(r5+r)Te2iθr6(z) =

16

25
z2.
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Te2iθr6Teiθ(r5+r)(z
2) =

32

75
z, Teiθ(r5+r)Te2iθr6(z

2) =
3

10
z.

Therefore the commutator [Te2iθr6 , Teiθ(r5+r)] has rank two.

Example 4.5 We give an example of Theorem 4.3. Similarly to Example 4.4, there exist

φ = 63
4 r

−2 − 35
2 + 15

4 r
2 and ψ = r6, p = 1, s = 2 such that

TeiθφTe−2iθr6(z
k) = Te−2iθr6(z

k)Teiθφ(z
k), k ≥ 2,

TeiθφTe−2iθr6(z
k) = Te−2iθr6(z

k)Teiθφ(z
k), k ≥ 1.

By a direct calculation, we have

TeiθφTe−2iθr6(1) =
192

35
z, Te−2iθr6(z

k)Teiθφ(1) =
256

15
z,

TeiθφTe−2iθr6(z) =
128

15
, Te−2iθr6(z

k)Teiθφ(z) =
96

35
,

so the rank of [Teiθ( 63
4 r

−2− 35
2 + 15

4 r
2), Te−2iθr6 ] is equal to 2.

5. Finite rank semi-commutator

We will discuss the semi-commutators of two Toeplitz operators with quasihomogeneous

symbols.

Theorem 5.1 Let p, s ≥ 0 and at least one of them be nonzero. Let φ and ψ be two integrable

radial functions on D such that Teipθφ and Teisθψ are bounded operators. If the semi-commutator

(Teipθφ, Teisθψ] has a finite rank, then its rank is equal to p+ s− 1.

Proof Let S denote the semi-commutator (Teipθφ, Teisθψ]. Using Lemma 3.2, we have

S(zk) = 2(k+P + s+1)[2(k+ s+1)ψ̂(2k+ s+2)φ̂(2k+2s+ p+2)− ψ̂φ(2k+ p+ s+2)]zk+p+s,

S(zk) =



2(k − P − s+ 1)[2(k − s+ 1)ψ̂(2k − s+ 2)φ̂(2k − 2s− p+ 2)−
ψ̂φ(2k − p− s+ 2)]zk−p−s, k ≥ p+ s,

2(P + s− k + 1)[2(k − s+ 1)ψ̂(2k − s+ 2)φ̂(p+ 2)−
ψ̂φ(−p+ s+ 2)]zp+s−k, s ≤ k ≤ s+ p− 1,

2(P + s− k + 1)[2(s− k + 1)ψ̂(s+ 2)φ̂(2s− 2k + p+ 2)−
ψ̂φ(p+ s+ 2)]zp+s−k, 0 < k ≤ s− 1.

If the semi-commutator S has finite rank, using the same arguments as in the proof of Theorem

4.1, we have

S(zk) = 0, ∀ k ≥ 0, S(zk) = 0, ∀ k ≥ s+ p,

which implies that the rank of S is at most equal to s+ p− 1. The proof is completed. �

Corollary 5.2 Let p > 0, φ and ψ be two integrable radial functions on D such that Teipθψ and

Tφ are bounded operators. If the semi-commutator (Tφ, Teipθψ] has finite rank, then its rank is

equal to p− 1.
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Theorem 5.3 Let p, s ≥ 0, s ≥ p and at least one of them is nonzero. Let φ and ψ be two

integrable radial functions on D such that Teipθφ and Te−isθψ are bounded operators. If the

semi-commutator (Teipθφ, Te−isθψ] has finite rank, then its rank is equal to s.

Proof Let S denote the semi-commutator (Teipθφ, Te−isθψ]. By Lemma 3.2, we have

S(zk) =



2(k + P − s+ 1)[2(k − s+ 1)ψ̂(2k − s+ 2)φ̂(2k − 2s+ p+ 2)−
ψ̂φ(2k + p− s+ 2)]zk+p−s, k ≥ s,

2(k + P − s+ 1)[2(s− k + 1)ψ̂(s+ 2)φ̂(p+ 2)−
ψ̂φ(2k + p− s+ 2)]zk+p−s, s− p ≤ k ≤ s− 1,

2(s− p− k + 1)[2(s− k + 1)ψ̂(s+ 2)φ̂(2s− 2k − p+ 2)−
ψ̂φ(s− p+ 2)]zs−p−k, 0 ≤ k ≤ s− p− 1.

S(zk) = 2(k−P + s+1)[2(k+ s+1)ψ̂(2k+ s+2)φ̂(2k+2s− p+2)− ψ̂φ(2k− p+ s+2)]zk−p+s.

Since S has finite rank, using the same arguments as in the proof of Theorem 4.1, we have

S(zk) = 0, ∀ k ≥ s, S(zk) = 0, ∀ k > 0.

From the above two equality, we know that the rank of S is at most s. �

Theorem 5.4 Let p, s ≥ 0, s ≥ p and at least one of them is nonzero. Let φ and ψ be two

integrable radial functions on D such that Teipθφ and Te−isθψ are bounded operators. If the

semi-commutator (Te−isθψ, Teipθφ] has finite rank, then the rank is equal to s− 1.

Proof Let S denote the semi-commutator (Te−isθψ, Teipθφ]. Using Lemma 3.2, we know that

S(zk) =


2(k − s+ p+ 1)[2(k + p+ 1)φ̂(2k + p+ 2)ψ̂(2k + 2p− s+ 2)−
ψ̂φ(2k − s+ p+ 2)]zk−s+p, k ≥ s− p,

2(s− P − k + 1)[2(k + p+ 1)φ̂(2k + p+ 2)ψ̂(s+ 2)−
ψ̂φ(s− p+ 2)]zs−k−p, 0 ≤ k ≤ s− p− 1.

S(zk) =


2(k + s− p+ 1)[2(k − p+ 1)φ̂(2k − p+ 2)ψ̂(2k − 2p+ s+ 2)−
ψ̂φ(2k + s− p+ 2)]zk+s−p, k ≥ p,

2(k + s− p+ 1)[2(p− k + 1)φ̂(p+ 2)ψ̂(s+ 2)−
ψ̂φ(2k + s− p+ 2)]zk+s−p, 0 < k ≤ p− 1.

Since S has finite rank, using the method in Theorem 4.1, we obtain

S(zk) = 0, ∀ k ≥ s− p, S(zk) = 0, ∀ k ≥ p.

These imply that the rank of S is at most s− 1. The proof is completed. �

Remark 5.5 If p ≥ s, (Teipθφ, Te−isθψ] and (Te−isθψ, Teipθφ] have finite rank, then the rank of

them are p− 1.

Example 5.6 We give an example of Theorem 5.1. As we construct Example 4.4, let φ = r,

ψ = r6, p = 1 and s = 1. We have

TeiθrTeiθr6(z
k) = Te2iθr7(z

k), k ≥ 0,
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TeiθrTeiθr6(z
k) = Te2iθr7(z

k), k ≥ 2.

However,

TeiθrTeiθr6(z) =
2

9
z, Te2iθr7(z) =

4

11
z.

Therefore, the rank of (Teiθr, Teiθr6 ] is equal to 1.

Example 5.7 We give an example of Theorem 5.3. As we construct Example 4.4, let φ = r6,

ψ = r−2, p = 1 and s = 2. We have

Teiθr6Te−2iθr−2(zk) = Te−iθr4(z
k), k ≥ 2,

Teiθr6Te−2iθr−2(zk) = Te−iθr4(z
k), k > 0.

However,

Teiθr6Te−2iθr−2(1) =
12

11
z, Te−iθr4(1) =

4

7
z,

Teiθr6Te−2iθr−2(z) =
4

9
, Te−iθr4(z) =

2

7
.

Therefore, the rank of (Teiθr, Teiθr6 ] is equal to 2.
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