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Abstract Here presented is a further investigation on a general source formula (GSF) that

has been proved capable of deducing more than 30 special formulas for series expansions and

summations in the author’s recent paper [On a pair of operator series expansions implying

a variety of summation formulas. Anal. Theory Appl., 2015, 31(3): 260–282]. It is shown

that the pair of series transformation formulas found and utilized by He, Hsu and Shiue [cf.

Disc. Math., 2008, 308: 3427–3440] is also deducible from the GSF as consequences. Thus it

is found that the GSF actually implies more than 50 special series expansions and summation

formulas. Finally, several expository remarks relating to the (Σ∆D) formula class are given

in the closing section.
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1. Introduction and preliminaries

As may be seen, our several papers have been concerned with finding some source formulas

that could be used to draw various special formulas for series expansions and summations [1–6].

The basic tools we employed are the symbolic operator calculus, the theory of formal power series

(fps) and that of differential operators. What we have obtained and utilized are certain series

transformation formulas involving the ordinary difference operators ∆k (with increment 1 for ∆)

and differential operators Dk (with D ≡ d/dt), wherein k ∈ N (set of non-negative integers) and

∆0 = D0 = 1 (identity operator). Some fruitful results may be recalled briefly as follows.

Let ψ(t) and ϕ(t) be real-valued functions defined on Z (set of integers) and R (real number

field), respectively. Then there holds a formula series expansion of the form

∞∑
k=0

ψ(k)∆kϕ(0)

(
x

k

)
=

∞∑
k=0

∆kψ(0)∆kϕ(x− k)

(
x

k

)
. (1.1)

Also, there are two expansion formulas involving derivatives

∞∑
k=0

ψ(k)ϕ(k)(0)
xk

k!
=

∞∑
k=0

∆kψ(0)ϕ(k)(x)
xk

k!
, (1.2)

∞∑
k=0

ψ(k)ϕ(k)(0)
xk

k!
=

∞∑
k=0

ψ(k)(0)Ak(x, ϕ(x))/k!, (1.3)
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wherein ϕ(t) in (1.2)–(1.3) and ψ(t) in (1.3) are infinitely differentiable functions (members of

C∞), and Ak(x, ϕ(x)) is an extension of Euler’s fraction defined by

Ak(x, ϕ(x)) =
k∑

j=0

{
k

j

}
ϕ(j)(x)xj , A0(x, ϕ(x)) = ϕ(x) (1.4)

with
{
k
j

}
= 1

j! (∆
jtk)t=0 = S(k, j) denoting the Stirling numbers of the second kind (in Knuth’s

notation).

Apparently, when taking ψ(t) ≡ 1, formulas (1.1)–(1.3) will be reduced to Newton’s inter-

polation series and Maclaurin’s expansion of ϕ(x), respectively. Note that (1.1) and (1.2)–(1.3)

are the basic results given by [4] and He-Hsu-Shiue’s paper [1], respectively. Since there have

been already given plenty of examples showing that a variety of special formulas and identities

could be deduced from [3,6], (1.1), (1.2) and (1.3) may be called, respectively, the 1st, 2nd and

3rd source formula, or denoted briefly as SF(1), SF(2) and SF(3). Certainly each of these for-

mulas is associated with a given triplet {x, ψ, ϕ}, and all possible special formulas are deduced

via suitable special choices of the triplets.

As was mentioned in [3], the pair of operator series expansions given by Theorem 2.1 could

be rewritten as a single formula involving a delta operator δ. Also, it has been proved that

the SF(1) is deducible from the single formula with δ = ∆ (cf. loc. cit), so that the so-called

single formula [3, (6.1)] may be adopted as a ‘general source formula’ (GSF). In the later sections

(§2–§3) we shall give a utilizable specialization of the GFS, and will show that both SF(2) and

SF(3) are included in the specialization as consequences. Thus as a conclusion, one may think

that the GSF is really a common source for all the SF(i)’s (i = 1, 2, 3).

2. A useful specialization of GSF

As in [3], A(t), g(t), f(t), ϕ(t), etc. always denote the formal power series (fps) or the

functions in C∞ defined in R or C (complex number field). All operators are assumed to be

acting on the fps or functions of t, unless otherwise stated. As usual, the shift operator E is

defined by Eαf(t) = f(t + α) (α ∈ R or C). An operator Q is said to be shift-invariant if

QEα = EαQ for every α. Moreover, a shift-invariant operator Q is called a delta operator

whenever Qt ̸= 0 (a non-zero constant). Obviously, ∆, D,∆Eα and DEα are the most useful

delta operators.

Let us now reformulate the basic result of [3] in a more general form as follows.

Theorem 2.1 Let A(t), g(t) and f(t) be fps over R or C such that A(0) = 1, g(0) = 0 and

g′(0) = Dg(0) ̸= 0. Let ϕ(t) ∈ C∞ and let δ be a delta operator. Then there holds formally an

operator series expansion formula (so-called GSF) of the form

A(δ)f(g(δ))ϕ(t) =
∑
k≥0

(pk(D)f(0))δkϕ(t). (2.1)
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Herein pk(D) (k ∈ N) are Sheffer-type differential operators given by the expression

pk(D) =
k∑

j=0

(
1

j!
dkj)D

j (2.2)

within which (dkj) = (A(t), g(t)) is a Riordan array obtainable via the use of the extracting-

coefficient operator [tk], namely

dkj = [tk]A(t)(g(t))j , 0 ≤ j ≤ k ∈ N. (2.3)

Moreover, if it is assumed that

θ = lim
k→∞

∣∣pk(D)f(0)
∣∣1/k > 0. (2.4)

Then the expansion formula (2.1) becomes an exact equality at t = 0, provided that

lim
k→∞

∣∣δkϕ(0)∣∣1/k < 1/θ. (2.5)

Actually, (2.1) is obtained by twice applications of Mullin-Rota’s substitution rule [3, §2].
In what follows we will give a utilizable specialization of (2.1).

Corollary 2.2 By taking δ = D, g(t) = t and A(t) = ext in (2.1) with x being a given parameter

(real of complex), we may get a formal series expansion of the form

f(D)ϕ(x+ t) =
∑
k≥0

1

k!
(x+D)kf(0) ·Dkϕ(t) (2.6)

where f and ϕ are fps or functions in C∞ (defined on R or C).

Proof From the given conditions we see that the LHS (left-hand side) of (2.1) gives

exDf(D)ϕ(t) = Exf(D)ϕ(t) = f(D)ϕ(x+ t) = LHS of (2.6).

Also, in accordance with the RHS (right-hand side) of (2.1) we have to compute pk(D)f(0).

Using (2.2) and (2.3) we easily find

pk(D)f(0) =
k∑

j=0

1

j!
dkjD

jf(0) =
k∑

j=0

1

j!
[tk](ext · tj)Djf(0) =

k∑
j=0

xk−j

j!(k − j)!
Djf(0)

=
1

k!

k∑
j=0

(
k

j

)
xk−jDjf(0) =

1

k!
(x+D)kf(0).

Hence the RHS of (2.1) yields the RHS of (2.6). �
Evidently, Taylor’s expansion formula is a particular case of (2.6) with f(t) ≡ 1. In the next

section (§3) we will give an important application of (2.6).

Example 2.3 Recall that the Bernoulli polynomialsBk(x) and Charlier polynomials C
(α)
k (x) (k ∈

N), are Sheffer-type polynomials, so that Bk(D) and C
(α)
k (D) give Sheffer-type differential op-

erators. Note that they are generated by {A(t) = t/(et − 1), g(t) = t} and {A(t) = e−αt, g(t) =

log(1 + t)}, respectively. Accordingly, the GSF(2.1) yields the following two series expansions

δ/(eδ − 1)f(δ)ϕ(t) =
∞∑
k=0

1

k!
Bk(D)f(0) · δkϕ(t), (2.7)
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e−αδf(log(1 + δ))ϕ(t) =

∞∑
k=0

C
(α)
k (D)f(0) · δkϕ(t). (2.8)

In particular, taking δ = D for (2.7) and δ = ∆ for (2.8), and noticing that eD − 1 = E − 1 = ∆

and log(1 + ∆) = D, we find the following two formal expansions

f(D)ϕ′(t) =
∞∑
k=0

1

k!
Bk(D)f(0)

(
ϕ(k)(t+ 1)− ϕ(k)(t)

)
, (2.9)

f(D)ϕ(t) =
∞∑
k=0

C
(α)
k (D)f(0) · eα∆∆kϕ(t), (2.10)

where the operator 1/∆ involved in the LHS of (2.7) has been removed to the RHS, and a similar

process has been applied to the equation (2.8).

3. A proof that GSF implies SF(2) and SF(3)

It suffices to show that SF(2) and SF(3) could be deduced from (2.6) with special choices

of f(t).

Proposition 3.1 The formal expansion formulas (1.2) and (1.3), namely SF(2) and SF(3), are

deducible from (2.6) with evaluation at t = 0 and with the following choices of f(t)

(i) f(t) =
∞∑
k=0

1

k!
∆kψ(0)xktk, (3.1)

(ii) f(t) =
∞∑
k=0

1

k!
ψk(0)

k∑
j=0

{
k

j

}
xjtj , (3.2)

respectively, where x is a given parameter.

Proof First, it may be seen that the LHS of (2.6) evaluated at t = 0 just provides the RHS of

(1.2) and that of (1.3) with f(t) being defined by (i) and (ii), respectively. Moreover, it is clear

that for (i) we have formal derivatives

f (j)(0) = Djf(0) = xj∆jψ(0), j ∈ N.

Also, for (ii) we have

f (j)(0) =
∞∑
k=0

1

k!
ψ(k)(0)j!

{
k

j

}
xj = xj

∞∑
k=0

1

k!
ψ(k)(0)(∆jtk)t=0

= xj
(
∆j

∞∑
k=0

1

k!
ψ(k)(0)tk

)
t=0

= xj(∆jψ(t))t=0 = xj∆jψ(0).

This shows that for both (i) and (ii) we have the same expression

(x+D)kf(0) =
k∑

j=0

(
k

j

)
xk−j · xj∆jψ(0) = xkψ(k).

Hence both (1.2) and (1.3) are implied by (2.6) with evaluation of t = 0. �
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Remark 3.2 What is worth mentioning is the fact that SF(2) and SF(3) have been found

before, so that the choices of f(t) for S(2) and S(3) appear to be a relatively easier matter. Also,

it is known that SF(1) is a special case of (2.1) (viz. GSF) with A(t) = (1 + t)x, g(t) = t/(t+ 1)

and

f(t) =
∞∑
k=0

(
x

k

)
∆kψ(0)tk. (3.3)

Here (3.3) is a discrete analogue of (3.1). This is quite natural, since SF(1) is actually a discrete

analogue of SF(2) (see [3, Theorem 4.1]).

4. Embedding technique via choosing triplets

As shown in our previous papers [1,3,4,6], the main technique used for the derivation of

most special formulas as examples is to make suitable choices of the triplets involved in the

source formulas. Certainly, the unified technique may be called ‘embedding technique’. In this

section we will present some additional examples and give some little more explanations for a

few selected instances exhibited previously [3,4].

Note that both SF(1) and SF(2) involve computations of higher order differences. We now

reproduce here a short table of difference formulas for references. (Herein a printing error in

page 280 of [3] is corrected).

(i) ∆kat = (a− 1)kat (a ̸= 0); (∆kat)0 = (a− 1)k;

(ii) ∆k

(
a+ t

n

)
=

(
a+ t

n− k

)
(k ≤ n); ∆k

(
a+ t

n

)
0

=

(
a

n− k

)
;

(iii) ∆k

(
a− t

n

)
= (−1)k

(
a− t− k

n− k

)
(k ≤ n); ∆k

(
a− t

n

)
0

= (−1)k
(
a− k

n− k

)
;

(iv) ∆k(
1

t+ a
) =

(−1)kk!

(t+ a)(t+ a+ 1) · · · (t+ a+ k)
, ∆k(

1

t+ a
)0 =

(−1)k

a

/(k + a

k

)
(a ̸= 0);

(v) ∆k cos(at+ b) =
(
2 sin

a

2
)k cos(at+ b+

k

2
(a+ π)

)
,

∆k sin(at+ b) =
(
2 sin

a

2
)k sin(at+ b+

k

2
(a+ π)

)
;

(vi) (∆ktn)0 = k!

{
n

k

}
= k!S(n, k);

(vii) ∆kHt = ∆k−1 1

t+ 1
=

(−1)k−1(k − 1)!

(t+ k)k
; (∆kHt)0 =

(−1)k−1

k
(t ∈ N);

(viii) ∆kFt = Ft−k (t ∈ N, t ≥ k).

Recall that the harmonic numbers Ht are defined by H0 = 1, Hk = 1+ 1
2 + · · ·+ 1

k (k ≥ 1); and

the Fibonacci numbers Ft defined by F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, n ∈ {2, 3, . . .}.

Example 4.1 What is worth mentioning is that there are 3 classical formulas due to Euler, all

deducible from the SF(1) with special choices of the triplet {x, ψ, ϕ}. The first two formulas are

known as the transformation formula for the alternating series and the summation formula for
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the arithmetical-geometric series [3,4]. The third formula is usually called Euler’s finite difference

theorem which may be expressed by the following equality

n∑
k=0

(−1)k
(
n

k

)
f(k) = (−1)n∆nf(0) =

{
0, 0 ≤ m ≤ n− 1,

(−1)nn!an, m = n
(4.1)

where f(t) is a polynomial of degree m, namely

f(t) =
m∑
j=0

ajt
j , m ∈ N. (4.2)

As may be observed, (4.1) follows from (1.1) (SF(1)) via embedding with the special triple

{x = n, ψ(t) = f(t), ϕ(t) =
(
n−t
n

)
}, since ϕ(t) gives

∆kϕ(t) = (−1)k
(
n− t− k

n− k

)
, ∆kϕ(0) = (−1)k

and

∆kϕ(n− k) = (−1)k
(

0

n− k

)
= (−1)kδnk =

{
(−1)n, k = n,

0, k < n.

Moreover, ∆nf(0) = n!an just follows from a simple computation when m = n.

Example 4.2 It may be of interest to notice that Abel’s famous identity

(a+ b)n =
n∑

k=0

(
n

k

)
a(a− kx)k−1(b+ kx)n−k (4.3)

is implied by Euler’s formula (4.1) as a consequence. Clearly, (4.3) is equivalent to the algebraic

identity
n∑

k=0

(−1)k
(
n

k

)
[a(kx− a)k−1(kx+ b)n−k + (−a)kbn−k] = 0 (4.4)

where the LHS is of the same form as that of (4.1) with

f(k) = a(kx− a)k−1(kx+ b)n−k + (−a)kbn−k. (4.5)

Thus in order to prove that (4.1) implies (4.4), it suffices to show that (4.5) can be expressed

algebraically as a polynomial in k of degree (n − 1), for 0 ≤ k ≤ n. First, it is easily seen that

the RHS of (4.5) can be expanded into a polynomial in kx of degree (k − 1) + (n − k) = n − 1

with the last term (−a)kbn−k being cancelled within the expression and f(0) = 0. Moreover,

f(k) can be expressed algebraically in the following form (with 1 ≤ k ≤ n)

f(k) = a(kx+ b)n−k
∑

0≤j≤(n−1)

(
k − 1

j

)
(kx+ b)k−1−j(−a− b)j + (−a)kbn−k

= a
∑

0≤j≤(n−1)

(kx+ b)n−j−1

(
k − 1

j

)
(−a− b)j + (−a)kbn−k

= polynomial in k of degree (n− j − 1) + j = n− 1,

wherein the term (−a)kbn−k is already cancelled. Hence (4.1) implies (4.4). �
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As known, two classical proofs of Abel’s identity have been given by Lucas and Francon (cf.

L. Comtet’s book ‘Advance Combinatoriss’, §3.1, p. 128-129).

Example 4.3 In a recently published book by Quaintance and Gould, chapter 7 is entitled

‘Melzak’s formula’, in which several nice combinatorial identities have been derived as applica-

tions of the formulas. Also presented in the chapter is an elaborate proof of the formula (cf. loc.

cit., p. 79-82). What we have found here is that a simplified form of Melzak’s formula could be

embedded in the SF(2) (viz. (1.2)), thus leading to a rather short proof.

Let f(x) be a polynomial in x of degree n, and let y ∈ C. Melzak’s formula states

f(x+ y) = y

(
y + n

n

) n∑
k=0

(−1)k
(
n

k

)
f(x− k)

y + k
(4.6)

where y ̸= 0,−1,−2, . . . ,−n. Clearly, we may treat F (y) = f(x + y) as a polynomial in y of

degree n with coefficients involving the parameter x. Thus (4.6) may be rewritten as

n∑
k=0

(−1)k
(
n

k

)
F (−k)
y + k

=
F (y)

y

/(
y + n

n

)
. (4.7)

As F (y) is a linear combination of monomials αmy
m (0 ≤ m ≤ n), it suffices to verifty (4.7) with

taking F (y) 7→ ym. We only need to show

n∑
k=0

(−k)m

k + y
(−1)k

(
n

k

)
=
ym

y

/(
y + n

n

)
. (4.8)

This may be embedded in the particular formula SF(2) with x = 1, viz. (1.2) with x = 1∑
k≥0

ψ(k)ϕ(k)(0)/k! =
∑
k≥0

∆kψ(0)ϕ(k)(1)/k!. (4.9)

Indeed, taking ψ(t) = (−t)m/(t+ y) and ϕ(t) = (1− t)n, we find that the LHS of (4.9) just gives

the LHS of (4.8). Also, we have ϕ(k)(1) = Dk(1 − t)n|t=1 = 0 (0 ≤ k < n), ϕ(n)(1) = (−1)nn!,

and we find the RHS of (4.9)= (−1)n∆nψ(0). Now we have (noticing that (m− 1) < n)

∆
t

nψ(0) = ∆nψ(t)0 = (−1)m
{
∆
t

n
( tm − (−y)m

t− (−y)
)
0
+∆

t

n
( (−y)m

t− (−y)
)
0

}
= ∆

t

n
( ym

t+ y

)
0
= (−1)n

ym

y

/(
n+ y

n

)
.

Hence the RHS of (4.9) gives the RHS of (4.8). �

Example 4.4 The following formula due to D. A. Zave (with m ∈ N and |x| < 1)

∞∑
k=1

(
k +m

m

)
(Hk+m −Hm)xk = (1− x)−m−1 log(

1

1− x
) (4.10)

could be obtained from the SF(1) (viz. (1.1)) with the chosen triplet

{x = −m− 1, ψ(t) = Hm+t −Hm, ϕ(t) = (1− x)t}.



512 Leetsch C. HSU

Indeed, using (1.1) one may find that

LHS of (4.10) =
∑
k≥1

(
−m− 1

k

)
(Hm+k −Hm)(∆k(1− x)t)0

=
∑
j≥1

(
−m− 1

j

)
∆j(Hm+t −Hm)0(∆

j(1− x)t)t=−m−1−j

=
∑
j≥1

(−1)j
(
m+ j

j

)(
∆j−1 1

m+ 1 + t

)
0
((−x)j(1− x)t)t=−m−1−j

=
∑
j≥1

1

j

(
m+ j

j − 1

)
(−1)j−1(

m+j
j−1

) ( x

1− x

)j
(1− x)−m−1

= (1− x)−m−1
∑
j≥1

(−1)j−1

j

( x

1− x

)j
= RHS of (4.10). �

Example 4.5 Recall that the well-known C-numbers first introduced and utilized by Koutras

and Charalambides may be defined by the following [5]

C(n, k; a, b) =
1

k!
∆k(at+ b)n

∣∣
t=0

(4.11)

wherein (x)n = x(x − 1) · · · (x − n + 1) (n ≥ 1) and (x)0 = 1. As shown in [5], C-numbers are

particularly useful for obtaining closed sum formulas for combinatorial identities involving
(
ak+b
m

)
as a factor in the summands, wherein m, k ∈ N and a, b ∈ R. Indeed, there are two related

general formulas that have been presented and utilized in [5], namely the following

∞∑
k=0

(
ak + b

m

)
f (k)(0)

tk

k!
=

1

m!

m∑
j=0

C(m, j; a, b)f (j)(t)tj , (4.12)

∞∑
k=0

(
ak + b

m

)
∆kg(0)

(
t

k

)
=

1

m!

m∑
j=0

C(m, j; a, b)∆jg(t− j)(t)j , (4.13)

where f ∈ C∞ and g(t) is defined on Z. Obviously, (4.12) and (4.13) could be deduced from the

SF(2) and SF(1) with the following special triplets, respectively.{
x = t, ψ(t) =

(
at+ b

m

)
, ϕ(t) = f(t)

}
,

{
x = t, ψ(t) =

(
at+ b

m

)
, ϕ(t) = g(t)

}
.

Remark 4.6 It is easily seen that (4.12) is an exact formula for |t| < ρ, provided that f(t)

has a Maclaurin series expansion for |t| < ρ. Moreover, the absolute convergence of the series in

(4.13) is ensured by the conditions |t| <∞ and

lim
k→∞

|∆kg(0)|1/k < 1. (4.14)

Also, note that a variety of special formulas and identities deducible from either (4.12) or (4.13)

may be found in [5] or elsewhere.

5. Σ∆D class and some related remarks

In this section all the mathematical terminologies will be used in the ordinary sense in

mathematical sciences. Let us give here the following two definitions.
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Definition 5.1 A mathematical formula is said to be deducible from the GSF, if it could be

deduced formally from any of the SF(i) (i = 1, 2, 3) or from the GSF itself with a special choice

of the quintuplet {δ,A(t), f(t), g(t), ϕ(t)}.

Definition 5.2 All the mathematical formulas which are deducible from the GSF are said to

form a formula class, so-called Σ∆D class.

As known from our former papers quoted in the preceding sections, more than 50 special

formulas and identities are the members belonging to the Σ∆D class. What is worth noticing

is the fact that the Σ∆D class includes as special members those well-known classical formulas

due, respectively, to Newton, Taylor, Euler, Stirling, Vandermonde, Montmort, Riordan, Carlitz,

Li Shanlai, Knuth, Grosswald, Rosenbaum, Stanley, Melzak, Zave, et al.

Remark 5.3 Sometimes, certain members of the Σ∆D class may have limits when some pa-

rameters tend to ∞. For instance, taking the special triplet of the SF(1)

{x = α, ψ(t) = tn, ϕ(t) = (1 +
1

α
)t}, α > 1

one may get a special formula of the form

∞∑
k=0

(
α

k

)
(
1

α
)k · kn =

n∑
j=0

(
α

j

)
(
1

α
)jj!

{
n

j

}
(1 +

1

α
)α−j (5.1)

which belongs to the Σ∆D class. Obviously, (5.1) yields the following limit when α→ ∞:

∞∑
k=0

kn

k!
= e

n∑
j=0

{
n

j

}
= eω(n). (5.2)

This is the well-known Dobinski formula for Bell numbers ω(n). Thus, if the Σ∆D class is

extended to include all those limits of members as members, then the Dobinski formula is a

member of the class. Similarly, observe that

lim
a→∞

a−mC(m, k; a, b) =
1

k!
∆k(tm)t=0 =

{
m

k

}
and it is seen that the limit form of (4.12) (with a→ ∞) yields Grunnert’s formula

(
t
d

dt

)m
f(t) =

∞∑
k=0

kmf (k)(0)
tk

k!
=

m∑
j=0

{
m

j

}
f (j)(t)tj . (5.3)

Consequently, Grunnert’s formula is also a member of the extended Σ∆D class.

Remark 5.4 The wording ‘deduced formally’ used in the Definition 5.1 may be given a little

more explanation. Clearly, in the present paper, the so-called formal derivation used for getting

special formulas from source formulas, generally consists of using (i) operations with fps, (ii)

symbolic operations with ∆, D and E, (iii) ordinary algebraic computations, (iv) ordinary com-

putational methods in mathematical analysis (including uses of Taylor’s series expansion and

Newton’s interpolation series), (v) operations with infinite series, and exchange of the orders of

repeated series summations without considering convergence problems and (vi) mathematical
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tables including short tables of difference formulas and derivative formulas.

Remark 5.5 Evidently, by adopting the multi-index notational system, it is easy to formulate

the GSF and SF(i) (i = 1, 2, 3) in multivariate forms. Certainly, such a higher dimensional

extension may be worth giving in details, if it could be found really useful in applications. As

regards the problem whether it is possible to extend the main results of this paper to the cases

of q-analysis should be worthy of investigation.

Remark 5.6 As seen in [3] (§6), we have defined a formula chain via iterations of the GSF.

More precisely, a chain of formulas with freedom-degrees (∞3m+1) (m = 1, 2, 3, . . .) could be

generated successively by the iteration formulas [3]∑
k≥0

(p
(m)
k (D)fm(0))δkϕm(t) = fm+1(t), m ≥ 1

with start from A1, g1, f1 and ϕ1. In this way, each formula of freedom-degree (∞3m+1) could be

used as a general source formula to yield a formula class, denoted by (Σ∆D)(3m+1). Consequently,

we may get a sequence of formula classes with increasing freedom-degrees, viz.

(Σ∆D)(4) ⊂ (Σ∆D)(7) ⊂ · · · ⊂ (Σ∆D)(3m+1) ⊂ · · · .

Here the first one is just the Σ∆D class treated in this paper, and it may be the most available

class of formulas in the Discrete Analysis and Combinatorics.
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