On Rees Factor S-Posets Satisfying Condition (P_w)

Roghaieh KHOSRAVI

Department of Mathematics, Fasa University, Fasa, Iran

Abstract In this paper, we present some homological classifications of pomonoids by using Rees factor S-posets satisfying condition (P_w) .

Keywords Pomonoids; S-posets; condition (P_w)

MR(2010) Subject Classification 06F05; 20M30

1. Introduction

Throughout this paper S will denote a pomonoid that is a monoid S together with a partial order relation which is compatible with the binary operation. A right S-poset A_S is a right S-act A equipped with a partial order \leq . And in addition, for all $s, t \in S$ and $a, b \in A$, if $s \leq t$, then $as \leq at$, and if $a \leq b$, then $as \leq bs$. An S-subposet of a right S-poset A is a subset of A that is closed under the S-action.

A right S-poset A_S satisfies condition (P) if, for all $a, b \in A$ and $s, t \in S$, $as \leq bt$ implies a = a'u, b = a'v for some $a' \in A$, $u, v \in S$ with $us \leq vt$, and it satisfies condition (E) if, for all $a \in A$ and $s, t \in S$, $as \leq at$ implies a = a'u for some $a' \in A$, $u \in S$ with $us \leq ut$. A right S-poset is called strongly flat if it satisfies both conditions (P) and (E). Projectivity is defined in the standard categorical manner. A right S-poset A_S is weakly po-flat if $a \otimes s \leq a' \otimes t$ in $A_S \otimes_S S$ (equivalently, $as \leq a't$) implies that the same inequality holds also in $A_S \otimes_S (Ss \cup St)$ for $a, a' \in A_S$, $s, t \in S$. A right S-poset A_S is principally weakly po-flat if $as \leq a's$ implies that $a \otimes s \leq a' \otimes s$ in $A_S \otimes_S Ss$ for $a, a' \in A_S$, $s \in S$. Weakly flat and principally weakly flat can be defined similarly to the previous by replacing $\leq by =$.

Condition (P_w) was introduced in [1]. An S-poset A_S satisfies condition (P_w) if, for all $a, b \in A$ and $s, t \in S$, $as \leq bt$ implies $a \leq a'u$, $a'v \leq b$ for some $a' \in A$, $u, v \in S$ with $us \leq vt$.

In [2], condition $(PWP)_w$ was introduced. An S-poset A_S is said to satisfy condition $(PWP)_w$ if, for all $a, b \in A_S$ and $s \in S$, $as \leq bs$ implies $a \leq a'u$ and $a'v \leq b$ for some $a' \in A_S$, $u, v \in S$ with $us \leq vs$.

During recent years several articles on flatness properties of S-posets such as projectivity, condition (P), condition (P_w), strong flatness \cdots have appeared. Flatness properties of one element and Rees factor S-posets were discussed in [3,4]. Following Section 1, the coproducts of S-posets satisfying conditions (P_w) or (PWP)_w are studied. In Section 2, we first discuss

Received November 2, 2015; Accepted June 8, 2016

E-mail address: khosravi@fasau.ac.ir

Rees factor S-posets satisfying condition (P_w) . Then we consider pomonoids over which flatness properties of Rees factor S-posets imply condition (P_w) . In Section 3, we give a classification of pomonoids when Rees factor S-posets satisfying condition (P_w) imply other properties of S-posets.

A subpomonoid K of S is called convex if K = [K] where $[K] = \{x \in S | \exists p, q \in K, p \le x \le q\}$. If K_S is a convex, proper right ideal of the pomonoid S, S/K_S will always stand for $S/\nu(K \times K)$. The following lemma gives an explicit description of the order in S/K_S .

Lemma 1.1 ([5]) Let K_S be a convex, proper right ideal of the pomonoid S. Then for $x, y \in S$,

$$[x] \leq [y]$$
 in $S/K_S \iff (x \leq y)$ or $(x \leq k \text{ and } k' \leq y \text{ for some } k, k' \in K)$.

Moreover, [x] = [y] in S/K_S if, and only if, either x = y or else $x, y \in K$.

Similarly to S-acts, coproducts of S-posets are disjoint unions, with S-action and order defined componentwise. In [6] it was shown that most of flatness properties can be transferred from S-posets over a pomonoid S to their coproducts. To complete this, we show that this is also valid for conditions (P_w) and $(PWP)_w$.

Proposition 1.2 Let S be a pomonoid. Then a right S-poset $A_S = \coprod_{i \in I} A_i$ satisfies condition (P_w) if and only if every strongly convex indecomposable component A_i satisfies condition (P_w) .

Proof Necessity. Suppose that $A_S = \coprod_{i \in I} A_i$ satisfies condition (P_w) . Fix $i \in I$, and let $as \leq bt$ for some $a, b \in A_i$, $s, t \in S$. Since A_S satisfies condition (P_w) , there exist $a' \in A$, $u, v \in S$ such that $a \leq a'u$, $a'v \leq b$, $vs \leq vt$. Now since S-action and order are defined componentwise for $A_S = \coprod_{i \in I} A_i$, $a' \in A_i$, and so the result follows.

Sufficiency. Let $as \leq bt$ for some $a, b \in A$, $s, t \in S$. Since S-action and order of A are defined componentwise, there exists $i \in I$ such that $a, b \in A_i$. Now, since A_i satisfies condition (P_w) , there exist $a' \in A_i$, $u, v \in S$ such that $a \leq a'u$, $a'v \leq b$, $us \leq vt$, and we are done. \square

By a similar argument, one can show the following.

Proposition 1.3 Let S be a pomonoid. Then a right S-poset A_S satisfies condition $(PWP)_w$ if and only if its strongly convex indecomposable components satisfy condition $(PWP)_w$.

2. When flatness properties imply condition (P_w)

In this section, we first focus our attention on Rees factor S-posets satisfying condition (P_w) . Then, we mainly consider the case when flatness properties for Rees factor S-posets imply condition (P_w) .

Let K be a convex, proper right ideal of a pomonoid S. K is called left stabilizing if $k \in [Kk]$ for every $k \in K$. Moreover, K is called strongly left stabilizing if, $(\forall k \in K)(\forall s \in S)$

$$(k \le s \Rightarrow (\exists k' \in K)(k's \le s), \text{ and } s \le k \Rightarrow (\exists k'' \in K)(s \le k''s)).$$

The following result which was proved in [7] will be our main tool in what follows.

Lemma 2.1 Let S be a pomonoid. The Rees factor S-poset S/K by a convex, proper right ideal K_S satisfies condition (P_w) if and only if for any $k, l \in K$ one of the following three conditions is satisfied:

- (a) $k \leq l$;
- (b) There exist $p, q \in K$ such that $k \leq pl$ and q < 1;
- (c) There exist $p, q \in K$ such that 1 < p and $qk \le l$.

For a subpomonoid X of a pomonoid S let $[X)=\{s\in S|\exists\, p\in X, p\leq s\}$ and $[X]=\{p\in S|\exists\, x\in X, p\leq x\}.$

Definition 2.2 Let K be a convex, proper right ideal of a pomonoid S. We say that K has property (X) if it satisfies one of the following conditions:

- (a) q < 1 for some $q \in K$, and K = (Kl) for each $l \in K$;
- (b) q > 1 for some $q \in K$, and K = [Kl) for each $l \in K$.

Now we paraphrase the previous lemma as follows.

Lemma 2.3 Let K be a convex, proper right ideal of a pomonoid S. Then S/K satisfies condition (P_w) if, and only if, either |K| = 1 or K satisfies property (X).

Proof Necessity. Let K be a convex, proper right ideal of a pomonoid S and |K| > 1. Then there exists $q \in K$ such that $q \not \mid 1$. Otherwise, if 1 is incomparable with all elements of K, then by Lemma 2.1 for each $k, l \in K$, $k \le l$. So |K| = 1. Now, suppose that q < 1 for some $q \in K$. Then since K is a convex proper right ideal, there is no $p \in K$ with $1 \le p$, thus fix $l \in K$ by part (b) of Lemma 2.1 for each $k \in K$ there exists $p \in K$ such that $k \le pl$. Then $k \in (Kl]$, and so $K \subseteq (Kl]$. On the other hand, suppose that $t \in (Kl]$, that is, $t \le pl$ for some $p \in K$. Thus, $qt \le t \le pl$, and by convexity of K, $t \in K$. Therefore, K = (Kl]. If q > 1 for some $q \in K$, with the similar argument for each $l \in K$, K = [Kl).

Sufficiency. Suppose that K is a convex, proper right ideal of a pomonoid S. If |K| = 1, then S/K = S satisfies condition (P_w) . Otherwise, by assumption the parts (b) or (c) of Lemma 2.1 holds. Thus S/K satisfies condition (P_w) . \square

A pomonoid S is called weakly right reversible in case $Ss \cap (St] \neq \emptyset$ for all $s, t \in S$. By [5, Theorem 1], Θ satisfies condition (P_w) if and only if S is weakly right reversible.

Theorem 2.4 For any pomonoid S, the following statements are equivalent:

- (i) All principally weakly flat right Rees factor S-posets satisfy condition (P_w) ;
- (ii) S is weakly right reversible and each proper left stabilizing convex right ideal K with |K| > 1 satisfies property (X).

Proof (i) \Rightarrow (ii). Since Θ is principally weakly flat, Θ satisfies condition (P_w) and so S is weakly right reversible. Now, suppose that K is a proper left stabilizing convex right ideal with |K| > 1. Then by [5, Proposition 9], S/K is principally weakly flat, and by assumption S/K satisfies condition (P_w) . Thus in light of Lemma 2.3, K has property (X).

(ii) \Rightarrow (i). As we mentioned, Θ is principally weakly flat, and since S is weakly right reversible

 Θ satisfies condition (P_w) . Now, suppose that S/K is principally weakly flat for a proper convex right ideal K. Using [1, Proposition 9], K is a proper left stabilizing ideal. If |K| = 1, then S/K = S satisfies condition (P_w) . Otherwise, by Lemma 2.3, S/K satisfies condition (P_w) . \square

In [5], it was shown that S/K is principally weakly po-flat for a proper convex right ideal K if and only if K is strongly left stabilizing. Recall that Θ is also principally weakly po-flat. Therefore, similar to the previous argument one can prove the following.

Proposition 2.5 For any pomonoid S, the following statements are equivalent:

- (i) All principally weakly po-flat right Rees factor S-posets satisfy condition (P_w) ;
- (ii) S is weakly right reversible and each proper strongly left stabilizing convex right ideal K with |K| > 1 satisfies property (X).

Theorem 2.6 For any pomonoid S, the following statements are equivalent:

- (i) All weakly flat right Rees factor S-posets satisfy condition (P_w) ;
- (ii) If S is weakly right reversible, then each proper left stabilizing convex right ideal K with |K| > 1 satisfies property (X).
- **Proof** (i) \Rightarrow (ii). Suppose that S is weakly right reversible and K is a proper left stabilizing convex right ideal with |K| > 1. Then by [1, Proposition 14], S/K is weakly flat, and by assumption S/K satisfies condition (P_w) . Hence, by Lemma 2.3, K has property (X).
- (ii) \Rightarrow (i). Suppose that S/K is weakly flat for a proper convex right ideal K. Using [1, Proposition 14], K is a proper left stabilizing ideal and S is weakly right reversible. So by assumption |K| = 1 or K has property (X). Thus by Lemma 2.3, S/K satisfies condition (P_w) .
- By [1, Proposition 13], S/K is weakly po-flat for a proper convex right ideal K if and only if K is strongly left stabilizing and S is weakly right reversible. Hence, similarly the next proposition holds.

Proposition 2.7 For any pomonoid S, the following statements are equivalent:

- (i) All weakly po-flat right Rees factor S-posets satisfy condition (P_w) ;
- (ii) If S is weakly right reversible, then each proper strongly left stabilizing convex right ideal K with |K| > 1 satisfies property (X).

3. When condition (P_w) implies flatness properties

In this section, we consider Rees factor S-posets when condition (P_w) implies some other flatness properties. Recall that for a proper, convex right ideal K, S/K satisfies condition (P) if and only if |K| = 1.

Lemma 3.1 If a pomonoid S has a convex, proper right ideal K such that S/K satisfies condition (P_w) , then S is weakly right reversible.

Proof Suppose that $s, t \in S$ and $k \in K$. Then [k]s = [k]t in S/K_S , by condition (P_w) , there

exist $[a] \in S/K_S$, $u, v \in S$ such that $[k] \leq [a]u$, $[a]v \leq [k]$, $us \leq vt$, and we are done. \square

Theorem 3.2 For any pomonoid S, the following statements are equivalent:

- (i) All right Rees factor S-posets satisfying condition (P_w) also satisfy condition (P);
- (ii) If S is a weakly right reversible pomonoid, then S has no proper, convex right ideal K having property (X) with |K| > 1.
- **Proof** (i) \Rightarrow (ii). Suppose that S is weakly right reversible, and S has a proper convex right ideal K with |K| > 1 and property (X). Then by Lemma 2.3, S/K satisfies condition (P_w) and by assumption S/K satisfies condition (P). So |K| = 1, a contradiction is obtained.
- (ii) \Rightarrow (i). Let K be a convex right ideal and S/K satisfies condition (P_w) . If K = S, $S/K = \Theta$ satisfies condition (P_w) if and only if it satisfies condition (P). Now, suppose that K is a proper convex right ideal of the pomonoid S, and S/K satisfies condition (P_w) . By previous lemma, S is weakly right reversible, and by Lemma 2.3, K is a proper, convex right ideal such that |K| = 1 or K satisfies property (X). By assumption |K| = 1 and S/K satisfies condition (P). \square

Notice that Θ is strongly flat if and only if S is left collapsible. Moreover, if K is a proper convex right ideal such that S/K is strongly flat, then |K| = 1. Hence in a similar way we have the following.

Proposition 3.3 For any pomonoid S, the following statements are equivalent:

- (i) All right Rees factor S-posets satisfying condition (P_w) are strongly flat;
- (ii) If S is weakly right reversible, then S is left collapsible, and S has no proper, convex right ideal K with property (X) and |K| > 1.

If K is a convex, proper right ideal of S, then S/K is projective if and only if |K| = 1. But if K = S, $S/K = \Theta$ is projective if and only if S has a left zero element. Thus by the similar argument we can deduce the next result.

Proposition 3.4 For any pomonoid S, the following statements are equivalent:

- (i) All right Rees factor S-posets satisfying condition (P_w) are projective;
- (ii) If S is weakly right reversible, then S contains a left zero, and S has no proper convex right ideal K with property (X) and |K| > 1.

A convex, proper right ideal K of a pomonoid S is called w-strongly left annihilating, if $[x]_{\rho_K}t \leq [y]_{\rho_K}t$ for any $x,y \in S \setminus K$ and $t \in S$, there exist $u,v \in S$, and $k,k',l,l' \in K$ such that one of the following four conditions is satisfied:

- (a) $x \le u$, $v \le y$ and $ut \le vt$;
- (b) $x \le u, v \le l, l' \le y \text{ and } ut \le vt;$
- (c) $x \le k$, $k' \le u$, $v \le y$ and $ut \le vt$;
- (d) $x \le k$, $k' \le u$, $v \le l$, $l' \le y$ and $ut \le vt$.

In [8], it was proved that the Rees factor S-poset S/K satisfies condition $(PWP)_w$ if and only if K is strongly left stabilizing and w-strongly left annihilating. The following lemma gives a slightly different condition.

Lemma 3.5 Let K be a convex, proper right ideal of the pomonoid S. Then S/K satisfies condition $(PWP)_w$ if, and only if,

- (i) K is strongly left stabilizing;
- (ii) For each $t \in S$ and $x, y \in S \setminus K$ with $(\forall k \in K)$ $(x \nleq k, y \not\geqslant k)$, there exist $u, v \in S$ such that $x \leq u, v \leq y$, and $ut \leq vt$.

Proof Necessity. Suppose that S/K satisfies condition $(PWP)_w$ for a proper convex right ideal K. Let $t \in S$ and $x, y \in S \setminus K$ be such that $(\forall k \in K)(x \not< k, y \not> k)$. Then since parts (b), (c) and (d) of definition of w-strongly left annihilating are not valid for x, y, by part (a) of that definition, there exist $u, v \in S$ such that $x \leq u, v \leq y$, and $ut \leq vt$, as required.

Sufficiency. Suppose that $[xt]_{\rho_K} \leq [yt]_{\rho_K}$ for $x, y, t \in S$. Then we have $xt \leq yt$, or $xt \leq k$ and $k' \leq yt$ for $k, k' \in K$. If $xt \leq yt$, then take u = x, y = v. Otherwise, there are the following four cases:

- (1) If $x, y \in K$, then take u = v = x.
- (2) Let $x \in K$, $y \notin K$. Since $k' \leq yt$, by (i), there exists $k'' \in K$ such that $k''yt \leq yt$, and so take u = k''y and v = y.
 - (3) If $x \notin K, y \in K$, it is similar to (2).
 - (4) Let $x, y \notin K$. Now, we have three cases:
- (a) Assume that there exists $l \in K$ with $x \leq l$. Since $k' \leq yt$, by (i), there exists $k'' \in K$ such that $k''yt \leq yt$. Take u = k''y and v = y. We have $x \leq l$, $k''y \leq k''y$, so $[x]_{\rho_K} \leq [u]_{\rho_K}$, and the result follows.
 - (b) If there exists $l \in K$ with $l \leq y$, it is analogous to (a).
- (c) If $x, y \in S \setminus K$ such that $(\forall k \in K)(x \nleq k, y \not\geqslant k)$, then by (ii) there exist $u, v \in S$ such that x < u, v < y, and ut < vt. Thus we are done. \square

Acknowledgements The author would like to thank the referees for their comments and useful suggestions.

References

- [1] Xiaoping SHI. Strongly flat and po-flat S-posets. Comm. Algebra, 2005, 33(12): 4515–4531.
- [2] A. GOLCHIN, P. REZAEI. Subpullbacks and flatness properties of S-posets. Comm. Algebra, 2009, 37(6): 1995–2007.
- [3] Husheng QIAO, Fang LI. The flatness properties of S-poset A(I) and Rees factor S-posets. Semigroup Forum, 2008, 77(2): 306–315.
- [4] Husheng QIAO, Zhongkui LIU. On the homological classification of pomonoids by their Rees factor S-posets. Semigroup Forum, 2009, 79(2): 385–399.
- [5] S. BULMAN-FLEMING, D. GUTERMUTH, A. GLIMOUR, et al. Flatness properties of S-posets. Comm. Algebra, 2006, 34(4): 1291–1317.
- [6] Xingliang LIANG, Yanfeng LUO. Subpullbacks and coproducts of S-posets. Categ. Gen. Algebr. Struct. Appl., 2015, 3(1): 1–20.
- [7] M. KILP. On the homological classification of pomonoids: atomic posemilattices. Acta Comment. Univ. Tartu. Math., 2013, 17(1): 103-111.
- [8] Xingliang LIANG, Yanfeng LUO. On Condition (PWP)_w for S-posets. Turkish J. Math., 2015, 39(6): 795–809.