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1. Introduction and preliminaries

A continuous function f = u + iv is a complex valued harmonic function in a complex

domain D if both u and v are real harmonic in D. In any simply connected domain D ⊂ C, we

can write f = h + g, where h and g are analytic in D. We call h the analytic part and g the

co-analytic part of f . A necessary and sufficient condition for f to be locally univalent and sense

preserving in D is that |h′(z)| > |g′(z)| in D (see [1]).

Let Hm (m ≥ 1) denote the family of functions f = h + g that are multivalent harmonic

and orientation preserving functions in D with the normalization h(z) = zm +
∑∞

k=m+1 akz
k

and g(z) =
∑∞

k=m bkz
k (|bm| < 1). Ahuja and Jahangiri [2,3] introduced and studied certain

subclasses of the family Hm.

Denote by Hp the class of p-valent harmonic functions f that are sense preserving in U =

{z ∈ C : |z| < 1} and f of the form

f = h+ g, (1.1)

where

h(z) = zp +
∞∑

k=p+1

akz
k and g(z) =

∞∑
k=p+1

bkz
k. (1.2)

Obvious Hp ⊂ Hm.

Also, we denote by H(p) the class of p-valent harmonic functions f ∈ Hp and

h(z) = zp −
∞∑

k=p+1

|ak|zk and g(z) = −
∞∑

k=p+1

|bk|zk. (1.3)
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Let F be fixed multivalent harmonic function given by

F = H(z) +G(z) = zp +
∞∑

k=p+1

Akz
k +

∞∑
k=p+1

Bkzk. (1.4)

We define the Hadamard product (or convolution) of F and f by

(F ∗ f)(z) := zp +
∞∑

k=p+1

akAkz
k +

∞∑
k=p+1

bkBkzk = (f ∗ F )(z). (1.5)

For positive real values of αi (i = 1, . . . , l) and βj (j = 1, . . . ,m), the generalized hypergeo-

metric function lFm (with l numerator and m denominator parameters) is defined by

lFm(α1, . . . , αl;β1, . . . , βm)(z) =
∞∑
k=0

(α1)k . . . (αl)k
(β1)k . . . (βm)k

· z
k

k!
,

where l ≤ m + 1; l,m ∈ N0 := {0, 1, 2, . . .} = N ∪ {0}, and (λ)n is the Pochhammer symbol (or

the shifted factorial) defined (in terms of the Gamma function) by

(λ)n =
Γ(λ+ n)

Γ(λ)
=

{
1, n = 0,

λ(λ+ 1) · · · (λ+ n− 1), n ∈ N.
Corresponding to the function

hp(α1, . . . , αl;β1, . . . , βm; z) = z−p
lFm(α1, . . . , αl;β1, . . . , βm)(z),

the linear operator Hp(α1, . . . , αl;β1, . . . , βm) : Hp −→ Hp is defined by using the following

Hadamard product (or convolution):

Hp(α1, . . . , αl;β1, . . . , βm)f(z) = hp(α1, . . . , αl;β1, . . . , βm; z) ∗ f(z).

For a function f of the form (1.1), we have

Hp(α1, . . . , αl;β1, . . . , βm)f(z) =zp +
∞∑

k=p+1

(α1)k . . . (αl)k
k!(β1)k · · · (βm)k

akz
k+

∞∑
k=p+1

(α1)k . . . (αl)k
k!(β1)k . . . (βm)k

bkzk

:=Hp,l,m[α1]f(z). (1.6)

The above-defined operator Hp,l,m[α1] (p = 1) was introduced by the Dziok-Srivastava operator

[4,5]. Using the same methods of [6], we introduce the generalized Dziok-Srivastava operator in

H(p) as follows:

L1,α1

λ,l,mf(z) = (1− λ)Hp,l,m[α1]f(z) +
λ

p
z(Hp,l,m[α1]f(z))

′

:= Lα1

λ,l,mf(z), λ ≥ 0,

where

z(Hp,l,m[α1]f(z))
′ = z(Hp,l,m[α1]h(z))

′ − z(Hp,l,m[α1]g(z))′.

In general,

Lτ,α1

λ,l,mf(z) = Lα1

λ,l,m(Lτ−1,α1

λ,l,m f(z)), l ≤ m+ 1; l,m ∈ N0, τ ∈ N, (1.7)
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where

Lτ,α1

λ,l,mf(z) = zp+
∞∑

k=p+1

( (1 + kλ
p )(α1)k . . . (αl)k

k!(β1)k . . . (βm)k

)τ

akz
k+

∞∑
k=p+1

( (1 + kλ
p )(α1)k . . . (αl)k

k!(β1)k . . . (βm)k

)τ

akzk (1.8)

and λ ≥ 0, τ ∈ N.
For µ > 0 and τ ∈ N, we introduce the following linear operator J µ

τ : Hp −→ Hp, defined

by

J µ
τ f(z) = J µ

τ (z) ∗ f(z) = J µ
τ (z) ∗ h(z) + J µ

τ (z) ∗ g(z), z ∈ U, (1.9)

where J µ
τ (z) is the function defined as follows:

Lτ,α1

λ,l,m(z) ∗ J µ
τ (z) =

zp

(1− z)µ
, µ > 0, z ∈ U, (1.10)

and

Lτ,α1

λ,l,m(z) = zp +
∞∑

k=p+1

( (1 + kλ
p )(α1)k . . . (αl)k

k!(β1)k . . . (βm)k

)τ

zk. (1.11)

Since
zp

(1− z)µ
= zp +

∞∑
k=1

(µ)k
k!

zk−p, µ > 0, z ∈ U, (1.12)

combining (1.9)–(1.12), we obtain

J µ
τ (z) = zp +

∞∑
k=p+1

( k!(β1)k . . . (βm)k

(1 + kλ
p )(α1)k . . . (αl)k

)τ (µ)k
k!

zk, µ > 0, z ∈ U. (1.13)

If f is given by (1.1), then we find from (1.9) and (1.13) that

J µ
τ f(z) = J µ

τ h(z) + J µ
τ g(z) = zp +

∞∑
k=p+1

Φµ
kakz

k +

∞∑
k=p+1

Φµ
kbkz

k, (1.14)

Φµ
k =

( k!(β1)k . . . (βm)k

(1 + kλ
p )(α1)k . . . (αl)k

)τ (µ)k
k!

, µ > 0. (1.15)

Let f1 and f2 be two analytic functions in the open unit disk U. We say that the function f1

is subordinate to f2 in U, and write f1(z) ≺ f2(z) (z ∈ U), if there exists a Schwarz function ω,

which is analytic in U with ω(0) = 0 and |ω(z)| < 1 (z ∈ U), such that f1(z) = f2(ω(z)) (z ∈ U)
(see [7]).

By making use of the principle of subordination between analytic functions, we introduce

the class Hp(A,B;µ, τ, α, δ).

Definition 1.1 A function f(z) ∈ Hp of the form (1.1) is said to be in the classHp(A,B;µ, τ, α, δ)

if and only if

χδ,µ(f(z))− α|(χδ,µ(f(z))− 1| ≺ 1 +Az

1 +Bz
, (1.16)
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where

χδ,µ(f(z)) = (1− δ)
J µ
τ f(z)

zp
+

δ

pzp−1
(J µ

τ f(z))′ (1.17)

and J µ
τ f(z) is defined by (1.14) and p ∈ N; A,B ∈ R, A ̸= B, |B| ≤ 1; τ ∈ N, µ > 0, α ≥ 0, δ ≥ 0.

For δ = 0, we obtain the following new subclass:

A function f ∈ Hp of the form (1.1) is said to be in the class Lp(A,B;µ, τ, α) if and only if

J µ
τ f(z)

zp
− α|J

µ
τ f(z)

zp
− 1| ≺ 1 +Az

1 +Bz
, (1.18)

where J µ
τ f(z) is defined by (1.14) and p ∈ N; A,B ∈ R, A ̸= B, |B| ≤ 1; τ ∈ N, µ > 0, α ≥ 0.

We also let

Hp(A,B;µ, τ, α, δ) = Hp

∩
Hp(A,B;µ, τ, α, δ)

and

Lp(A,B;µ, τ, α) = Hp

∩
L(A,B;µ, τ, α).

In this paper, we aim to introduce some new subclasses of harmonic multivalent functions

defined by generalized Dziok-Srivastava operator and obtain some results including sufficient

coefficient conditions, distortion bounds and extreme points for functions of these classes.

2. Main results

Lemma 2.1 ([8]) Let α ≥ 0 and A,B ∈ R, A ̸= B, |B| ≤ 1. If ω(z) is an analytic function with

ω(0) = 1, then we have

ω(z)− α|ω(z)− 1| ≺ 1 +Az

1 +Bz
⇐⇒ ω(z)(1− αe−iϕ) + αe−iϕ ≺ 1 +Az

1 +Bz
, ϕ ∈ R. (2.1)

Using Lemma 2.1 and (1.18), we get that f(z) ∈ Hp(A,B;µ, τ, α, δ) if and only if

χδ,µ(f(z))(1− αe−iϕ) + αe−iϕ ≺ 1 +Az

1 +Bz
, (2.2)

where χδ,µ(f(z)) is given by (1.17).

Theorem 2.2 Let f = h + g be such that h and g are given by (1.2). Also, suppose that

p ∈ N, A,B ∈ R and A ̸= B, |B| ≤ 1. If

∞∑
k=p+1

(1 + |B|)(1 + α)(|ξµk ||ak|+ |ηµk ||bk|) ≤ |A−B|, (2.3)

where

ξµk = (1− δ +
δk

p
)Φµ

k and ηµk = (1− δ − δk

p
)Φµ

k (2.4)

and Φµ
k is given by (1.15), then f ∈ Hp(A,B;µ, τ, α, δ).

Proof We first show that if the inequality (2.3) holds for the coefficients of f = h+ g, then the

required condition (2.2) is satisfied. In view of (2.2), we need to prove that p(z) ≺ 1+Az
1+Bz , where

p(z) = χδ,µ(f(z))(1− αe−iϕ) + αe−iϕ. (2.5)
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Using the fact that p(z) ≺ 1+Az
1+Bz ⇐⇒ |1− p(z)| ≤ |Bp(z)−A|, it suffices to show that

|1− p(z)| − |Bp(z)−A| ≤ 0. (2.6)

Therefore, we get

|1− p(z)| − |Bp(z)−A| =
∣∣∣(1− αe−iϕ)

∞∑
k=p+1

[ξµkakz
k−p + ηµk bkz

−pzk]
∣∣∣−

∣∣∣B −B(1− αe−iϕ)

∞∑
k=p+1

[ξµkakz
k−p + ηµk bkz

−pzk]−A
∣∣∣

≤
∣∣∣(1 + α)

∞∑
k=p+1

[|ξµk ||ak||z|
k−p + |ηµk ||bk||z|

k−p]
∣∣∣−

(|A−B| − |B|(1 + α)
∞∑

k=p+1

[|ξµk ||ak||z|
k−p + |ηµk ||bk||z|

k−p]

=

∞∑
k=p+1

(1 + |B|)(1 + α)[|ξµk ||ak||z|
k−p + |ηµk ||bk||z|

k−p]− |A−B|

≤
∞∑

k=p+1

(1 + |B|)(1 + α)[|ξµk ||ak|+ |ηµk ||bk|]− |A−B| ≤ 0.

By hypothesis the last expression is non-positive. Thus the proof is completed. The coefficient

bound (2.3) is sharp for the function

f(z) = zp +
∞∑

k=p+1

|A−B|
(1 + |B|)(1 + α)

(
1

|ξµk |
Xkz

k +
1

|ηµk |
Ykzk), (2.7)

where
∑∞

k=p+1(|Xk|+ |Yk|) = 1. �

Corollary 2.3 Let f = h+ g be such that h and g are given by (1.2), ξµk and ηµk are given by

(2.4). Also, suppose that p ∈ N and A,B ∈ R. Then,

(i) For −1 ≤ B < A ≤ 1, B < 0, if

∞∑
k=p+1

(1−B)(1 + α)(|ξµk ||ak|+ |ηµk ||bk|) ≤ A−B,

then f ∈ Hp(A,B;µ, τ, α, δ).

(ii) For −1 ≤ A < B ≤ 1, B > 0, if

∞∑
k=p+1

(1 +B)(1 + α)(|ξµk ||ak|+ |ηµk ||bk|) ≤ B −A,

then f ∈ Hp(A,B;µ, τ, α, δ).

Corollary 2.4 Let f = h + g be such that h and g are given by (1.2). Also, suppose that

p ∈ N,A,B ∈ R and A ̸= B, |B| ≤ 1. If

∞∑
k=p+1

(1 + |B|)(1 + α)|Φµ
k |(|ak|+ |bk|) ≤ |A−B|,
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where Φµ
k is given by (1.15), then f ∈ Lp(A,B;µ, τ, α).

Theorem 2.5 Let f = h + g be such that h and g are given by (1.2), ξµk and ηµk are given by

(2.4). Also, suppose that p ∈ N, A,B ∈ R and A ̸= B, |B| ≤ 1, 0 ≤ δ < p
2p+1 . Then

(i) For −1 ≤ B < A ≤ 1, B < 0, f ∈ Hp(A,B;µ, τ, α, δ) if and only if

∞∑
k=p+1

(1−B)(1 + α)(ξµk |ak|+ ηµk |bk|) ≤ A−B. (2.8)

(ii) For −1 ≤ A < B ≤ 1, B > 0, f ∈ Hp(A,B;µ, τ, α, δ) if and only if

∞∑
k=p+1

(1 +B)(1 + α)(ξµk |ak|+ ηµk |bk|) ≤ B −A. (2.9)

Proof Since Hp(A,B;µ, τ, α, δ) ⊂ Hp(A,B;µ, τ, α, δ). According to Corollary 2.3, we only need

to prove the “only if” part of the theorem.

(i) Let f ∈ Hp(A,B;µ, τ, α, δ),−1 ≤ B < A ≤ 1, B < 0. Then

| 1− p(z)

Bp(z)−A
| < 1, (2.10)

where p(z) is defined by (2.5). Clearly, (2.10) is equivalent to∣∣∣ (1− αe−iϕ)
∑∞

k=p+1(ξ
µ
k |ak|zk−p + ηµk |bk|z−pzk)

B −B(1− αe−iϕ)
∑∞

k=p+1(ξ
µ
k |ak|zk−p + ηµk |bk|z−pzk)−A

∣∣∣ < 1. (2.11)

From (2.11), we have{ (1− αe−iϕ)
∑∞

k=p+1 ξ
µ
k |ak|zk−p + ηµk |bk|z−pzk)

A−B +B(1− αe−iϕ)
∑∞

k=p+1 ξ
µ
k |ak|zk−p + ηµk |bk|z−pzk)

}
< 1. (2.12)

Taking z = r (0 < r < 1) and ϕ = π, then (2.12) gives

∞∑
k=p+1

(1−B)(1 + α)(ξµk |ak|+ ηµk |bk|)r
k+p ≤ A−B. (2.13)

Letting r → 1 in (2.13), we will get (2.8).

(ii) Similar to the proof of (2.8), we can prove (2.9). �

Corollary 2.6 Let f = h + g be such that h and g are given by (1.2), Φµ
k is given by (1.15).

Also, suppose that p ∈ N,A,B ∈ R and A ̸= B, |B| ≤ 1. Then

(i) For −1 ≤ B < A ≤ 1, B < 0, f ∈ L(A,B;µ, τ, α) if and only if

∞∑
k=p+1

(1−B)(1 + α)Φµ
k(|ak|+ |bk|) ≤ A−B.

(ii) For −1 ≤ A < B ≤ 1, B > 0, f ∈ L(A,B;µ, τ, α) if and only if

∞∑
k=p+1

(1 +B)(1 + α)Φµ
k(|ak|+ |bk|) ≤ B −A.



A new class of harmonic multivalent functions defined by subordination 543

Theorem 2.7 Let f = h + g be such that h and g are given by (1.3), ξµk and ηµk are given by

(2.4). Also, suppose that µ > 1, 0 ≤ δ < p
2p+1 . Then

(i) For −1 ≤ B < A ≤ 1, B < 0, if f ∈ Hp(A,B;µ, τ, α, δ), then

rp − A−B

(1−B)(1 + α)ηµp+1

rp+1 ≤ |f(z)| ≤ rp +
A−B

(1−B)(1 + α)ηµp+1

rp+1. (2.14)

(ii) For −1 ≤ A < B ≤ 1, B > 0, if f ∈ Hp(A,B;µ, τ, α, δ), then

rp − B −A

(1 +B)(1 + α)ηµp+1

rp+1 ≤ |f(z)| ≤ rp +
B −A

(1 +B)(1 + α)ηµp+1

rp+1. (2.15)

Proof Since f ∈ Hp(A,B;µ, τ, α, δ), by using Theorem 2.5, we have

(1−B)(1 + α)ηµp+1

∞∑
k=p+1

(|ak|+ |bk|) ≤
∞∑

k=p+1

(1−B)(1 + α)(ξµk |ak|+ ηµk |bk|) ≤ A−B, (2.16)

which implies that

(i) If −1 ≤ B < A ≤ 1 and B < 0, then from (2.16) we obtain

∞∑
k=p+1

(|ak|+ |bk|) ≤
A−B

(1−B)(1 + α)ηµp+1

. (2.17)

On the other hand,

|f(z)| ≤ rp +
∞∑

k=p+1

(|ak|+ |bk|)rk ≤ rp + rp+1
∞∑

k=p+1

(|ak|+ |bk|)

≤ rp +
A−B

(1−B)(1 + α)ηµp+1

rp+1

and

|f(z)| ≥ rp − A−B

(1−B)(1 + α)ηµp+1

rp+1.

Hence (2.14) follows. The case for (ii) −1 ≤ A < B ≤ 1 and B > 0 can be proved in the same

manner and hence we omit it. �

Corollary 2.8 Let f = h+ g be such that h and g are given by (1.3), ξµk and ηµk are given by

(2.4). Also, suppose that µ > 1, 0 ≤ δ < p
2p+1 . Then

(i) For −1 ≤ B < A ≤ 1, B < 0, if f ∈ Hp(A,B;µ, τ, α, δ), then

{w : |w| < 1− A−B

(1−B)(1 + α)ηµp+1

} ⊂ f(U).

(ii) For −1 ≤ A < B ≤ 1, B > 0, if f ∈ Hp(A,B;µ, τ, α, δ), then

{w : |w| < 1− B −A

(1 +B)(1 + α)ηµp+1

} ⊂ f(U).

Corollary 2.9 Let f = h + g be such that h and g are given by (1.3), Φµ
k is given by (1.15).

Also, suppose that |z| = r < 1, µ > 1. Then

(i) For −1 ≤ B < A ≤ 1, B < 0, if f ∈ Lp(A,B;µ, τ, α), then

rp − A−B

(1−B)(1 + α)Φµ
p+1

rp+1 ≤ |f(z)| ≤ rp +
A−B

(1−B)(1 + α)Φµ
p+1

rp+1.
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(ii) For −1 ≤ A < B ≤ 1, B > 0, if f ∈ Lp(A,B;µ, τ, α), then

rp − B −A

(1 +B)(1 + α)Φµ
p+1

rp+1 ≤ |f(z)| ≤ rp +
B −A

(1 +B)(1 + α)Φµ
p+1

rp+1.

Theorem 2.10 Let f = h + g be such that h and g are given by (1.2), ξµk and ηµk are given

by (2.4). Also, suppose that p ∈ N,A,B ∈ R and A ̸= B, |B| ≤ 1, 0 ≤ δ < p
2p+1 . Then

f ∈ clcoHp(A,B;µ, τ, α, δ) if and only if

f(z) =
∞∑
k=p

Xkhk +
∞∑

k=p+1

Yk(hp + gk), z ∈ U∗, (2.18)

where

hp = zp,

hk =


zp − A−B

(1−B)(1 + α)ξµk
zk, k ≥ p+ 1,−1 ≤ B < A ≤ 1, B < 0,

zp − B −A

(1 +B)(1 + α)ξµk
zk, k ≥ p+ 1,−1 ≤ A < B ≤ 1, B > 0,

gk =


− A−B

(1−B)(1 + α)ηµk
zk, k ≥ p+ 1,−1 ≤ B < A ≤ 1, B < 0,

− B −A

(1 +B)(1 + α)ηµk
zk, k ≥ p+ 1,−1 ≤ A < B ≤ 1, B > 0,

and

Xp ≡ 1−
∞∑

k=p+1

(Xk + Yk), Xk ≥ 0, Yk ≥ 0.

In particular, the extreme points of Hp(A,B;µ, τ, α) are hk and gk.

Proof Let −1 ≤ B < A ≤ 1, B < 0. We get

f(z) = zp −
∞∑

k=p+1

A−B

(1−B)(1 + α)
(
1

ξµk
Xkz

k +
1

ηµk
Ykzk). (2.19)

Since 0 ≤ Xk ≤ 1 (k = p+ 1, . . .), we obtain

∞∑
k=p+1

(
(1−B)(1 + α)ξµk

A−B

A−B

(1−B)(1 + α)ξµk
Xk +

(1−B)(1 + α)ηµk
A−B

A−B

(1−B)(1 + α)ηµk
Yk)

=
∞∑

k=p+1

(Xk + Yk) = 1−Xp ≤ 1.

Consequently, using Theorem 2.5, we have f ∈ Hp(A,B;µ, τ, α, δ).

Conversely, if f ∈ Hp(A,B;µ, τ, α, δ), then

|a
k
| ≤ A−B

(1−B)(1 + α)ξµk
, |b

k
| ≤ A−B

(1−B)(1 + α)ηµk
. (2.20)

Putting

Xk =
(1−B)(1 + α)ξµk |ak|

A−B
, Yk =

(1−B)(1 + α)ηµk |bk|
A−B

(2.21)
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and Xp = 1−
∑∞

k=p+1(Xk + Yk) ≥ 0, we obtain

f(z) = zp −
∞∑

k=p+1

|ak|zk −
∞∑

k=p+1

|bk|zk

= (Xp +

∞∑
k=p+1

(Xk + Yk))z
p −

∞∑
k=p+1

A−B

(1−B)(1 + α)ξµk
Xkz

k−

∞∑
k=p+1

A−B

(1−B)(1 + α)ηµk
Ykz

k

= Xkz
p +

∞∑
k=p+1

hk(z)Xk +
∞∑

k=p+1

(zp + gk(z))Yk

= Xphp +
∞∑

k=p+1

hkXk +
∞∑

k=p+1

(hp + gk)Yk

=

∞∑
k=p

hkXk +

∞∑
k=p+1

(hp + gk)Yk.

Thus f can be expressed in the form (2.18). The case for −1 ≤ A < B ≤ 1, B > 0 can be proved

in the same manner and hence we omit it. �

Corollary 2.11 Let f = h+ g be such that h and g are given by (1.2), Φµ
k is given by (1.15).

Also, suppose that p ∈ N,A,B ∈ R and A ̸= B, |B| ≤ 1. Then f ∈ clcoLp(A,B;µ, τ, α) if and

only if

f(z) =

∞∑
k=p

Xkhk +

∞∑
k=p+1

Yk(hp + gk), z ∈ U∗,

where

hp = zp,

hk =


zp − A−B

(1−B)(1 + α)Φµ
k

zk, k ≥ p+ 1,−1 ≤ B < A ≤ 1, B < 0,

zp − B −A

(1 +B)(1 + α)Φµ
k

zk, k ≥ p+ 1,−1 ≤ A < B ≤ 1, B > 0,

gk =


− A−B

(1−B)(1 + α)Φµ
k

zk, k ≥ p+ 1,−1 ≤ B < A ≤ 1, B < 0,

− B −A

(1 +B)(1 + α)Φµ
k

zk, k ≥ p+ 1,−1 ≤ A < B ≤ 1, B > 0,

and

Xp ≡ 1−
∞∑

k=p+1

(Xk + Yk).

In particular, the extreme points of Lp(A,B;µ, τ, α) are hk and gk.

Theorem 2.12 The class Hp(A,B;µ, τ, α, δ) (0 ≤ δ < p
2p+1 ) is closed under convex combina-

tions.
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Proof For j = 1, 2, let the functions fj given by

fj(z) = zp −
∞∑

k=p+1

|ajk|zk −
∞∑

k=p+1

|bjk|zk, (2.22)

be in the class Hp(A,B;µ, τ, α, δ).

For λj ,
∑∞

j=1 λj = 1, the convex combinations can be expressed in the form

∞∑
j=1

λjfj = zp −
∞∑

k=p+1

(
∞∑
j=1

λj |ajk|)zk −
∞∑

k=p+1

(
∞∑
j=1

λj |bjk|)zk. (2.23)

(i) For −1 ≤ B < A ≤ 1, B < 0, from (2.8), (2.22) and (2.23), we get

∞∑
k=p+1

(1−B)(1 + α)(

∞∑
j=1

λj(ξ
µ
k |ajk|+ ηµk |bjk|))

=
∞∑
j=1

λj [
∞∑

k=p+1

(1−B)(1 + α)(ξµk |ajk|+ ηµk |bjk|)]

≤
∞∑
j=1

λj(A−B) = A−B.

That is,
∑∞

j=1 λjfj ∈ Hp(A,B;µ, τ, α, δ). The case for (ii) −1 ≤ A < B ≤ 1, B > 0 can be

proved in the same manner and hence we omit it. �

Corollary 2.13 The class Lp(A,B;µ, τ, α, δ) is closed under convex combinations.
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