A New Class of Harmonic Multivalent Functions Defined by Subordination

Shuhai LI*, Huo TANG
School of Mathematics and Statistics, Chifeng University, Inner Mongolia 024000, P. R. China

Abstract

In the present paper, we introduce some new subclasses of harmonic multivalent functions defined by generalized Dziok-Srivastava operator. Sufficient coefficient conditions, distortion bounds and extreme points for functions of these classes are obtained.

Keywords harmonic multivalent functions; Dziok-Srivastava operator; subordination; extreme points; distortion bounds
MR(2010) Subject Classification 30C45; 30C50; 30C80

1. Introduction and preliminaries

A continuous function $f=u+i v$ is a complex valued harmonic function in a complex domain D if both u and v are real harmonic in D. In any simply connected domain $D \subset C$, we can write $f=h+\bar{g}$, where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense preserving in D is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ in D (see [1]).

Let $H_{m}(m \geq 1)$ denote the family of functions $f=h+\bar{g}$ that are multivalent harmonic and orientation preserving functions in D with the normalization $h(z)=z^{m}+\sum_{k=m+1}^{\infty} a_{k} z^{k}$ and $g(z)=\sum_{k=m}^{\infty} b_{k} z^{k}\left(\left|b_{m}\right|<1\right)$. Ahuja and Jahangiri [2,3] introduced and studied certain subclasses of the family H_{m}.

Denote by H_{p} the class of p-valent harmonic functions f that are sense preserving in $\mathbb{U}=$ $\{z \in \mathbb{C}:|z|<1\}$ and f of the form

$$
\begin{equation*}
f=h+\bar{g}, \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
h(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} \text { and } g(z)=\sum_{k=p+1}^{\infty} b_{k} z^{k} . \tag{1.2}
\end{equation*}
$$

Obvious $H_{p} \subset H_{m}$.
Also, we denote by $\bar{H}_{(p)}$ the class of p-valent harmonic functions $f \in H_{p}$ and

$$
\begin{equation*}
h(z)=z^{p}-\sum_{k=p+1}^{\infty}\left|a_{k}\right| z^{k} \text { and } g(z)=-\sum_{k=p+1}^{\infty}\left|b_{k}\right| z^{k} . \tag{1.3}
\end{equation*}
$$

[^0]Let F be fixed multivalent harmonic function given by

$$
\begin{equation*}
F=H(z)+\overline{G(z)}=z^{p}+\sum_{k=p+1}^{\infty} A_{k} z^{k}+\overline{\sum_{k=p+1}^{\infty} B_{k} z^{k}} \tag{1.4}
\end{equation*}
$$

We define the Hadamard product (or convolution) of F and f by

$$
\begin{equation*}
(F * f)(z):=z^{p}+\sum_{k=p+1}^{\infty} a_{k} A_{k} z^{k}+\overline{\sum_{k=p+1}^{\infty} b_{k} B_{k} z^{k}}=(f * F)(z) . \tag{1.5}
\end{equation*}
$$

For positive real values of $\alpha_{i}(i=1, \ldots, l)$ and $\beta_{j}(j=1, \ldots, m)$, the generalized hypergeometric function ${ }_{l} F_{m}$ (with l numerator and m denominator parameters) is defined by

$$
{ }_{l} F_{m}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right)(z)=\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \ldots\left(\alpha_{l}\right)_{k}}{\left(\beta_{1}\right)_{k} \ldots\left(\beta_{m}\right)_{k}} \cdot \frac{z^{k}}{k!}
$$

where $l \leq m+1 ; l, m \in \mathbb{N}_{0}:=\{0,1,2, \ldots\}=\mathbb{N} \cup\{0\}$, and $(\lambda)_{n}$ is the Pochhammer symbol (or the shifted factorial) defined (in terms of the Gamma function) by

$$
(\lambda)_{n}=\frac{\Gamma(\lambda+n)}{\Gamma(\lambda)}= \begin{cases}1, & n=0 \\ \lambda(\lambda+1) \cdots(\lambda+n-1), & n \in \mathbb{N}\end{cases}
$$

Corresponding to the function

$$
h_{p}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right)=z^{-p}{ }_{l} F_{m}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right)(z),
$$

the linear operator $H_{p}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right): H_{p} \longrightarrow H_{p}$ is defined by using the following Hadamard product (or convolution):

$$
H_{p}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right) f(z)=h_{p}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right) * f(z) .
$$

For a function f of the form (1.1), we have

$$
\begin{align*}
H_{p}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m}\right) f(z)= & z^{p}+\sum_{k=p+1}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \ldots\left(\alpha_{l}\right)_{k}}{k!\left(\beta_{1}\right)_{k} \cdots\left(\beta_{m}\right)_{k}} a_{k} z^{k}+ \\
& \frac{\sum_{k=p+1}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \ldots\left(\alpha_{l}\right)_{k}}{k!\left(\beta_{1}\right)_{k} \ldots\left(\beta_{m}\right)_{k}} b_{k} z^{k}}{:=} \\
: & H_{p, l, m}\left[\alpha_{1}\right] f(z) . \tag{1.6}
\end{align*}
$$

The above-defined operator $H_{p, l, m}\left[\alpha_{1}\right](p=1)$ was introduced by the Dziok-Srivastava operator $[4,5]$. Using the same methods of [6], we introduce the generalized Dziok-Srivastava operator in $H_{(p)}$ as follows:

$$
\begin{aligned}
L_{\lambda, l, m}^{1, \alpha_{1}} f(z) & =(1-\lambda) H_{p, l, m}\left[\alpha_{1}\right] f(z)+\frac{\lambda}{p} z\left(H_{p, l, m}\left[\alpha_{1}\right] f(z)\right)^{\prime} \\
& :=L_{\lambda, l, m}^{\alpha_{1}} f(z), \quad \lambda \geq 0
\end{aligned}
$$

where

$$
z\left(H_{p, l, m}\left[\alpha_{1}\right] f(z)\right)^{\prime}=z\left(H_{p, l, m}\left[\alpha_{1}\right] h(z)\right)^{\prime}-\overline{z\left(H_{p, l, m}\left[\alpha_{1}\right] g(z)\right)^{\prime}} .
$$

In general,

$$
\begin{equation*}
L_{\lambda, l, m}^{\tau, \alpha_{1}} f(z)=L_{\lambda, l, m}^{\alpha_{1}}\left(L_{\lambda, l, m}^{\tau-1, \alpha_{1}} f(z)\right), \quad l \leq m+1 ; l, m \in \mathbb{N}_{0}, \tau \in \mathbb{N} \tag{1.7}
\end{equation*}
$$

where

$$
L_{\lambda, l, m}^{\tau, \alpha_{1}} f(z)=z^{p}+\frac{\sum_{k=p+1}^{\infty}\left(\frac{\left(1+\frac{k \lambda}{p}\right)\left(\alpha_{1}\right)_{k} \ldots\left(\alpha_{l}\right)_{k}}{k!\left(\beta_{1}\right)_{k} \ldots\left(\beta_{m}\right)_{k}}\right)^{\tau} a_{k} z^{k}+}{\sum_{k=p+1}^{\infty}\left(\frac{\left(1+\frac{k \lambda}{p}\right)\left(\alpha_{1}\right)_{k} \ldots\left(\alpha_{l}\right)_{k}}{k!\left(\beta_{1}\right)_{k} \ldots\left(\beta_{m}\right)_{k}}\right)^{\tau} a_{k} z^{k}}
$$

and $\lambda \geq 0, \tau \in \mathbb{N}$.
For $\mu>0$ and $\tau \in \mathbb{N}$, we introduce the following linear operator $\mathcal{J}_{\tau}^{\mu}: H_{p} \longrightarrow H_{p}$, defined by

$$
\begin{equation*}
\mathcal{J}_{\tau}^{\mu} f(z)=\mathcal{J}_{\tau}^{\mu}(z) * f(z)=\mathcal{J}_{\tau}^{\mu}(z) * h(z)+\overline{\mathcal{J}_{\tau}^{\mu}(z) * g(z)}, \quad z \in \mathbb{U} \tag{1.9}
\end{equation*}
$$

where $\mathcal{J}_{\tau}^{\mu}(z)$ is the function defined as follows:

$$
\begin{equation*}
L_{\lambda, l, m}^{\tau, \alpha_{1}}(z) * \mathcal{J}_{\tau}^{\mu}(z)=\frac{z^{p}}{(1-z)^{\mu}}, \quad \mu>0, z \in \mathbb{U} \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{\lambda, l, m}^{\tau, \alpha_{1}}(z)=z^{p}+\sum_{k=p+1}^{\infty}\left(\frac{\left(1+\frac{k \lambda}{p}\right)\left(\alpha_{1}\right)_{k} \ldots\left(\alpha_{l}\right)_{k}}{k!\left(\beta_{1}\right)_{k} \ldots\left(\beta_{m}\right)_{k}}\right)^{\tau} z^{k} . \tag{1.11}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{z^{p}}{(1-z)^{\mu}}=z^{p}+\sum_{k=1}^{\infty} \frac{(\mu)_{k}}{k!} z^{k-p}, \quad \mu>0, z \in \mathbb{U} \tag{1.12}
\end{equation*}
$$

combining (1.9)-(1.12), we obtain

$$
\begin{equation*}
\mathcal{J}_{\tau}^{\mu}(z)=z^{p}+\sum_{k=p+1}^{\infty}\left(\frac{k!\left(\beta_{1}\right)_{k} \ldots\left(\beta_{m}\right)_{k}}{\left(1+\frac{k \lambda}{p}\right)\left(\alpha_{1}\right)_{k} \ldots\left(\alpha_{l}\right)_{k}}\right)^{\tau} \frac{(\mu)_{k}}{k!} z^{k}, \quad \mu>0, z \in \mathbb{U} . \tag{1.13}
\end{equation*}
$$

If f is given by (1.1), then we find from (1.9) and (1.13) that

$$
\begin{gather*}
\mathcal{J}_{\tau}^{\mu} f(z)=\mathcal{J}_{\tau}^{\mu} h(z)+\overline{\mathcal{J}_{\tau}^{\mu} g(z)}=z^{p}+\sum_{k=p+1}^{\infty} \Phi_{k}^{\mu} a_{k} z^{k}+\overline{\sum_{k=p+1}^{\infty} \Phi_{k}^{\mu} b_{k} z^{k}} \tag{1.14}\\
\Phi_{k}^{\mu}=\left(\frac{k!\left(\beta_{1}\right)_{k} \ldots\left(\beta_{m}\right)_{k}}{\left(1+\frac{k \lambda}{p}\right)\left(\alpha_{1}\right)_{k} \ldots\left(\alpha_{l}\right)_{k}}\right)^{\tau} \frac{(\mu)_{k}}{k!}, \quad \mu>0 \tag{1.15}
\end{gather*}
$$

Let f_{1} and f_{2} be two analytic functions in the open unit disk \mathbb{U}. We say that the function f_{1} is subordinate to f_{2} in \mathbb{U}, and write $f_{1}(z) \prec f_{2}(z)(z \in \mathbb{U})$, if there exists a Schwarz function ω, which is analytic in \mathbb{U} with $\omega(0)=0$ and $|\omega(z)|<1 \quad(z \in \mathbb{U})$, such that $f_{1}(z)=f_{2}(\omega(z))(z \in \mathbb{U})$ (see [7]).

By making use of the principle of subordination between analytic functions, we introduce the class $H_{p}(A, B ; \mu, \tau, \alpha, \delta)$.

Definition 1.1 A function $f(z) \in H_{p}$ of the form (1.1) is said to be in the class $H_{p}(A, B ; \mu, \tau, \alpha, \delta)$ if and only if

$$
\begin{equation*}
\chi_{\delta, \mu}(f(z))-\alpha \left\lvert\,\left(\chi_{\delta, \mu}(f(z))-1 \left\lvert\, \prec \frac{1+A z}{1+B z}\right.,\right.\right. \tag{1.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi_{\delta, \mu}(f(z))=(1-\delta) \frac{\mathcal{J}_{\tau}^{\mu} f(z)}{z^{p}}+\frac{\delta}{p z^{p-1}}\left(\mathcal{J}_{\tau}^{\mu} f(z)\right)^{\prime} \tag{1.17}
\end{equation*}
$$

and $\mathcal{J}_{\tau}^{\mu} f(z)$ is defined by (1.14) and $p \in \mathbb{N} ; A, B \in \mathbb{R}, A \neq B,|B| \leq 1 ; \tau \in \mathbb{N}, \mu>0, \alpha \geq 0, \delta \geq 0$.
For $\delta=0$, we obtain the following new subclass:
A function $f \in H_{p}$ of the form (1.1) is said to be in the class $L_{p}(A, B ; \mu, \tau, \alpha)$ if and only if

$$
\begin{equation*}
\frac{\mathcal{J}_{\tau}^{\mu} f(z)}{z^{p}}-\alpha\left|\frac{\mathcal{J}_{\tau}^{\mu} f(z)}{z^{p}}-1\right| \prec \frac{1+A z}{1+B z} \tag{1.18}
\end{equation*}
$$

where $\mathcal{J}_{\tau}^{\mu} f(z)$ is defined by (1.14) and $p \in \mathbb{N} ; A, B \in \mathbb{R}, A \neq B,|B| \leq 1 ; \tau \in \mathbb{N}, \mu>0, \alpha \geq 0$.
We also let

$$
\bar{H}_{p}(A, B ; \mu, \tau, \alpha, \delta)=\bar{H}_{p} \bigcap H_{p}(A, B ; \mu, \tau, \alpha, \delta)
$$

and

$$
\bar{L}_{p}(A, B ; \mu, \tau, \alpha)=\bar{H}_{p} \bigcap L(A, B ; \mu, \tau, \alpha) .
$$

In this paper, we aim to introduce some new subclasses of harmonic multivalent functions defined by generalized Dziok-Srivastava operator and obtain some results including sufficient coefficient conditions, distortion bounds and extreme points for functions of these classes.

2. Main results

Lemma 2.1 ([8]) Let $\alpha \geq 0$ and $A, B \in \mathbb{R}, A \neq B,|B| \leq 1$. If $\omega(z)$ is an analytic function with $\omega(0)=1$, then we have

$$
\begin{equation*}
\omega(z)-\alpha|\omega(z)-1| \prec \frac{1+A z}{1+B z} \Longleftrightarrow \omega(z)\left(1-\alpha e^{-i \phi}\right)+\alpha e^{-i \phi} \prec \frac{1+A z}{1+B z}, \quad \phi \in \mathbb{R} . \tag{2.1}
\end{equation*}
$$

Using Lemma 2.1 and (1.18), we get that $f(z) \in H_{p}(A, B ; \mu, \tau, \alpha, \delta)$ if and only if

$$
\begin{equation*}
\chi_{\delta, \mu}(f(z))\left(1-\alpha e^{-i \phi}\right)+\alpha e^{-i \phi} \prec \frac{1+A z}{1+B z}, \tag{2.2}
\end{equation*}
$$

where $\chi_{\delta, \mu}(f(z))$ is given by (1.17).
Theorem 2.2 Let $f=h+\bar{g}$ be such that h and g are given by (1.2). Also, suppose that $p \in \mathbb{N}, A, B \in \mathbb{R}$ and $A \neq B,|B| \leq 1$. If

$$
\begin{equation*}
\sum_{k=p+1}^{\infty}(1+|B|)(1+\alpha)\left(\left|\xi_{k}^{\mu}\right|\left|a_{k}\right|+\left|\eta_{k}^{\mu}\right|\left|b_{k}\right|\right) \leq|A-B| \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi_{k}^{\mu}=\left(1-\delta+\frac{\delta k}{p}\right) \Phi_{k}^{\mu} \text { and } \eta_{k}^{\mu}=\left(1-\delta-\frac{\delta k}{p}\right) \Phi_{k}^{\mu} \tag{2.4}
\end{equation*}
$$

and Φ_{k}^{μ} is given by (1.15), then $f \in H_{p}(A, B ; \mu, \tau, \alpha, \delta)$.
Proof We first show that if the inequality (2.3) holds for the coefficients of $f=h+\bar{g}$, then the required condition (2.2) is satisfied. In view of (2.2), we need to prove that $p(z) \prec \frac{1+A z}{1+B z}$, where

$$
\begin{equation*}
p(z)=\chi_{\delta, \mu}(f(z))\left(1-\alpha e^{-i \phi}\right)+\alpha e^{-i \phi} . \tag{2.5}
\end{equation*}
$$

Using the fact that $p(z) \prec \frac{1+A z}{1+B z} \Longleftrightarrow|1-p(z)| \leq|B p(z)-A|$, it suffices to show that

$$
\begin{equation*}
|1-p(z)|-|B p(z)-A| \leq 0 \tag{2.6}
\end{equation*}
$$

Therefore, we get

$$
\begin{aligned}
\mid 1- & p(z)\left|-|B p(z)-A|=\left|\left(1-\alpha e^{-i \phi}\right) \sum_{k=p+1}^{\infty}\left[\xi_{k}^{\mu} a_{k} z^{k-p}+\eta_{k}^{\mu} b_{k} z^{-p} \overline{z^{k}}\right]\right|-\right. \\
& \left|B-B\left(1-\alpha e^{-i \phi}\right) \sum_{k=p+1}^{\infty}\left[\xi_{k}^{\mu} a_{k} z^{k-p}+\eta_{k}^{\mu} b_{k} z^{-p} \overline{z^{k}}\right]-A\right| \\
\leq & \left|(1+\alpha) \sum_{k=p+1}^{\infty}\left[\left|\xi_{k}^{\mu}\right|\left|a_{k}\right||z|^{k-p}+\left|\eta_{k}^{\mu}\right|\left|b_{k}\right||z|^{k-p}\right]\right|- \\
& \left(|A-B|-|B|(1+\alpha) \sum_{k=p+1}^{\infty}\left[\left|\xi_{k}^{\mu}\right|\left|a_{k}\right||z|^{k-p}+\left|\eta_{k}^{\mu}\right|\left|b_{k}\right||z|^{k-p}\right]\right. \\
= & \sum_{k=p+1}^{\infty}(1+|B|)(1+\alpha)\left[\left|\xi_{k}^{\mu}\right|\left|a_{k}\right||z|^{k-p}+\left|\eta_{k}^{\mu}\right|\left|b_{k}\right||z|^{k-p}\right]-|A-B| \\
\leq & \sum_{k=p+1}^{\infty}(1+|B|)(1+\alpha)\left[\left|\xi_{k}^{\mu}\right|\left|a_{k}\right|+\left|\eta_{k}^{\mu}\right|\left|b_{k}\right|\right]-|A-B| \leq 0 .
\end{aligned}
$$

By hypothesis the last expression is non-positive. Thus the proof is completed. The coefficient bound (2.3) is sharp for the function

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} \frac{|A-B|}{(1+|B|)(1+\alpha)}\left(\frac{1}{\left|\xi_{k}^{\mu}\right|} X_{k} z^{k}+\frac{1}{\left|\eta_{k}^{\mu}\right|} \overline{Y_{k}} \overline{z^{k}}\right), \tag{2.7}
\end{equation*}
$$

where $\sum_{k=p+1}^{\infty}\left(\left|X_{k}\right|+\left|Y_{k}\right|\right)=1$.
Corollary 2.3 Let $f=h+\bar{g}$ be such that h and g are given by (1.2), ξ_{k}^{μ} and η_{k}^{μ} are given by (2.4). Also, suppose that $p \in N$ and $A, B \in R$. Then,
(i) For $-1 \leq B<A \leq 1, B<0$, if

$$
\sum_{k=p+1}^{\infty}(1-B)(1+\alpha)\left(\left|\xi_{k}^{\mu}\right|\left|a_{k}\right|+\left|\eta_{k}^{\mu}\right|\left|b_{k}\right|\right) \leq A-B
$$

then $f \in H_{p}(A, B ; \mu, \tau, \alpha, \delta)$.
(ii) For $-1 \leq A<B \leq 1, B>0$, if

$$
\sum_{k=p+1}^{\infty}(1+B)(1+\alpha)\left(\left|\xi_{k}^{\mu}\right|\left|a_{k}\right|+\left|\eta_{k}^{\mu}\right|\left|b_{k}\right|\right) \leq B-A
$$

then $f \in H_{p}(A, B ; \mu, \tau, \alpha, \delta)$.
Corollary 2.4 Let $f=h+\bar{g}$ be such that h and g are given by (1.2). Also, suppose that $p \in N, A, B \in R$ and $A \neq B,|B| \leq 1$. If

$$
\sum_{k=p+1}^{\infty}(1+|B|)(1+\alpha)\left|\Phi_{k}^{\mu}\right|\left(\left|a_{k}\right|+\left|b_{k}\right|\right) \leq|A-B|
$$

where Φ_{k}^{μ} is given by (1.15), then $f \in L_{p}(A, B ; \mu, \tau, \alpha)$.
Theorem 2.5 Let $f=h+\bar{g}$ be such that h and g are given by (1.2), ξ_{k}^{μ} and η_{k}^{μ} are given by (2.4). Also, suppose that $p \in \mathbb{N}, A, B \in \mathbb{R}$ and $A \neq B,|B| \leq 1,0 \leq \delta<\frac{p}{2 p+1}$. Then
(i) For $-1 \leq B<A \leq 1, B<0, f \in \bar{H}_{p}(A, B ; \mu, \tau, \alpha, \delta)$ if and only if

$$
\begin{equation*}
\sum_{k=p+1}^{\infty}(1-B)(1+\alpha)\left(\xi_{k}^{\mu}\left|a_{k}\right|+\eta_{k}^{\mu}\left|b_{k}\right|\right) \leq A-B \tag{2.8}
\end{equation*}
$$

(ii) For $-1 \leq A<B \leq 1, B>0, f \in \bar{H}_{p}(A, B ; \mu, \tau, \alpha, \delta)$ if and only if

$$
\begin{equation*}
\sum_{k=p+1}^{\infty}(1+B)(1+\alpha)\left(\xi_{k}^{\mu}\left|a_{k}\right|+\eta_{k}^{\mu}\left|b_{k}\right|\right) \leq B-A \tag{2.9}
\end{equation*}
$$

Proof Since $\bar{H}_{p}(A, B ; \mu, \tau, \alpha, \delta) \subset H_{p}(A, B ; \mu, \tau, \alpha, \delta)$. According to Corollary 2.3, we only need to prove the "only if" part of the theorem.
(i) Let $f \in \bar{H}_{p}(A, B ; \mu, \tau, \alpha, \delta),-1 \leq B<A \leq 1, B<0$. Then

$$
\begin{equation*}
\left|\frac{1-p(z)}{B p(z)-A}\right|<1 \tag{2.10}
\end{equation*}
$$

where $p(z)$ is defined by (2.5). Clearly, (2.10) is equivalent to

$$
\begin{equation*}
\left|\frac{\left(1-\alpha e^{-i \phi}\right) \sum_{k=p+1}^{\infty}\left(\xi_{k}^{\mu}\left|a_{k}\right| z^{k-p}+\eta_{k}^{\mu}\left|b_{k}\right| z^{-p} \overline{z^{k}}\right)}{B-B\left(1-\alpha e^{-i \phi}\right) \sum_{k=p+1}^{\infty}\left(\xi_{k}^{\mu}\left|a_{k}\right| z^{k-p}+\eta_{k}^{\mu}\left|b_{k}\right| z^{-p} \overline{z^{k}}\right)-A}\right|<1 . \tag{2.11}
\end{equation*}
$$

From (2.11), we have

$$
\begin{equation*}
\left\{\frac{\left.\left(1-\alpha e^{-i \phi}\right) \sum_{k=p+1}^{\infty} \xi_{k}^{\mu}\left|a_{k}\right| z^{k-p}+\eta_{k}^{\mu}\left|b_{k}\right| z^{-p} \overline{z^{k}}\right)}{\left.A-B+B\left(1-\alpha e^{-i \phi}\right) \sum_{k=p+1}^{\infty} \xi_{k}^{\mu}\left|a_{k}\right| z^{k-p}+\eta_{k}^{\mu}\left|b_{k}\right| z^{-p} \overline{z^{k}}\right)}\right\}<1 \tag{2.12}
\end{equation*}
$$

Taking $z=r(0<r<1)$ and $\phi=\pi$, then (2.12) gives

$$
\begin{equation*}
\sum_{k=p+1}^{\infty}(1-B)(1+\alpha)\left(\xi_{k}^{\mu}\left|a_{k}\right|+\eta_{k}^{\mu}\left|b_{k}\right|\right) r^{k+p} \leq A-B \tag{2.13}
\end{equation*}
$$

Letting $r \rightarrow 1$ in (2.13), we will get (2.8).
(ii) Similar to the proof of (2.8), we can prove (2.9).

Corollary 2.6 Let $f=h+\bar{g}$ be such that h and g are given by (1.2), Φ_{k}^{μ} is given by (1.15). Also, suppose that $p \in N, A, B \in R$ and $A \neq B,|B| \leq 1$. Then
(i) For $-1 \leq B<A \leq 1, B<0$, $f \in \bar{L}(A, B ; \mu, \tau, \alpha)$ if and only if

$$
\sum_{k=p+1}^{\infty}(1-B)(1+\alpha) \Phi_{k}^{\mu}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) \leq A-B
$$

(ii) For $-1 \leq A<B \leq 1, B>0, f \in \bar{L}(A, B ; \mu, \tau, \alpha)$ if and only if

$$
\sum_{k=p+1}^{\infty}(1+B)(1+\alpha) \Phi_{k}^{\mu}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) \leq B-A
$$

Theorem 2.7 Let $f=h+\bar{g}$ be such that h and g are given by (1.3), ξ_{k}^{μ} and η_{k}^{μ} are given by (2.4). Also, suppose that $\mu>1,0 \leq \delta<\frac{p}{2 p+1}$. Then
(i) For $-1 \leq B<A \leq 1, B<0$, if $f \in \bar{H}_{p}(A, B ; \mu, \tau, \alpha, \delta)$, then

$$
\begin{equation*}
r^{p}-\frac{A-B}{(1-B)(1+\alpha) \eta_{p+1}^{\mu}} r^{p+1} \leq|f(z)| \leq r^{p}+\frac{A-B}{(1-B)(1+\alpha) \eta_{p+1}^{\mu}} r^{p+1} . \tag{2.14}
\end{equation*}
$$

(ii) For $-1 \leq A<B \leq 1, B>0$, if $f \in \bar{H}_{p}(A, B ; \mu, \tau, \alpha, \delta)$, then

$$
\begin{equation*}
r^{p}-\frac{B-A}{(1+B)(1+\alpha) \eta_{p+1}^{\mu}} r^{p+1} \leq|f(z)| \leq r^{p}+\frac{B-A}{(1+B)(1+\alpha) \eta_{p+1}^{\mu}} r^{p+1} . \tag{2.15}
\end{equation*}
$$

Proof Since $f \in \bar{H}_{p}(A, B ; \mu, \tau, \alpha, \delta)$, by using Theorem 2.5, we have

$$
\begin{equation*}
(1-B)(1+\alpha) \eta_{p+1}^{\mu} \sum_{k=p+1}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) \leq \sum_{k=p+1}^{\infty}(1-B)(1+\alpha)\left(\xi_{k}^{\mu}\left|a_{k}\right|+\eta_{k}^{\mu}\left|b_{k}\right|\right) \leq A-B \tag{2.16}
\end{equation*}
$$

which implies that
(i) If $-1 \leq B<A \leq 1$ and $B<0$, then from (2.16) we obtain

$$
\begin{equation*}
\sum_{k=p+1}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) \leq \frac{A-B}{(1-B)(1+\alpha) \eta_{p+1}^{\mu}} . \tag{2.17}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
|f(z)| & \leq r^{p}+\sum_{k=p+1}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) r^{k} \leq r^{p}+r^{p+1} \sum_{k=p+1}^{\infty}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) \\
& \leq r^{p}+\frac{A-B}{(1-B)(1+\alpha) \eta_{p+1}^{\mu}} r^{p+1}
\end{aligned}
$$

and

$$
|f(z)| \geq r^{p}-\frac{A-B}{(1-B)(1+\alpha) \eta_{p+1}^{\mu}} r^{p+1}
$$

Hence (2.14) follows. The case for (ii) $-1 \leq A<B \leq 1$ and $B>0$ can be proved in the same manner and hence we omit it.

Corollary 2.8 Let $f=h+\bar{g}$ be such that h and g are given by (1.3), ξ_{k}^{μ} and η_{k}^{μ} are given by (2.4). Also, suppose that $\mu>1,0 \leq \delta<\frac{p}{2 p+1}$. Then
(i) For $-1 \leq B<A \leq 1, B<0$, if $f \in \bar{H}_{p}(A, B ; \mu, \tau, \alpha, \delta)$, then

$$
\left\{w:|w|<1-\frac{A-B}{(1-B)(1+\alpha) \eta_{p+1}^{\mu}}\right\} \subset f(U) .
$$

(ii) For $-1 \leq A<B \leq 1, B>0$, if $f \in \bar{H}_{p}(A, B ; \mu, \tau, \alpha, \delta)$, then

$$
\left\{w:|w|<1-\frac{B-A}{(1+B)(1+\alpha) \eta_{p+1}^{\mu}}\right\} \subset f(U)
$$

Corollary 2.9 Let $f=h+\bar{g}$ be such that h and g are given by (1.3), Φ_{k}^{μ} is given by (1.15). Also, suppose that $|z|=r<1, \mu>1$. Then
(i) For $-1 \leq B<A \leq 1, B<0$, if $f \in \bar{L}_{p}(A, B ; \mu, \tau, \alpha)$, then

$$
r^{p}-\frac{A-B}{(1-B)(1+\alpha) \Phi_{p+1}^{\mu}} r^{p+1} \leq|f(z)| \leq r^{p}+\frac{A-B}{(1-B)(1+\alpha) \Phi_{p+1}^{\mu}} r^{p+1} .
$$

(ii) For $-1 \leq A<B \leq 1, B>0$, if $f \in \bar{L}_{p}(A, B ; \mu, \tau, \alpha)$, then

$$
r^{p}-\frac{B-A}{(1+B)(1+\alpha) \Phi_{p+1}^{\mu}} r^{p+1} \leq|f(z)| \leq r^{p}+\frac{B-A}{(1+B)(1+\alpha) \Phi_{p+1}^{\mu}} r^{p+1} .
$$

Theorem 2.10 Let $f=h+\bar{g}$ be such that h and g are given by (1.2), ξ_{k}^{μ} and η_{k}^{μ} are given by (2.4). Also, suppose that $p \in N, A, B \in R$ and $A \neq B,|B| \leq 1,0 \leq \delta<\frac{p}{2 p+1}$. Then $f \in \operatorname{clco} \bar{H}_{p}(A, B ; \mu, \tau, \alpha, \delta)$ if and only if

$$
\begin{equation*}
f(z)=\sum_{k=p}^{\infty} X_{k} h_{k}+\sum_{k=p+1}^{\infty} Y_{k}\left(h_{p}+g_{k}\right), z \in U^{*} \tag{2.18}
\end{equation*}
$$

where

$$
\begin{aligned}
& h_{p}=z^{p}, \\
& h_{k}= \begin{cases}z^{p}-\frac{A-B}{(1-B)(1+\alpha) \xi_{k}^{\mu}} z^{k}, \quad k \geq p+1,-1 \leq B<A \leq 1, B<0, \\
z^{p}-\frac{B-A}{(1+B)(1+\alpha) \xi_{k}^{\mu}} z^{k}, \quad k \geq p+1,-1 \leq A<B \leq 1, B>0,\end{cases} \\
& g_{k}= \begin{cases}-\frac{A-B}{(1-B)(1+\alpha) \eta_{k}^{\mu}} \overline{z^{k}}, & k \geq p+1,-1 \leq B<A \leq 1, B<0, \\
-\frac{B-A}{(1+B)(1+\alpha) \eta_{k}^{\mu}} \overline{z^{k}}, & k \geq p+1,-1 \leq A<B \leq 1, B>0\end{cases}
\end{aligned}
$$

and

$$
X_{p} \equiv 1-\sum_{k=p+1}^{\infty}\left(X_{k}+Y_{k}\right), \quad X_{k} \geq 0, Y_{k} \geq 0
$$

In particular, the extreme points of $\bar{H}_{p}(A, B ; \mu, \tau, \alpha)$ are h_{k} and g_{k}.
Proof Let $-1 \leq B<A \leq 1, B<0$. We get

$$
\begin{equation*}
f(z)=z^{p}-\sum_{k=p+1}^{\infty} \frac{A-B}{(1-B)(1+\alpha)}\left(\frac{1}{\xi_{k}^{\mu}} X_{k} z^{k}+\frac{1}{\eta_{k}^{\mu}} Y_{k} \overline{z^{k}}\right) \tag{2.19}
\end{equation*}
$$

Since $0 \leq X_{k} \leq 1 \quad(k=p+1, \ldots)$, we obtain

$$
\begin{aligned}
& \sum_{k=p+1}^{\infty}\left(\frac{(1-B)(1+\alpha) \xi_{k}^{\mu}}{A-B} \frac{A-B}{(1-B)(1+\alpha) \xi_{k}^{\mu}} X_{k}+\frac{(1-B)(1+\alpha) \eta_{k}^{\mu}}{A-B} \frac{A-B}{(1-B)(1+\alpha) \eta_{k}^{\mu}} Y_{k}\right) \\
& \quad=\sum_{k=p+1}^{\infty}\left(X_{k}+Y_{k}\right)=1-X_{p} \leq 1
\end{aligned}
$$

Consequently, using Theorem 2.5, we have $f \in \bar{H}_{p}(A, B ; \mu, \tau, \alpha, \delta)$.
Conversely, if $f \in \bar{H}_{p}(A, B ; \mu, \tau, \alpha, \delta)$, then

$$
\begin{equation*}
\left|a_{k}\right| \leq \frac{A-B}{(1-B)(1+\alpha) \xi_{k}^{\mu}}, \quad\left|b_{k}\right| \leq \frac{A-B}{(1-B)(1+\alpha) \eta_{k}^{\mu}} \tag{2.20}
\end{equation*}
$$

Putting

$$
\begin{equation*}
X_{k}=\frac{(1-B)(1+\alpha) \xi_{k}^{\mu}\left|a_{k}\right|}{A-B}, \quad Y_{k}=\frac{(1-B)(1+\alpha) \eta_{k}^{\mu}\left|b_{k}\right|}{A-B} \tag{2.21}
\end{equation*}
$$

and $X_{p}=1-\sum_{k=p+1}^{\infty}\left(X_{k}+Y_{k}\right) \geq 0$, we obtain

$$
\begin{aligned}
f(z)= & z^{p}-\sum_{k=p+1}^{\infty}\left|a_{k}\right| z^{k}-\sum_{k=p+1}^{\infty}\left|b_{k}\right| \bar{z}^{k} \\
= & \left(X_{p}+\sum_{k=p+1}^{\infty}\left(X_{k}+Y_{k}\right)\right) z^{p}-\sum_{k=p+1}^{\infty} \frac{A-B}{(1-B)(1+\alpha) \xi_{k}^{\mu}} X_{k} z^{k}- \\
& \sum_{k=p+1}^{\infty} \frac{A-B}{(1-B)(1+\alpha) \eta_{k}^{\mu}} Y_{k} \bar{z}^{k} \\
= & X_{k} z^{p}+\sum_{k=p+1}^{\infty} h_{k}(z) X_{k}+\sum_{k=p+1}^{\infty}\left(z^{p}+g_{k}(z)\right) Y_{k} \\
= & X_{p} h_{p}+\sum_{k=p+1}^{\infty} h_{k} X_{k}+\sum_{k=p+1}^{\infty}\left(h_{p}+g_{k}\right) Y_{k} \\
= & \sum_{k=p}^{\infty} h_{k} X_{k}+\sum_{k=p+1}^{\infty}\left(h_{p}+g_{k}\right) Y_{k} .
\end{aligned}
$$

Thus f can be expressed in the form (2.18). The case for $-1 \leq A<B \leq 1, B>0$ can be proved in the same manner and hence we omit it.

Corollary 2.11 Let $f=h+\bar{g}$ be such that h and g are given by (1.2), Φ_{k}^{μ} is given by (1.15). Also, suppose that $p \in N, A, B \in R$ and $A \neq B,|B| \leq 1$. Then $f \in \operatorname{clco} \bar{L}_{p}(A, B ; \mu, \tau, \alpha)$ if and only if

$$
f(z)=\sum_{k=p}^{\infty} X_{k} h_{k}+\sum_{k=p+1}^{\infty} Y_{k}\left(h_{p}+g_{k}\right), \quad z \in U^{*},
$$

where

$$
\begin{aligned}
& h_{p}=z^{p}, \\
& h_{k}= \begin{cases}z^{p}-\frac{A-B}{(1-B)(1+\alpha) \Phi_{k}^{\mu}} z^{k}, & k \geq p+1,-1 \leq B<A \leq 1, B<0, \\
z^{p}-\frac{B-A}{(1+B)(1+\alpha) \Phi_{k}^{\mu}} z^{k}, & k \geq p+1,-1 \leq A<B \leq 1, B>0,\end{cases} \\
& g_{k}= \begin{cases}-\frac{A-B}{(1-B)(1+\alpha) \Phi_{k}^{\mu}} \overline{z^{k}}, & k \geq p+1,-1 \leq B<A \leq 1, B<0, \\
-\frac{B-A}{(1+B)(1+\alpha) \Phi_{k}^{\mu}} \overline{z^{k}}, & k \geq p+1,-1 \leq A<B \leq 1, B>0,\end{cases}
\end{aligned}
$$

and

$$
X_{p} \equiv 1-\sum_{k=p+1}^{\infty}\left(X_{k}+Y_{k}\right)
$$

In particular, the extreme points of $\bar{L}_{p}(A, B ; \mu, \tau, \alpha)$ are h_{k} and g_{k}.
Theorem 2.12 The class $\bar{H}_{p}(A, B ; \mu, \tau, \alpha, \delta)\left(0 \leq \delta<\frac{p}{2 p+1}\right)$ is closed under convex combinations.

Proof For $j=1,2$, let the functions f_{j} given by

$$
\begin{equation*}
f_{j}(z)=z^{p}-\sum_{k=p+1}^{\infty}\left|a_{j k}\right| z^{k}-\sum_{k=p+1}^{\infty}\left|b_{j k}\right| \bar{z}^{k} \tag{2.22}
\end{equation*}
$$

be in the class $\bar{H}_{p}(A, B ; \mu, \tau, \alpha, \delta)$.
For $\lambda_{j}, \sum_{j=1}^{\infty} \lambda_{j}=1$, the convex combinations can be expressed in the form

$$
\begin{equation*}
\sum_{j=1}^{\infty} \lambda_{j} f_{j}=z^{p}-\sum_{k=p+1}^{\infty}\left(\sum_{j=1}^{\infty} \lambda_{j}\left|a_{j k}\right|\right) z^{k}-\sum_{k=p+1}^{\infty}\left(\sum_{j=1}^{\infty} \lambda_{j}\left|b_{j k}\right|\right) \bar{z}^{k} \tag{2.23}
\end{equation*}
$$

(i) For $-1 \leq B<A \leq 1, B<0$, from (2.8), (2.22) and (2.23), we get

$$
\begin{aligned}
& \sum_{k=p+1}^{\infty}(1-B)(1+\alpha)\left(\sum_{j=1}^{\infty} \lambda_{j}\left(\xi_{k}^{\mu}\left|a_{j k}\right|+\eta_{k}^{\mu}\left|b_{j k}\right|\right)\right) \\
& =\sum_{j=1}^{\infty} \lambda_{j}\left[\sum_{k=p+1}^{\infty}(1-B)(1+\alpha)\left(\xi_{k}^{\mu}\left|a_{j k}\right|+\eta_{k}^{\mu}\left|b_{j k}\right|\right)\right] \\
& \leq \sum_{j=1}^{\infty} \lambda_{j}(A-B)=A-B
\end{aligned}
$$

That is, $\sum_{j=1}^{\infty} \lambda_{j} f_{j} \in \bar{H}_{p}(A, B ; \mu, \tau, \alpha, \delta)$. The case for (ii) $-1 \leq A<B \leq 1, B>0$ can be proved in the same manner and hence we omit it.

Corollary 2.13 The class $\bar{L}_{p}(A, B ; \mu, \tau, \alpha, \delta)$ is closed under convex combinations.

References

[1] J. CLUNIE, T. SHEIL SMALL. Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I Math., 1984, 9: 3-25.
[2] O. P. AHUJA, J. M. JAHANGIRI. Multivalent harmonic starlike functions. Ann. Univ. Mariae CurieSkłodowska Sect. A, 2001, 55(1): 1-13.
[3] O. P. AHUJA, J. M. JAHANGIRI. Errata to multivalent harmonic starlike functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A, 2001, 55: 1-3.
[4] J. DZIOK, H. M. SRIVASTAVA. Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput., 1999, 103(1): 1-13.
[5] J. DZIOK, H. M. SRIVASTAVA. Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transforms Spec. Funct., 2003, 14(1): 7-18.
[6] H. M. SRIVASTAVA, Shuhai LI, Huo TANG. Certain classes of k-uniformly close-to-convex functions and other related functions defined by using the Dziok-Srivastava operator. Bull. Math. Anal. Appl., 2009, 3(1): 49-63.
[7] P. L. DUREN. Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Band 259, SpringerVerlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[8] Shuhai LI, Huo TANG, Li-na MA, et al. A new class of harmonic multivalent meromorphic functions. Bull. Math. Anal. Appl., 2015, 7 (3): 20-30.

[^0]: Received October 10, 2015; Accepted March 9, 2016
 Supported by the National Natural Science Foundation of China (Grant No. 11561001) and the Natural Science Foundation of Inner Mongolia Province (Grant No. 2014MS0101).

 * Corresponding author

 E-mail address: lishms66@sina.com (Shuhai LI); thth2009@163.com (Huo TANG)

