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On (α, β)-Metrics with Reversible Geodesics
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Abstract In this paper, we get necessary and sufficient conditions for a Finsler space en-

dowed with an (α, β)-metric where its geodesic coefficients Gi(x, y) and the reverse of geodesic

coefficients Gi(x,−y) have the same Douglas curvature. They are the conditions such that

(α, β)-metrics have reversible geodesics.
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1. Introduction

In Finsler geometry, a Finsler metric is said to be reversible if F (x, y) = F (x,−y) for any y ∈
TxM \ {0}. In general, the Finsler metrics might not be reversible, such as: when ϕ(s) ̸= ϕ(−s),
an (α, β)-metric F = αϕ(s), s = β/α is not reversible, where α is a Riemannian metric and β is

a 1-form. In special, when ϕ(s) = 1 + s, F = α + β is a Randers metric. If β ̸= 0, the Randers

metric is not reversible. This leads to the irreversibility of geodesics. Let Gi(x, y) be geodesic

coefficient of a Finsler metric F . We call F has reversible geodesics, if for an oriented geodesic

curve the same path traversed in the opposite sense is also a geodesic. In other words, its geodesic

coefficients Gi(x, y) are projectively related to Gi(x,−y), i.e., Gi(x, y) = Gi(x,−y)+Pyi, where
P := P (x, y) is a scalar function on TM \ {0} with P (x, λy) = λP (x, y), λ > 0. If P = 0, F

is said to have strictly reversible geodesics. Bryant [1] showed that a Finsler metric on S2 of

constant flag curvature K = 1 with reversible geodesics is Riemannian. Crampin [2] showed that

a Randers metric F = α + β has reversible geodesics if and only if β is parallel to α. Later,

Masca-Sabau-Shimada gave the necessary and sufficient conditions for (α, β)-metrics to have

reversible geodesics and strictly reversible geodesics, respectively [3].

Let

D i
j kl :=

∂3

∂yj∂yk∂yl
(
Gi − 1

n+ 1

∂Gm

∂ym
yi
)
. (1.1)

The tensor D := D i
j kl

∂
∂xi ⊗ dxj ⊗ dxk ⊗ dxl is called the Douglas tensor of F . A Finsler metric

is called Douglas metric if the Douglas tensor vanishes. One can check easily that the Douglas

tensor is a projectively invariant. Thus if F has reversible geodesics, its geodesic coefficients
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Gi(x, y) and the reverse of geodesic coefficient Gi(x,−y) have the same Douglas curvature. In

fact, let Gi
1 and Gi

2 be the geodesic coefficients of Finsler metrics F1 and F2, respectively. It

is well-known that Gi
1 is projectively related to Gi

2 (i.e., Gi
3 := Gi

1 − Gi
2 is projectively flat) if

and only if Gi
1 and Gi

2 have the same Douglas curvature and the Weyl curvature (definition see

section 2) of Gi
3 vanishes [4]. In this paper, we study (α, β)-metrics whose geodesic coefficients

Gi(x, y) and the reverse of geodesic coefficients Gi(x,−y) have the same Douglas curvature. The

condition under which the geodesic coefficients Gi(x, y) and the reverse of geodesic coefficients

Gi(x,−y) have the same Douglas curvature is weaker than the condition under which F has

reversible geodesics. The following theorem can be regarded as a generalization of the main

theorem in [3].

Theorem 1.1 Let F = αϕ(s), s = β/α be a irreversible (α, β)-metric on a manifold M of

dimension n ≥ 3. Then its geodesic coefficients Gi(x, y) and the reverse of geodesic coefficients

Gi(x,−y) have the same Douglas curvature if and only if the following situations hold

(1) ϕ(s) = k1ϕ(−s) + k2s, where k1(̸= 0), k2 are constants and β is closed, but β is not

parallel to α,

(2) β is not parallel with respect to α, in this case, F is a Berwald metric.

It is a surprise that the two situations in Theorem 1.1 are just the necessary and sufficient

conditions for an (α, β)-metric to have reversible geodesics [3]. Further, we have

Corollary 1.2 Let F = αϕ(s), s = β/α be a irreversible (α, β)-metric on a manifold M of

dimension n ≥ 3. Then F has reversible geodesics if and only if its geodesic coefficient Gi(x, y)

and the reverse of geodesic coefficient Gi(x,−y) have the same Douglas curvature.

2. Preliminaries

For a given Finsler metric F = F (x, y), the geodesics of F are characterized locally by a

system of 2nd ODEs as follows [5]

d2xi

dt2
+ 2Gi(x,

dx

dt
) = 0,

where

Gi =
1

4
gil{[F 2]xmylym − [F 2]xl},

and (gij) := (gij)
−1, gij :=

1
2

∂2[F ]2

∂yi∂yj . G
i are called geodesic coefficients of F .

The Riemann curvature is introduced via geodesics. Let

Ri
k = 2

∂Gi

∂xk
− ∂2Gi

∂xm∂yk
ym + 2Gm ∂2Gi

∂ym∂yk
− ∂Gi

∂ym
∂Gm

∂yk
. (2.1)

Define Riemann curvature Ry = Ri
k

∂
∂xi ⊗dxk. Ry is well-defined satisfying Ry(y) = 0 (see [4]).

Ricci curvature Ric = (n− 1)R(y) is the trace of the Riemann curvature expressed by

R(y) :=
1

n− 1
Rm

m. (2.2)
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For a vector y ∈ TxM \ {0}, define Wy =W i
k

∂
∂xi ⊗ dxk by [4]

W i
k := Ai

k − 1

n+ 1

∂Am
k

∂ym
yi, (2.3)

where Ai
k := Ri

k − Rδik. We call Wy Weyl curvature. It is easy to check the Weyl curvature

is projectively invariant. Weyl curvature is a Riemannian quantity.

The Douglas metrics can be also characterized by the following equations [6]

Giyj −Gjyi =
1

2
(Γi

kly
j − Γj

kly
i)ykyl, (2.4)

where Γi
kl := Γi

kl(x) are scalar functons on M .

By definition, an (α, β)-metric is a Finsler metric expressed in the following form

F = αϕ(s), s =
β

α
,

where α =
√
aij(x)yiyj is a Riemannian metric and β = bi(x)y

i is a 1-form with ∥βx∥α < b0, x ∈
M . It was proved [5] that F = αϕ(β/α) is a positive definite Finsler metric if and only if the

function ϕ = ϕ(s) is a C∞ positive function on an open interval (−b0, b0) satisfying

ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) > 0, |s| ≤ b < b0.

Let Gi and Gi
α denote the geodesic coefficients of F and α, respectively. Denote

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i),

bi := ailbl, s
i
j := ailslj , si := bjsji,

where (aij) := (aij)
−1 and bi|j denote the covariant derivative of β with respect to α. Then we

have

Lemma 2.1 ([5]) Let b := ∥β∥α denote the norm of β with respect to α. The geodesic coefficients

of Gi are related to Gi
α by

Gi = Gi
α + αQsi0 + {−2Qαs0 + r00}{Ψbi +Θα−1yi}, (2.5)

where

Q :=
ϕ′

ϕ− sϕ′
, Θ :=

ϕϕ′ − s(ϕϕ′′ + ϕ′ϕ′)

2ϕ
[
(ϕ− sϕ′) + (b2 − s2)ϕ′′

] , Ψ :=
ϕ′′

2
[
(ϕ− sϕ′) + (b2 − s2)ϕ′′

]
and si0 := sijy

j , s0 := siy
i, r00 := rijy

iyj , etc.

3. β is closed

In this section, we will show that β is closed for irreversible (α, β)-metrics whose geodesic

coefficients Gi(x, y) and the reverse of geodesic coefficients Gi(x,−y) have the same Douglas

curvature.

Let F = αϕ(s), s = β/α be an irreversible (α, β)-metric on a manifold M of dimension

n ≥ 3 whose geodesic coefficients Gi(x, y) and the reverse of geodesic coefficients Gi(x,−y) have
the same Douglas curvature. Denote Ḡi(x, y) := Gi(x, y) − Gi(x,−y). Noting that Douglas
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curvature is linear with respect to Gi(x, y), then Ḡi(x, y) have vanishing Douglas curvature. By

(2.4), we have

Ḡiyj − Ḡjyi =
1

2
(Γi

kly
j − Γj

kly
i)ykyl, (3.1)

By Lemma 2.1, we obtain

Ḡi(x, y) =Gi(x, y)−Gi(x,−y)

=α[Q(s) +Q(−s)]si0 + {[Ψ(s)−Ψ(−s)]r00 − 2α[Q(s)Ψ(s)+

Q(−s)Ψ(−s)]s0}bi + {−2αs0[Θ(s)Q(s)−Θ(−s)Q(−s)]+

r00[Θ(s) + Θ(−s)]}α−1yi. (3.2)

Plugging it into (3.1) yields

α[Q(s) +Q(−s)](si0yj − sj0y
i) + {[Ψ(s)−Ψ(−s)]r00−

2α[Q(s)Ψ(s) +Q(−s)Ψ(−s)]s0}(biyj − bjyi)

=
1

2
(Γi

kly
j − Γj

kly
i)ykyl. (3.3)

To simplify the computations, we take an orthonormal basis at x with respect to α such

that

α =

√√√√ n∑
i=1

(yi)2, β = by1,

and take the following coordinate transformation [7] in TxM , ψ : (s, uA) → (yi) : y1 = s√
b2−s2

ᾱ,

yA = uA, where ᾱ =
√∑n

i=2(u
A)2. Here, our index conventions are

1 ≤ i, j, k, · · · ≤ n, 2 ≤ A,B,C, · · · ≤ n.

We have α = b√
b2−s2

ᾱ, β = bs√
b2−s2

ᾱ. Further

s1 = bs11 = 0, s0 = s̄0, s
1
0 = s̄10, s

A
0 =

sᾱ√
b2 − s2

sA0 + s̄A0,

r00 =
s2ᾱ2r11
b2 − s2

+
2sᾱr̄10√
b2 − s2

+ r̄00,

where

s̄10 :=
n∑

A=2

s1Ay
A, s̄A0 :=

n∑
A=2

saAy
A, r̄00 :=

n∑
A,B=2

rABy
AyB .

Let

Γ̄1
10 :=

n∑
A=2

Γ1
1Ay

A, Γ̄1
01 :=

n∑
A=2

Γ1
A1y

A, Γ̄1
00 :=

n∑
A,B=2

Γ1
ABy

AyB ,

Γ̄B
10 :=

n∑
A=2

ΓB
1Ay

A, Γ̄B
01 :=

n∑
A=2

ΓB
A1y

A, Γ̄C
00 :=

n∑
A,B=2

ΓC
ABy

AyB .

For i = 1, j = A, by (3.3), we get

[Q(s) +Q(−s)]
(
s̄10by

A − sA1
bs2ᾱ2

b2 − s2
)
+ {2[Ψ(s)−Ψ(−s)]r̄10s−
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2b[Q(s)Ψ(s) +Q(−s)Ψ(−s)]s̄0}byA

= −1

2
ΓA
11

s3ᾱ2

b2 − s2
+

1

2
[(Γ̄1

10y
A + Γ̄1

01y
A)− Γ̄A

00]s, (3.4)

[Q(s) +Q(−s)]s̄A0
bsᾱ2

b2 − s2
− [Ψ(s)−Ψ(−s)]

(
r11

s2ᾱ2

b2 − s2
+ r̄00

)
byA

=
1

2
[(Γ̄A

10 + Γ̄A
01)− Γ1

11y
A]

s2ᾱ2

b2 − s2
− 1

2
Γ̄1
00y

A. (3.5)

For i = A, j = B, by (3.3), we get

[Q(s)+Q(−s)](sA1yB − sB1y
A)

bsᾱ2

b2 − s2
=

1

2
[(ΓA

11y
B −ΓB

11y
A)

s2ᾱ2

b2 − s2
+

1

2
(Γ̄A

00y
B − Γ̄B

00y
A), (3.6)

[Q(s) +Q(−s)](s̄A0yB − s̄B0y
A)b =

1

2
[(Γ̄A

10 + Γ̄A
01)y

B − (Γ̄B
10 + Γ̄B

01)y
A]s. (3.7)

Taking s = 0 in (3.6), we have Γ̄A
00y

B − Γ̄B
00y

A = 0. Then (3.6) can be reduced to

[Q(s) +Q(−s)](sA1yB − sB1y
A)b =

1

2
(ΓA

11y
B − ΓB

11y
A)s. (3.8)

Replacing s in (3.8) by −s yields

[Q(s) +Q(−s)](sA1yB − sB1y
A)b = −1

2
(ΓA

11y
B − ΓB

11y
A)s. (3.9)

(3.8)+(3.9) yields

[Q(s) +Q(−s)](sA1yB − sB1y
A)b = 0. (3.10)

Replacing s in (3.7) by −s yields

[Q(s) +Q(−s)](s̄A0yB − s̄B0y
A)b = −1

2
[(Γ̄A

10 + Γ̄A
01)y

B − (Γ̄B
10 + Γ̄B

01)y
A]s. (3.11)

(3.7)+(3.11) yields

[Q(s) +Q(−s)](s̄A0yB − s̄B0y
A)b = 0. (3.12)

To show that β is closed, we firstly need the following

Lemma 3.1 For an (α, β)-metric F = αϕ(s), s = β/α on a manifold M . If Q(s) +Q(−s) = 0,

then F is reversible.

Proof By the formulation of Q, we have

ϕ′(s)

ϕ(s)− sϕ′(s)
=

−ϕ′(−s)
ϕ(−s) + sϕ′(−s)

,

i.e., ϕ′(s)ϕ(−s) + ϕ(s)ϕ′(−s) = 0, where ϕ′(−s) := dϕ(t)
dt |t=−s = −dϕ(−s)

ds . Then above equation

can be written as [ ϕ(s)
ϕ(−s) ]

′ = 0. It implies that ϕ(s) = kϕ(−s), where k = constant. Noting that

ϕ(s) > 0, taking s = 0, we get k = 1. Then F is reversible. �
Putting all these together, we can prove

Proposition 3.2 Let F = αϕ(s), s = β/α be an irreversible (α, β)-metric on a manifold M

of dimension n ≥ 3. If its geodesic coefficients Gi(x, y) and the reverse of geodesic coefficients

Gi(x,−y) have the same Douglas curvature, then β is closed.
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Proof By Lemma 3.1, (3.10) and (3.12), we have

sA1y
B − sB1y

A = 0, s̄A0y
B − s̄B0y

A = 0.

Contracting the two equations with yB := δBAy
A yields

sA1ᾱ
2 = s̄01y

A, s̄A0ᾱ
2 = 0.

Because of the manifold M with dimension n ≥ 3, then s1A = sAB = 0. Thus sij = 0, i.e., β is

closed. �

4. Determining ϕ(s)

Under the assumption in Theorem 1.1, by Proposition 3.2, we know that β is closed. Then

(3.4) and (3.5) can be reduced to

2[Ψ(s)−Ψ(−s)]r̄10byA = −1

2
ΓA
11

s2ᾱ2

b2 − s2
+

1

2
[(Γ̄1

10y
A + Γ̄1

01y
A)− Γ̄A

00]. (4.1)

− [Ψ(s)−Ψ(−s)]
(
r11

s2ᾱ2

b2 − s2
+ r̄00

)
byA =

1

2
[(Γ̄A

10 + Γ̄A
01)− Γ1

11y
A]

s2ᾱ2

b2 − s2
− 1

2
Γ̄1
00y

A. (4.2)

Replacing s in (4.1) by −s yields

2[Ψ(s)−Ψ(−s)]r̄10byA =
1

2
ΓA
11

s2ᾱ2

b2 − s2
− 1

2
[(Γ̄1

10y
A + Γ̄1

01y
A)− Γ̄A

00]. (4.3)

(4.1)+(4.3) yields

[Ψ(s)−Ψ(−s)]r̄10b = 0. (4.4)

Replacing s in (4.2) by −s yields

[Ψ(s)−Ψ(−s)]
(
r11

s2ᾱ2

b2 − s2
+ r̄00

)
byA =

1

2
[(Γ̄A

10 + Γ̄A
01)− Γ1

11y
A]

s2ᾱ2

b2 − s2
− 1

2
Γ̄1
00y

A. (4.5)

(4.5)−(4.2) yields

[Ψ(s)−Ψ(−s)]
(
r11

s2ᾱ2

b2 − s2
+ r̄00

)
b = 0. (4.6)

Then we have

Proposition 4.1 Let F = αϕ(s), s = β/α be an irreversible (α, β)-metric on a manifold M of

dimension n ≥ 3 satisfying that β is not parallel with respect to α. If its geodesic coefficients

Gi(x, y) and the reverse of geodesic coefficients Gi(x,−y) have the same Douglas curvature, then

ϕ(s) = k1ϕ(−s) + k2s, where k1( ̸= 0), k2 are constants.

Proof If r̄10 ̸= 0, by (4.4), we have

Ψ(s)−Ψ(−s) = 0. (4.7)

If r̄10 = 0, by assumption, β is not parallel with respect to α, we have (r̄00, r11) ̸= (0, 0). Then

(4.6) implies that (4.7) still holds. Thus whether r̄10 = 0 or not, we always have Ψ(s)−Ψ(−s) = 0,

i.e.,
ϕ′′(s)

ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s)
=

ϕ′′(−s)
ϕ(−s) + sϕ′(−s) + (b2 − s2)ϕ′′(−s)

,
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where ϕ′′(−s) := d2ϕ(t)
dt2 |t=−s=

d2ϕ(−s)
ds2 . Then we have

ϕ′′(s)

ϕ(s)− sϕ′(s)
=

ϕ′′(−s)
ϕ(−s) + sϕ′(−s)

. (4.8)

Denote P (s) := ϕ(s)− sϕ′(s). (4.8) can be written as P ′(s)P (−s) + P ′(−s)P (s) = 0. It implies

P (s) = k1P (−s), where k1 = constant. Then we obtain

ϕ(s)− k1ϕ(−s) = [ϕ′(s) + k1ϕ
′(−s)]s = [ϕ(s)− k1ϕ(−s)]′s.

Thus there is a constant k2 such that ϕ(s)− k1ϕ(−s) = k2s.
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