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On («, f)-Metrics with Reversible Geodesics

Lihong LIU, Guangzu CHEN*
School of Science, Fast China JiaoTong University, Jiangzi 330013, P. R. China

Abstract In this paper, we get necessary and sufficient conditions for a Finsler space en-
dowed with an (a, §)-metric where its geodesic coefficients G*(z,y) and the reverse of geodesic
coefficients G*(z, —y) have the same Douglas curvature. They are the conditions such that
(a, B)-metrics have reversible geodesics.
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1. Introduction

In Finsler geometry, a Finsler metric is said to be reversible if F'(z,y) = F(z,—y) for any y €
T, M\ {0}. In general, the Finsler metrics might not be reversible, such as: when ¢(s) # ¢(—s),
an («, 8)-metric F = a¢(s), s = 8/« is not reversible, where « is a Riemannian metric and S is
a 1-form. In special, when ¢(s) =1+ s, F' = a+ ( is a Randers metric. If 8 # 0, the Randers
metric is not reversible. This leads to the irreversibility of geodesics. Let G*(z,y) be geodesic
coefficient of a Finsler metric F'. We call F' has reversible geodesics, if for an oriented geodesic
curve the same path traversed in the opposite sense is also a geodesic. In other words, its geodesic
coefficients G*(z,y) are projectively related to G*(x, —y), i.e., G'(z,y) = G*(z, —y) + Py, where
P := P(xz,y) is a scalar function on TM \ {0} with P(z,\y) = AP(z,y), A > 0. f P =0, F
is said to have strictly reversible geodesics. Bryant [1] showed that a Finsler metric on S? of
constant flag curvature K = 1 with reversible geodesics is Riemannian. Crampin [2] showed that
a Randers metric F' = « + 8 has reversible geodesics if and only if  is parallel to «. Later,
Masca-Sabau-Shimada gave the necessary and sufficient conditions for («, 8)-metrics to have
reversible geodesics and strictly reversible geodesics, respectively [3].

Let 3 1 aG™
D/, = — i 7. 1.1
IR Gyd Byk oyl ( n+1 oy™ v') (1.1)

The tensor D := Djikl% ® do’ ® dz* @ da! is called the Douglas tensor of F. A Finsler metric

is called Douglas metric if the Douglas tensor vanishes. One can check easily that the Douglas

tensor is a projectively invariant. Thus if F' has reversible geodesics, its geodesic coefficients
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G'(x,y) and the reverse of geodesic coefficient G*(z, —y) have the same Douglas curvature. In
fact, let G4 and G% be the geodesic coefficients of Finsler metrics Fy and Fy, respectively. It
is well-known that G% is projectively related to G (i.e., G§ := Gi — GY is projectively flat) if
and only if G} and G% have the same Douglas curvature and the Weyl curvature (definition see
section 2) of G% vanishes [4]. In this paper, we study (o, 3)-metrics whose geodesic coefficients
G'(z,y) and the reverse of geodesic coefficients G*(z, —y) have the same Douglas curvature. The
condition under which the geodesic coefficients G*(x,y) and the reverse of geodesic coefficients
Gi(z,—y) have the same Douglas curvature is weaker than the condition under which F has
reversible geodesics. The following theorem can be regarded as a generalization of the main

theorem in [3].

Theorem 1.1 Let F = a¢(s), s = B/a be a irreversible («, B)-metric on a manifold M of
dimension n > 3. Then its geodesic coefficients G*(x,y) and the reverse of geodesic coefficients
G'(x, —y) have the same Douglas curvature if and only if the following situations hold

(1) ¢(s) = k1p(—s) + kas, where ki(# 0), ko are constants and (3 is closed, but § is not
parallel to a,

(2) B is not parallel with respect to «, in this case, F' is a Berwald metric.

It is a surprise that the two situations in Theorem 1.1 are just the necessary and sufficient

conditions for an («, 8)-metric to have reversible geodesics [3]. Further, we have

Corollary 1.2 Let F = a¢(s), s = B/a be a irreversible («, 8)-metric on a manifold M of
dimension n > 3. Then F has reversible geodesics if and only if its geodesic coefficient G*(z,y)

and the reverse of geodesic coefficient G*(xz, —y) have the same Douglas curvature.

2. Preliminaries

For a given Finsler metric F = F(x,y), the geodesics of F are characterized locally by a
system of 2nd ODEs as follows [5]

d?z? ) dx
— +2G*(2,—) =0
az @) =0,
where
G'= Zg l{[Fz]wmyly - [Fz];cl}7

and (¢") == (gij) ", gij == %g;[g; G" are called geodesic coefficients of F.

The Riemann curvature is introduced via geodesics. Let
IG? 0?G 0?G! IG" OG™
dzk Wy dymdyk  dym oyk
Define Riemann curvature R, = R?;, 22; @ dz*. R, is well-defined satisfying R, (y) = 0 (see [4]).
Ricci curvature Ric = (n — 1)R(y) is the trace of the Riemann curvature expressed by

1

R(y) := p— 1Rmm. (2.2)

(2.1)
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For a vector y € T, M \ {0}, define W, = W?, aii ® dz* by [4]

1 947
n+1 8ymy7

Wi =AY —

(2.3)

where A%, := R', — R&%,. We call W, Weyl curvature. It is easy to check the Weyl curvature
is projectively invariant. Weyl curvature is a Riemannian quantity.

The Douglas metrics can be also characterized by the following equations [6]
Gy = Gy’ = STy’ = Ty 'y, (24)

where I'i, :=I'} (z) are scalar functons on M.

By definition, an (a, 8)-metric is a Finsler metric expressed in the following form
F=ag¢(s), s==,

where o = \/a;;(z)y’y7 is a Riemannian metric and 8 = b;(z)y" is a 1-form with || 3o < bo, = €
M. Tt was proved [5] that F = a¢(8/«a) is a positive definite Finsler metric if and only if the
function ¢ = ¢(s) is a C*° positive function on an open interval (—bg, by) satisfying

B(s) — s¢'(s) + (b — s3)¢"(5) >0, |s| <b<by.

Let G* and G?, denote the geodesic coefficients of F and «, respectively. Denote

1
5 (bitj = bjja),

R—1 —
=a Siy, S = b]Sji7

1
Tij = i(bﬂj +bji), sij =
b= alby, sij
where (a%) := (a;;)~" and b;|; denote the covariant derivative of # with respect to a. Then we

have

Lemma 2.1 ([5]) Letb := ||5||o denote the norm of 8 with respect to . The geodesic coefficients
of G are related to G¢, by

G = Gfl + aQsio + {—2Qaso + roo}{\llbi + @a_lyi}, (2.5)
where
D O g 0 —s ) o
6= O 20— s+ -] T 260+ (B~ )]

and st := sijyj, s0 == sy, Too := Tijy'y’, ete.

3. [ is closed

In this section, we will show that § is closed for irreversible («, 8)-metrics whose geodesic
coefficients G*(z,y) and the reverse of geodesic coefficients G*(x, —y) have the same Douglas
curvature.

Let F = a¢(s), s = f/a be an irreversible («, 8)-metric on a manifold M of dimension
n > 3 whose geodesic coefficients G?(z,y) and the reverse of geodesic coefficients G*(x, —y) have

the same Douglas curvature. Denote G'(x,y) := G'(x,y) — G*(z, —y). Noting that Douglas
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curvature is linear with respect to G*(z,v), then G*(z,y) have vanishing Douglas curvature. By
(2.4), we have

Gy — Gy’ = %(Fizyj — Ty, (3.1)
By Lemma 2.1, we obtain
G'(z,y) =G"(z,y) - G'(z,~y)
=a[Q(s) + Q(—s)]s’o + {[¥(s) — U (=s)]roo — 2a[Q(s)¥(s)+
Q(—5)¥(=5)]s0}b" + {—2c50[O(5)Q(s) — O(=5)Q(—s)]+
r00[O(s) + ©(=s)]}a"y". (3.2)
Plugging it into (3.1) yields
alQ(s) + Q(=3))(s' oy — o) + {[¥(s) — W(=5)lroo—
20[Q(5)W(s) + Q(—5)W(~5)]so} by’ — bly)
= %( Yy - Filyi)ykyl- (3.3)
To simplify the computations, we take an orthonormal basis at z with respect to a such
that

and take the following coordinate transformation [7] in T, M, 1 : (s,u?) = (y°) : y* = T
yA = u, where @ = />, (u)2. Here, our index conventions are

1<ijk-<n, 2<ADB,C, - <n.

We have o = \/%54, B = bfiSQ a. Further
1 = 1 1 A sQ A | A
s1=0bs1=0, 50=350, sg=5¢, 5= ——=—=507+ 5
p2 _ o2
825(2’/‘11 2saro 7
roo = T
00 = 15 2 e 005
where
n n n
1. 1, A ZA ._ a A — . A, B
50-—§3Ay750-—§3,4iy,7“00~— E TABY Y-
A=2 A=2 A,B=2
Let

n n n
Tlo:= > Tlay®, Tor =Y Thy®, Too:= Y Thpy™y®,
A=2 A=2 A,B=2
n n n
Tlh= > Tt To =) Thy' Th:= > Thpy'y”.
A=2 A=2 A,B=2
For i =1, j = A, by (3.3), we get

2

A bs’a B
5) +{2(9(s) — ¥(=s)]F105—

Qs) + Q=9 (b — 54

— S
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2b[Q(s)¥(s) + Q(—s)‘l’(—s)]EO}byA
1
2

a 8002 1oy 4 oAy fa
= _*an + 5[(F10y +T'o1y”) — L'ools, (3.4)
4 bsa? s?a? _ A
[Q(s) + Q(—s)]5 02 — g2 [W(s) — ‘I’(—S)](Tllm + Too) by

s2a? 14

[(P +To) —Thy? ]m 2Pooy (3.5)

For i = A, j = B, by (3.3), we get

b ~2 1 252 1
Q)+ Q=9)(s"y” = "y i = SIChy” — TRy = + 5 Tobw” —Thw™). (36)

[Q(s) + Q(=9)(55y” — 5%y )b = %[(ff‘o +Ta)y” — (O + T )y s, (3.7)

Taking s = 0 in (3.6), we have I'¢hy® — Iy = 0. Then (3.6) can be reduced to

[Q(s) + Q(=9)(s1y” — sy = Q(Fuy —Thy™)s. (3.8)
Replacing s in (3.8) by —s yields
QUs) + Q-9)(sky” — sy = — (Thy” ~ THy")s. (39)
(3.8)+(3.9) yields
[Q(s) + Q(=)I(s1y” — sy )b = 0. (3.10)
Replacing s in (3.7) by —s yields
[Q(s) + Q(=s)(50y” — 5%y )b = —%[(f’f‘o +T50)y" — (O + Tg)y s. (3.11)
(3.7)+(3.11) yields
[Qs) + Q(=9)](5"y” — sy )b =0. (3.12)

To show that ( is closed, we firstly need the following

Lemma 3.1 For an («, 8)-metric F = a¢(s), s = /o on a manifold M. If Q(s) + Q(—s) =

then F' is reversible.

Proof By the formulation of ), we have

¢'(s) —¢'(=5)

$(s) = s¢'(s)  d(—s)+s¢/(=s)’
ie., ¢'(s)p(—s) + ¢(s)¢'(—s) = 0, where ¢/(—s) := d(ggf) lt=—s = —%. Then above equation
can be written as [(;z(fi)]' = 0. It implies that ¢(s) = k¢(—s), where k = constant. Noting that
@(s) > 0, taking s = 0, we get k = 1. Then F is reversible. O

Putting all these together, we can prove

Proposition 3.2 Let F = a¢(s), s = /a be an irreversible («, 3)-metric on a manifold M
of dimension n > 3. If its geodesic coefficients G'(x,y) and the reverse of geodesic coefficients

Gi(x,—y) have the same Douglas curvature, then 3 is closed.
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Proof By Lemma 3.1, (3.10) and (3.12), we have

B A =0, E%yB—EB{)yA:O.

shy” -
Contracting the two equations with yp := §5y* yields

sha? =50yt 5ha’=0.

Because of the manifold M with dimension n > 3, then s14 = sap = 0. Thus s;; =0, i.e., 8 is
closed. [
4. Determining ¢(s)

Under the assumption in Theorem 1.1, by Proposition 3.2, we know that g is closed. Then
(3.4) and (3.5) can be reduced to

219(s) — W(—s)aby® = —3Th 0 ¢ %[(fioy“‘ + )~ Tl (a.1)
— [0(8) = W) (i o+ o)t = 2B + T~ Thy A — LRt (a2)
Replacing s in (4.1) by —s yields
1 s2a2 1. - _ _
2[(s) — W(—s)]r1oby™ = 1“141[)272 - 5[@%09‘4 +T4y™) — TGl (4.3)
(4.1)+(4.3) yields
[U(s) — W(—s)]r10b = 0. (4.4)
Replacing s in (4.2) by —s yields
[0(5) ~ (=8)) (1 ey + o)t = S((Ffy + T~ Pl 20— LRt )
(4.5)—(4.2) yields
[0(s) — W(=8)) (11 0 + 70} = 0. (46)

Then we have

Proposition 4.1 Let F = ad(s), s = S/« be an irreversible (a, §)-metric on a manifold M of
dimension n > 3 satisfying that [ is not parallel with respect to «. If its geodesic coefficients
G'(x,y) and the reverse of geodesic coefficients G*(x, —y) have the same Douglas curvature, then
d(8) = k1¢(—s) + kos, where k1(#£ 0), ko are constants.

Proof If 719 # 0, by (4.4), we have

U(s) —¥(—s)=0. (4.7)
If 719 = 0, by assumption, § is not parallel with respect to «, we have (7gg,r11) # (0,0). Then
(4.6) implies that (4.7) still holds. Thus whether 719 = 0 or not, we always have ¥(s)—¥(—s) = 0,
ie.,

¢"(s) ¢"(=s)

¢(s) = s¢/(s) + (b = s2)@"(s) ~ d(—s) + 56/ (—s) + (b* — 5?)¢"(—s)’
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where ¢ (—s) := d?t’é” li=—s= %. Then we have
O
¢(s) —s¢'(s)  p(=s) +s¢/(—s)
Denote P(s) := ¢(s) — s¢/(s). (4.8) can be written as P'(s)P(—s) + P'(—s)P(s) = 0. It implies
P(s) = k1 P(—s), where k; = constant. Then we obtain
¢(s) — k1d(—s) = [¢/(s) + k1¢/(=5)]s = [d(s) — krg(—s)]'s.
Thus there is a constant ko such that ¢(s) — k1¢p(—s) = kas.

(4.8)
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