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Abstract We give a complete classification of parallel hypersurfaces in the Euclidean ellipsoid

Qn+1(c, d). Moreover, we prove that a hypersurface in Qn+1(c, d) is totally umbilical, if and

only if it is parallel.
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1. Introduction

Parallel and totally umbilical submanifolds are natural generalizations of totally geodesic

submanifolds. It is meaningful to study these classes of submanifolds, as they often provide

nice examples. In space forms, the parallel submanifolds are classified completely. The parallel

hypersurface inMn is either totally umbilical, or an open part of a standard product Sk×Mn−k of

a k-dimensional sphere and the n− k dimensional space form. The case of parallel submanifolds

are classified by Ferus [1] in the Euclidean space, and by Backes-Reckziegel [2], Takeuchi [3]

independently in the hyperbolic space. The classification of parallel submanifolds in the sphere

follows from the Euclidean case.

Apart from space forms, there are also many studies on the parallel submanifolds in a

Riemannian manifold. Classification results of parallel submanifolds are obtained for some special

cases, for example, in products of space forms [4,5]; in the complex projective space CPn under

Lagrangian condition [6]; in simply connected rank one symmetric spaces (see, e.g., the discussion

in Chapter 9 of [9]).

In this paper, we study the parallel hypersurfaces and the totally umbilical ones in the

following ellipsoid

Qn+1(c, d) =
{
(x, y) ∈ Rn+1 × R = Rn+2 :

|x|2

c2
+

y2

d2
= 1

}
, (1.1)

where c, d are fixed positive constants. As we will see, Qn+1(c, d) with c ̸= d, as a hypersurface

of the Euclidean space Rn+2, has two distinct principal curvatures, one of which is of multiplicity

n. So from the viewpoint of totally umbilical Euclidean hypersurface, the ellipsoid Qn+1(c, d)

is a natural generalization of the Euclidean sphere. An interesting question is to determine all
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the parallel hypersurfaces in Qn+1(c, d). Since the parallel hypersurfaces in spheres are clear, we

may as well assume that c ̸= d in the following.

To state our classification theorem, let us see the following parallel hypersurfaces inQn+1(c, d)

first.

Example 1.1 Consider the hypersphere Sn(a)× {b} (0 < a ≤ c) in Qn+1(c, d) given by

i : Sn(a) ↪→ Qn+1(c, d), x 7→ (x, b), (1.2)

where Sn(a) denotes the sphere in Rn+1 centered at the origin of radius a, and b is a constant

satisfying a2

c2 + b2

d2 = 1. By a simple calculation, one can show that Sn(a) × {b} is totally

umbilical in Qn+1(c, d), with constant mean curvature bc2

a
√
a2d2+b2c2

. Clearly, Sn(a) × {b} is a

parallel hypersurface in Qn+1(c, d).

Example 1.2 Consider the hyper-ellipsoid Qn(c, d) in Qn+1(c, d) given by

Qn(c, d) =
{
(0, x2, . . . , xn, y) ∈ Rn+2 :

n∑
i=2

|xi|2

c2
+

y2

d2
= 1

}
. (1.3)

It is easy to see that Qn(c, d) is totally geodesic in Qn+1(c, d).

Remark 1.3 When intersecting the hyperplane{
x = (x1, . . . , xn+1) ∈ Rn+1 : x1 = r

}
, |r| < c

with the ellipsoid Qn+1(c, d), we get a hypersurface of two distinct principal curvatures, which

are not constants.

Now we can state our main result as below.

Theorem 1.4 Let M be a hypersurface of the ellipsoid Qn+1(c, d). Then the following state-

ments are equivalent:

(i) M is parallel;

(ii) M is totally umbilical;

(iii) M is locally either the hypersphere Sn(a)×{b} in Example 1.1, or the totally geodesic

hyper-ellipsoid Qn(c, d) in Example 1.2.

Remark 1.5 The parallel hypersurfaces in the ellipsoid Qn(c, d) must be totally umbilical. This

fact is quite different from the case of spheres, whose parallel hypersurfaces include Clifford tori

as non-trivial examples.

We see that both hypersurfaces given in Examples 1.1 and 1.2 are totally umbilical and

parallel. Hence, to give a proof of Theorem 1.4, it is sufficient to show that (i)⇒(iii) and

(ii)⇒(i), as we will do in Sections 3 and 4.

2. Preliminaries

Let f : Mn ↪→ Nn+1 be an isometric immersion of Riemannian manifolds with Levi-Civita

connections ∇ and ∇̄, respectively. Denote by N the unit normal vector field of M , and let
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X,Y, Z and W be arbitrary tangent vector fields on M . We define the shape operator S by

SX = −∇̄XN , and the second fundamental form h by h(X,Y ) = ⟨SX, Y ⟩. The formula of

Gauss is that

∇̄XY = ∇XY + h(X,Y )N. (2.1)

Moreover, the equations of Gauss and Codazzi are given respectively by

⟨R̄(X,Y )Z,W ⟩ = ⟨R(X,Y )Z,W ⟩+ h(X,W )h(Y, Z)− h(X,Z)h(Y,W ), (2.2)

⟨R̄(X,Y )Z,N⟩ = (∇h)(X,Y, Z)− (∇h)(Y,X,Z), (2.3)

where R̄ and R are the Riemannian curvature tensor of N and M , respectively. Here, for a

hypersurface, the covariant derivative of h is defined by

(∇h)(X,Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ). (2.4)

We call that M is parallel in N if ∇h = 0, that M is totally umbilical if h is a scalar multiple

of the metric at every point. The totally umbilical submanifolds in space forms are completely

understood. Apart from space forms, classifications are also obtained for the totally umbilical

submanifolds in Riemannian product Sn ×R (see [4,8]), for the totally umbilical hypersurface in

Hn×R (see [9]) and in three-dimensional Thurston geometries of non-constant curvature as well

as in the Berger spheres [10].

Let Rn+2 be the n + 2-dimensional Euclidean space. We define the following Euclidean

ellipsoid

Qn+1(c, d) =
{
(x, y) ∈ Rn+1 × R = Rn+2 :

|x|2

c2
+

y2

d2
= 1

}
, (2.5)

where c, d are positive constants. Using the coordinates {x1, . . . , xn+1, y} of Rn+2, we see that a

vector field W =
∑

Xi ∂
∂xi

+Y ∂
∂y =: X+Y is tangent to Qn+1(c, d) at a point (x1, . . . , xn+1, y) ∈

Qn+1(c, d), if and only if it satisfies ∑ Xixi

c2
+

Y y

d2
= 0. (2.6)

Then the vector field

ηQ = (
x1

c2
, . . . ,

xn+1

c2
,
y

d2
) (2.7)

gives a unit normal vector field η = ηQ

|ηQ| of Q
n+1(c, d) in Rn+2.

Let ∇̄ be the induced connection on Qn+1(c, d), and B the second fundamental form w.r.t.

the normal vector field η. A straightforward calculation yields [11]:

B(W1,W2) = − 1

|ηQ|
( 1

c2
⟨X1, X2⟩+

1

d2
Y1Y2

)
, (2.8)

where Wi = (Xi, Yi), i = 1, 2, are tangent vector fields on Qn+1(c, d). Then the Gauss formula

(2.1) gives [11]

∇̄W1W2 = DW1W2 +
1

|ηQ|
( 1

c2
⟨X1, X2⟩+

1

d2
Y1Y2

)
η. (2.9)
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To obtain the expression of the Riemannian curvature tensor R̄ of Qn+1(c, d), it is convenient

for us to consider the following parameterization

Qn+1(c, d) =
{
(c cos θ · x̃, d sin θ) : x̃ ∈ Sn(1), θ ∈ [−π

2 ,
π
2 ]
}
. (2.10)

Correspondingly, we re-write the normal vector fields ηQ and η as

ηQ = (
cos θ

c
x̃,

sin θ

d
), η =

cd√
c2 sin2 θ + d2 cos2 θ

(
cos θ

c
x̃,

sin θ

d
). (2.11)

Let ẽi, i = 1, . . . , n, be local tangent vector fields on Sn(1), and orthonormal w.r.t. the Euclidean

metric ⟨·, ·⟩. We define the following vector fields

ei = (ẽi, 0), E =
∂

∂θ
/| ∂
∂θ

| = 1√
c2 sin2 θ + d2 cos2 θ

(−c sin θ · x̃, d cos θ), (2.12)

to obtain a local orthonormal basis {e1, . . . , en, E} on Qn+1(c, d). From (2.8), we derive that

Lemma 2.1 The second fundamental form B satisfies

B(ei, ej) = − 1

c2|ηQ|
δij , B(ej , E) = 0, 1 ≤ i, j ≤ n,

B(E,E) = − 1

(c2 sin2 θ + d2 cos2 θ)|ηQ|
= − 1

c2d2|ηQ|3
,

(2.13)

where |ηQ| =
√

c2 sin2 θ+d2 cos2 θ

cd .

Lemma 2.1 shows that Qn+1(c, d), as a Euclidean hypersurface, has two distinct principal

curvatures, one of which is of multiplicity n.

Let E⊥ be the orthogonal complement of the principal direction E in TQn+1(c, d). For

any tangent vector w on Qn+1(c, d), we project it to E⊥ and E, respectively, obtaining the

decomposition w = wS + wE . Applying the following equation of Gauss for Qn+1(c, d)

R̄(x, y, z, w) = B(x,w)B(y, z)−B(x, z)B(y, w), (2.14)

where x, y, z, w ∈ TQn+1(c, d), we derive from Lemma 2.1 that

R̄(x, y, z, w) =
1

c4|ηQ|2
{
⟨xS, wS⟩⟨yS, zS⟩ − ⟨xS, zS⟩⟨yS, wS⟩+

1

d2|ηQ|2
[
⟨xS, wS⟩⟨yE , zE⟩+ ⟨xE , wE⟩⟨yS, zS⟩−

⟨xS, zS⟩⟨yE , wE⟩ − ⟨xE , zE⟩⟨xS, wS⟩
]}

. (2.15)

3. Parallel hypersurfaces

In this section, we will prove that (i)⇒(iii) in Theorem 1.4. Let M be a hypersurface in the

ellipsoid Qn+1(c, d) and N be the unit normal vector field. We define an angle function φ on M

by cosφ = ⟨N,E⟩, where E is the vector field given by (2.12). For the angle function φ on a

parallel hypersurface in Qn+1(c, d), we have that

Lemma 3.1 If M is parallel, then cosφ = 0 or cosφ = 1.
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Proof We consider at a point p ∈ M , where cosφ(p) ̸= 1. In this case, the projection T on TM

of E has no zeros in some neighborhood of p. Moreover, we have the following decomposition

E = T + cosφN. (3.1)

Let X be a unit tangent vector field on M , which is orthogonal to T . Clearly, X belongs to E⊥.

We denote by h and ∇ the second fundamental form and induced connection on M , respectively.

Since M is parallel, we simplify the equation of Codazzi on M

(∇h)(X,T,X)− (∇h)(T,X,X) = R̄(N,X, T,X), (3.2)

to get

0 = R̄(N,X, T,X) = sin2 φ cosφ
1

c4|ηQ|2
(1− 1

d2|ηQ|2
), (3.3)

where in the last equality we have used (2.15). Noting that c ̸= d, we derive from (3.3) that

cosφ = 0 at p. By a continuity argument, we conclude cosφ = 0 or cosφ = 1 on M . �
Now we can give a

Proof of Theorem 1.4 ((i)⇒(iii)) By Lemma 3.1, two cases may arise: cosφ = 1 and cosφ = 0.

Case 1 cosφ = 1. In this case, the vector field E is normal to M . We consider the pa-

rameterization (2.10) of Qn+1(c, d), and note that the integral curve of the vector field ∂
∂θ =√

c2 sin2 θ + d2 cos2 θE on Qn+1(c, d) is

γ(θ) =
(
c cos(θ − θ0) · x̃, d sin(θ − θ0)

)
, θ ∈ (−π/2, π/2), (3.4)

where x̃ ∈ Sn(1) ↪→ Rn+1, and θ0 is some initial value. Then we get that M is contained in a

slice θ1 × Sn(1) given by {
(c cos θ1 · x̃, d sin θ1)|x̃ : Sn ↪→ Rn+1

}
, (3.5)

for some constant θ1 ∈ (−π/2, π/2). Setting a = c| cos θ1|, we see M is locally the hypersurface

Sn(a)× {b} in Example 1.1.

Case 2 cosφ = 0. In this case, E is tangent to M . We first consider near a point p ∈ M

with cos θ(p) ̸= 0. Let E1, . . . , En−1 ∈ E⊥ be orthonormal tangent vector fields of M . Then

{E1, . . . , En−1, E,N} is a local orthonormal basis of Qn+1(c, d) along M . We calculate that

DEjE =
1√

c2 sin2 θ + d2 cos2
DEj (−c sin θ · x̃, d cos θ) =

− tan θ√
c2 sin2 θ + d2 cos2 θ

Ej , (3.6)

for 1 ≤ j ≤ n − 1. By use of (3.6) and (2.12), respectively, the second fundamental form h

satisfies

h(Ej , E) =⟨N,DEj
E⟩ = − tan θ√

c2 sin2 θ + d2 cos2 θ
⟨Ej , N⟩ = 0,

h(E,E) =− 1

c2 sin2 θ + d2 cos2 θ
⟨(c cos θx̃, d sin θ), N⟩ = 0.

(3.7)

Using (3.6) and (3.7), we further have

(∇Eih)(Ej , E) =− h(∇EiE,Ej)− h(∇EiEj , E)
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=
tan θ√

c2 sin2 θ + d2 cos2 θ
h(Ei, Ej), (3.8)

for 1 ≤ i, j ≤ n− 1. From the assumption ∇h = 0 and (3.7), we conclude M is totally geodesic.

To determine the expression of immersion M in Qn+1(c, d), we observe from (3.6) that the

distribution D = Span{E1, . . . , En−1} is integrable, and we denote its integral manifold by M̃ .

Let us consider the integral curve of the tangent vector field ∂
∂θ =

√
c2 sin2 θ + d2 cos2 θE, which

is

γ(θ) =
(
c cos(θ − θ0) · x̃, d sin(θ − θ0)

)
, θ ∈ (−π/2, π/2), (3.9)

where θ0 is a constant determined by initial value, and x̃ ∈ M̃ ↪→ Sn(1). Up to a re-parameterization

of θ, M is then locally given by{
(c cos θ · x̃, d sin θ)|x̃ : M̃ ↪→ Sn(1), θ ∈ (−π/2, π/2)

}
. (3.10)

From the fact that M is totally geodesic, we see the immersion

c cos θ · x̃ : M̃ ↪→ Sn(c cos θ),

is also totally geodesic for a fixed θ ̸= ±π/2. This in turn shows that M is locally isometric to{
(0, c cos θ · x̄, d sin θ)|x̄ : Sn−1(1) ↪→ Rn, θ ∈ (−π/2, π/2)

}
. (3.11)

The hypersurface (3.11) can be extended smoothly to the points where cos θ = 0, hence M is

exactly the hyper-ellipsoid Qn(c, d). �

4. Totally umbilical hyperfurfaces

In this section, we prove the remaining part of Theorem 1.4, i.e., (ii)⇒(i). Let M be a

totally umbilical hypersurface with its normal vector field N . We first observe the following

Lemma 4.1 The angle function φ on M is a constant.

Proof We assume that the shape operator satisfies S = λ id, and consider near a point p ∈ M ,

where cosφ(p) ̸= 1. In this case, we have the decomposition (3.1). Taking the covariant derivative

of (3.1), we get for any X ∈ TM that

∇̄XE = ∇̄XT +X[cosφ]N + cosφ∇̄XN. (4.1)

Applying (3.6) and the Gauss formula (2.1), we derive from (4.1)

∇Y T = [λ cosφ− tan θ

cd|ηQ|
]Y, Y [cosφ] = 0, ∀Y ∈ T⊥. (4.2)

On the other hand, we can write T as T = sin2 φE + sinφ cosφe, where e is of unit length and

orthogonal to E. Then by (2.12) we have

DTE = T (
1

cd|ηQ|
)
∂

∂θ
+

sin2 φ

c2d2|ηQ|2
(−c cos θ · x̃,−d sin θ)− sinφ cosφ tan θ

cd|ηQ|
e. (4.3)

Note that ∂
∂θ and (−c cos θ · x̃,−d sin θ) belong to the distribution spanned by E and η, we see
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from (4.3) that

∇̄TE = − sinφ cosφ tan θ

cd|ηQ|
e = − sinφ cosφ tan θ

cd|ηQ|
(− sinφ N + cotφT ). (4.4)

Substituting X by T in (4.1) and using the Gauss formula (2.1), we obtain by (4.4)

∇TT = 0, T [cosφ] = 0, (4.5)

and

cosφ(λ− cosφ tan θ

cd|ηQ|
) = 0. (4.6)

Since sinφ ̸= 0 in a neighborhood of p, we obtain from the second equations in (4.2) and in

(4.5) that ∇φ = 0 locally. This shows φ is a constant near p, and hence a constant on M by its

continuity. �
In Section 3, we have proved that the constant angle hypersurface in Qn+1(c, d) with the

condition cosφ = 1 is the hypersphere Sn(a)×{b}. So in the following, we assume that cosφ ̸= 1,

and prove that

Lemma 4.2 The principle curvature λ of M is a constant.

Proof We let e1 = T/ sinφ, and extend it to get a local orthonormal basis {e1, e2, . . . , en} on

M . If cosφ = 0, then we see from the second equation in (3.7) that λ = 0. So, in view of (4.6)

and Lemma 4.1, it suffices to show that

λ =
cosφ tan θ

cd|ηQ|
(4.7)

is a constant when cosφ ̸= 0. For this purpose, we apply the following equations of Codazzi

(∇eih)(e2, e2)− (∇e2h)(e2, ei) = ⟨R̄(ei, e2)e2, N⟩,

(∇e2h)(e3, e3)− (∇e3h)(e2, e3) = ⟨R̄(e2, e3)e3, N⟩.
(4.8)

Since M is totally umbilical, we get by (2.15) and (4.8) that

ei(λ) = 0, i = 2, . . . , n. (4.9)

On the other hand, from the equation of Codazzi

(∇e1h)(e2, e2)− (∇e2h)(e2, e1) = ⟨R̃(e1, e2)e2, N⟩, (4.10)

we obtain by use of (2.15)

e1(λ) = − sinφ cosφ
1

c4|ηQ|2
(1− 1

d2|ηQ|2
). (4.11)

We observe from (4.2) that the distribution T⊥ is integrable. Indeed, for any X,Y ∈ T⊥,

we have that

⟨[X,Y ], T ⟩ = −⟨X,∇Y T ⟩+ ⟨Y,∇XT ⟩ = 0. (4.12)

This means that we can choose local coordinates t, v1, . . . , vn−1, such that e1 = ∂t, and ∂t⊥∂vi .

Then the relation (4.9) shows that λ depends only on t. Hence we can rewrite (4.11) as

λ′ = − sinφ cosφ
1

c4|ηQ|2
(1− 1

d2|ηQ|2
). (4.13)
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Using (4.2) and (4.5), we calculate that

⟨R(∂vi , ∂t)∂t, ∂vj ⟩ = −⟨∇∂t∇∂vi
∂t, ∂vj ⟩

= − 1

sin2 φ

[
(λ cosφ− tan θ

cd|ηQ|
)′ + (λ cosφ− tan θ

cd|ηQ|
)2
]
⟨∂vi , ∂vj ⟩. (4.14)

Note that the equation (4.7) yields

λ cosφ− tan θ

cd|ηQ|
= − sin2 φ

tan θ

cd|ηQ|
= −λ sin2 φ cosφ. (4.15)

This together with (4.14) gives

⟨R(∂vi
, ∂t)∂t, ∂vj

⟩ =
[
λ′ cosφ− λ2 sin2 φ cos2 φ

]
⟨∂vi , ∂vj

⟩. (4.16)

On the other hand, we have by the equation of Gauss (2.2) that

⟨R(∂vi , ∂t)∂t, ∂vj ⟩ =
[ 1

c4|ηQ|2
(
sin2 φ

d2|ηQ|2
+ cos2 φ) + λ2

]
⟨∂vi , ∂vj ⟩. (4.17)

Putting (4.16) and (4.17) together, and using (4.7) and (4.13), we obtain

sinφ cos2 φ

c3d3|ηQ|3
− sin2 φ

c2d2|ηQ|2
− sinφ cos2 φ

c3d|ηQ|
− cos2 φ

c2
− (1 + sin2 φ cos2 φ) cos2 φ tan2 θ

d2
= 0. (4.18)

As φ is a constant by Lemma 4.1, we see from (4.18) that θ can only be some constant, and

hence so is λ by (4.7). �
Now the proof of Theorem 1.4 ((ii)⇒(i)) follows immediately from Lemmas 4.1 and 4.2.
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