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Abstract In the paper, firstly, based on new non-tensor-product-typed partially inverse

divided differences algorithms in a recursive form, scattered data interpolating schemes are

constructed via bivariate continued fractions with odd and even nodes, respectively. And e-

quivalent identities are also obtained between interpolated functions and bivariate continued

fractions. Secondly, by means of three-term recurrence relations for continued fractions, the

characterization theorem is presented to study on the degrees of the numerators and denom-

inators of the interpolating continued fractions. Thirdly, some numerical examples show it

feasible for the novel recursive schemes. Meanwhile, compared with the degrees of the numera-

tors and denominators of bivariate Thiele-typed interpolating continued fractions, those of the

new bivariate interpolating continued fractions are much low, respectively, due to the reduc-

tion of redundant interpolating nodes. Finally, the operation count for the rational function

interpolation is smaller than that for radial basis function interpolation.

Keywords Scattered data interpolation; bivariate continued fraction; three-term recurrence
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1. Introduction

Scattered data interpolation via bivariate continued fractions belongs to multivariate ap-

proximation, which is nowadays an increasingly active research area [1]. The field is both fasci-

nating and intellectually stimulating since a lot of classical univariate theory cannot be straight-

forwardly generalized to the multivariate one. As a result, new tools have had to be, and must

continue to be developed, such as radial basis functions [2], multivariate splines based on the

Conformality of Smoothing Cofactor Method [3] that is applied for the construction of spline

quasi-interpolation [4–7], rational approximation [8–10], etc.

To be mentioned, besides these new developments are the results on continued fraction

interpolation and expansion. Cuyt and Verdonk constructed branched Thiele continued fractions
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rational interpolation in [11,12]. By introducing blending differences which look partially like

multivariate divided differences and partially like multivariate inverse ones, Tan constructed

the schemes for blending rational interpolation in Newton-Thiele type [13] and Thiele-Newton

type [14]. Moreover, without the restriction of interpolation over rectangular domain, Wang

and Qian have determined three-term recurrence relations for branched continued fractions, and

constructed the modified branched continued fractions interpolation over pyramid-typed grids in

R3 with the algorithm of partial inverse differences in tensor-product-like manner in [15]. Also,

they have presented a novel continued fractions interpolation scheme over arbitrary ortho-triples

[16] by using a new symmetrical algorithm of partial inverse differences in R2.

To the best of our knowledge, however, there are few papers before the present on surveying

scattered data interpolation via bivariate continued fractions. Hence, by considering the arbitrary

distribution of the interpolating nodes, we are interested in the construction of non-tensor-

product-typed bivariate continued fraction interpolating scheme.

A brief outline of this article is as follows. In Section 2, by considering two types of scat-

tered data distribution, we investigate new non-tensor-product-typed partial divided differences

algorithms in a recursive form, and construct scattered data interpolation based on bivariate

continued fractions with odd and even nodes, respectively. Also we obtain an equivalent iden-

tity between the interpolated function and the bivariate continued fraction. Then in Section

3, by the well-known three-term recurrence relations for continued fractions, we investigate the

characterization theorem to disclose the degrees of the numerators and denominators of the

interpolating continued fractions. Then, in Section 4, we compute the explicit representation

of the interpolating continued fractions with some numerical examples, and plot the figures of

these rational interpolating functions and the corresponding error functions. Numerical exam-

ples show it valid for the recursive scheme. We also compare the degrees of the numerators and

denominators of bivariate Thiele-typed interpolating continued fractions with those of the new

bivariate interpolating continued fractions, respectively. Finally, section 5 makes an analysis of

the complexity of the bivariate continued fraction interpolation and the well-known radial basis

function interpolation.

2. Bivariate recursive continued fraction interpolating algorithm

We shall propose a new recursive algorithm for bivariate inverse divided difference in the

form of non-tensor product. Based upon the algorithm, we shall work out the interpolating

coefficients of continued fractions recursively, and then complete the construction of scattered

data interpolating schemes in the case of odd and even nodes, respectively.

Firstly, suppose that the 2n+1 distinct points are contained in the node collection Π2n+1 =

{(x0, y0), (x1, y1), . . . , (x2n, y2n)}. And we choose the interpolating nodes to guarantee the s-

mooth computation in the paper, for instance, xi ̸= xj , yi ̸= yj , for i ̸= j, which means that

the interpolating nodes do not lie in the horizontal or vertical line. Then we shall consider the
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bivariate continued fraction as

R2n+1(x, y) =c0 +
x− x0 |
| c1

+
(y − y0)(x− x1) |

| c2
+

(y − y1)(x− x2) |
| c3

+

· · · (y − y2n−3)(x− x2n−2) |
| c2n−1

+
(y − y2n−2)(x− x2n−1) |

| c2n

≡c0 +
x− x0 |
| c1

+K2n−2
i=0

(y − yi)(x− xi+1) |
| ci+2

. (2.1)

Secondly, we shall define the representation of the bivariate continued fraction R2n+2(x, y)

by comparing with R2n+1(x, y), where the 2n + 2 distinct points are contained in the node

collection Π2n+2 = {(x0, y0), (x1, y1), . . . , (x2n+1, y2n+1)}, where xi ̸= xj , yi ̸= yj , for i ̸= j.

R2n+2(x, y) = R2n+1(x, y) +
(y − y2n−1)(x− x2n) |

| c2n+1
, (2.2)

where R2n+1(x, y) is defined as in (2.1).

Now we shall illustrate that the bivariate polynomials R2n+1 in (2.1) and R2n+2 in (2.2)

can be put into application in scattered data interpolation over the node collection Π2n+1 and

Π2n+2, respectively. So we shall make some preparation for it by developing new non-tensor-

product-type algorithms of bivariate partially inverse divided differences. To save space, the

bivariate partially inverse divided difference ϕ[x0, . . . , xk; y0, . . . , yk], i.e., ϕ0...,k may be used to

denote ϕ[x0, x1, . . . , xk−1, xk; y0, y1, . . . , yk−1, yk], and additional letters may be written explicitly

only when the subscripts are not consecutive. And we denote the vertical coordinates at the

interpolating nodes Pi(xi, yi) by f(xi, yi) ≡ fi for i = 0, 1, . . . , 2n, 2n+1, where f(x, y) is defined

as the interpolated function.

Definition 2.1 For arbitrary node form Π2n+2, where xi ̸= xj , yi ̸= yj , for i ̸= j, we define the

following bivariate non-tensor-product-typed partially inverse divided differences.

ϕi ≡ ϕ[xi; yi] = fi, i = 0, 1, . . . , 2n, 2n+ 1. (2.3)

ϕ01 ≡ ϕ[x0, x1; y0, y1] =
x1 − x0

f1 − f0
. (2.4)

ϕ012 ≡ ϕ[x0, x1, x2; y0, y1, y2] =
(y2 − y0)(x2 − x1)

ϕ[x0, x2; y0, y2]− ϕ[x0, x1; y0, y1]
, (2.5)

where ϕ[x0, x1; y0, y1] is defined as (2.4), and

ϕ02 ≡ ϕ[x0, x2; y0, y2] =
x2 − x0

f2 − f0
.

ϕ0···3 ≡ ϕ[x0, . . . , x3; y0, . . . , y3] =
(y3 − y1)(x3 − x2)

ϕ[x0, x1, x3; y0, y1, y3]− ϕ[x0, x1, x2; y0, y1, y2]
, (2.6)

where ϕ[x0, x1, x2; y0, y1, y2] is defined as (2.5), and

ϕ013 ≡ ϕ[x0, x1, x3; y0, y1, y3] =
(y3 − y0)(x3 − x1)

ϕ[x0, x3; y0, y3]− ϕ[x0, x1; y0, y1]
,

ϕ03 ≡ ϕ[x0, x3; y0, y3] =
x3 − x0

f3 − f0
.
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ϕ0···4 ≡ ϕ[x0, . . . , x4; y0, . . . , y4]

=
(y4 − y2)(x4 − x3)

ϕ[x0, x1, x2, x4; y0, y1, y2, y4]− ϕ[x0, . . . , x3; y0, . . . , y3]
, (2.7)

where ϕ[x0, . . . , x3; y0, . . . , y3] is defined as (2.6), and

ϕ0124 ≡ ϕ[x0, x1, x2, x4; y0, y1, y2, y4]

=
(y4 − y1)(x4 − x2)

ϕ[x0, x1, x4; y0, y1, y4]− ϕ[x0, x1, x2; y0, y1, y2]
,

ϕ014 ≡ ϕ[x0, x1, x4; y0, y1, y4] =
(y4 − y0)(x4 − x1)

ϕ[x0, x4; y0, y4]− ϕ[x0, x1; y0, y1]
,

ϕ04 ≡ ϕ[x0, x4; y0, y4] =
x4 − x0

f4 − f0
.

· · ·

ϕ0··· ,2n ≡ ϕ[x0, . . . , x2n; y0, . . . , y2n]

=
(y2n − y2n−2)(x2n − x2n−1)

ϕ[x0, . . . , x2n−2, x2n; y0, . . . , y2n−2, y2n]− ϕ[x0, . . . , x2n−1; y0, . . . , y2n−1]
, (2.8)

where

ϕ0··· ,2n−2,2n ≡ ϕ[x0, . . . , x2n−2, x2n; y0, . . . , y2n−2, y2n]

=
(y2n − y2n−3)(x2n − x2n−2)

ϕ[x0, . . . , x2n−3, x2n; y0, . . . , y2n−3, y2n]− ϕ[x0, . . . , x2n−2; y0, . . . , y2n−2]
,

· · · ,

ϕ0···4,2n ≡ ϕ[x0, . . . , x4, x2n; y0, . . . , y4, y2n]

=
(y2n − y3)(x2n − x4)

ϕ[x0, . . . , x3, x2n; y0, . . . , y3, y2n]− ϕ[x0, . . . , x4; y0, . . . , y4]
,

ϕ0···3,2n ≡ ϕ[x0, . . . , x3, x2n; y0, . . . , y3, y2n]

=
(y2n − y2)(x2n − x3)

ϕ[x0, x1, x2, x2n; y0, y1, y2, y2n]− ϕ[x0, . . . , x3; y0, . . . , y3]
,

ϕ012,2n ≡ ϕ[x0, x1, x2, x2n; y0, y1, y2, y2n]

=
(y2n − y1)(x2n − x2)

ϕ[x0, x1, x2n; y0, y1, y2n]− ϕ[x0, x1, x2; y0, y1, y2]
,

ϕ01,2n ≡ ϕ[x0, x1, x2n; y0, y1, y2n] =
(y2n − y0)(x2n − x1)

ϕ[x0, x2n; y0, y2n]− ϕ[x0, x1; y0, y1]
,

ϕ0,2n ≡ ϕ[x0, x2n; y0, y2n] =
x2n − x0

f2n − f0
.

Up to

ϕ0··· ,2n+1 ≡ ϕ[x0, . . . , x2n+1; y0, . . . , y2n+1]

=
(y2n+1 − y2n−1)(x2n+1 − x2n)

ϕ[x0, . . . , x2n−1, x2n+1; y0, . . . , y2n−1, y2n+1]− ϕ[x0, . . . , x2n; y0, . . . , y2n]
,(2.9)
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where ϕ[x0, . . . , x2n; y0, . . . , y2n] is defined as (2.8), and

ϕ0··· ,2n−1,2n+1 ≡ ϕ[x0, . . . , x2n−1, x2n+1; y0, . . . , y2n−1, y2n+1]

=
(y2n+1 − y2n−2)(x2n+1 − x2n−1)

ϕ[x0, . . . , x2n−2, x2n+1; y0, . . . , y2n−2, y2n+1]− ϕ[x0, . . . , x2n−1; y0, . . . , y2n−1]
,

· · · ,

ϕ0···4,2n+1 ≡ ϕ[x0, . . . , x4, x2n+1; y0, . . . , y4, y2n+1]

=
(y2n+1 − y3)(x2n+1 − x4)

ϕ[x0, . . . , x3, x2n+1; y0, . . . , y3, y2n+1]− ϕ[x0, . . . , x4; y0, . . . , y4]
,

ϕ0···3,2n+1 ≡ ϕ[x0, . . . , x3, x2n+1; y0, . . . , y3, y2n+1]

=
(y2n+1 − y2)(x2n+1 − x3)

ϕ[x0, x1, x2, x2n+1; y0, y1, y2, y2n+1]− ϕ[x0, . . . , x3; y0, . . . , y3]
,

ϕ012,2n+1 ≡ ϕ[x0, x1, x2, x2n+1; y0, y1, y2, y2n+1]

=
(y2n+1 − y1)(x2n+1 − x2)

ϕ[x0, x1, x2n+1; y0, y1, y2n+1]− ϕ[x0, x1, x2; y0, y1, y2]
,

ϕ01,2n+1 ≡ ϕ[x0, x1, x2n+1; y0, y1, y2n+1]

=
(y2n+1 − y0)(x2n+1 − x1)

ϕ[x0, x2n+1; y0, y2n+1]− ϕ[x0, x1; y0, y1]
,

ϕ0,2n+1 ≡ ϕ[x0, x2n+1; y0, y2n+1] =
x2n+1 − x0

f2n+1 − f0
.

Let us summarize the results in Definition 2.1 into the corresponding algorithms for the

computation of the partially inverse divided differences with odd and even interpolating nodes,

respectively, which are also shown in Table 1.

Algorithm 2.1

1. Initialization: ϕi = f(xi, yi), where i = 0, 1, . . . , 2n.

2. Recursive case: By means of Definition 2.1, calculate

ϕ0,i (i = 1, 2, . . . , 2n) → ϕ01,i (i = 2, . . . , 2n) → ϕ012,i (i = 3, . . . , 2n)

→ ϕ0123,i (i = 4, . . . , 2n) → · · · → ϕ0··· ,2n−2,i (i = 2n− 1, 2n)

3. Result: ϕ0··· ,2n

Algorithm 2.2

1. Initialization: ϕi = f(xi, yi), where i = 0, 1, . . . , 2n+ 1.

2. Recursive case: By means of Definition 2.1, calculate

ϕ0,i (i = 1, 2, . . . , 2n+ 1) → ϕ01,i (i = 2, . . . , 2n+ 1) → ϕ012,i (i = 3, . . . , 2n+ 1)

→ ϕ0123,i (i = 4, . . . , 2n+ 1) → · · · → ϕ0··· ,2n−1,i (i = 2n, 2n+ 1)

3. Result: ϕ0··· ,2n+1
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ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 · · · ϕ2n ϕ2n+1

ϕ01 ϕ02 ϕ03 ϕ04 ϕ05 · · · ϕ0,2n ϕ0,2n+1

ϕ012 ϕ013 ϕ014 ϕ015 · · · ϕ01,2n ϕ01,2n+1

ϕ0123 ϕ0124 ϕ0125 · · · ϕ012,2n ϕ012,2n+1

ϕ01···4 ϕ01235 · · · ϕ0123,2n ϕ0123,2n+1

ϕ0···5 · · · ϕ0···4,2n ϕ0···4,2n+1

. . .
...

...

ϕ0··· ,2n ϕ0··· ,2n−1,2n+1

ϕ0··· ,2n+1

Table 1 Recursive computation of bivariate non-tensor-product-typed partially inverse divided

differences

Remark 2.2 In the case of threes of the interpolating nodes lying in the horizontal or vertical

lines, the bivariate interpolating continued fractions have been considered over the orthor-triples

in [16].

Now we shall establish bivariate continued fraction interpolation over the node collection

Π2n+1 and Π2n+2, respectively, and computation of the interpolating coefficients of them is based

upon Algorithms 2.1 and 2.2.

Theorem 2.3 (i) For each (xi, yi) ∈ Π2n+1, the bivariate interpolating continued fraction

R2n+1(x, y) defined in (2.1) satisfies

R2n+1(xi, yi) = f(xi, yi) = fi, i = 0, 1, . . . , 2n, (2.10)

where the interpolating coefficients

ci = ϕ[x0, . . . , xi; y0, . . . , yi], i = 0, 1, . . . , 2n. (2.11)

(ii) The bivariate interpolating continued fraction R2n+2(x, y) in the form of (2.2) interpo-

lates over scattered data Π2n+2, that is, for i = 0, 1, . . . , 2n+ 1,

R2n+2(xi, yi) = f(xi, yi) = fi, (2.12)

where the interpolating coefficients

ci = ϕ[x0, . . . , xi; y0, . . . , yi], i = 0, 1, . . . , 2n+ 1. (2.13)

Proof We shall perform the proof of Theorem 2.3 for n by induction.

For n = 1, Π2 = {(x0, y0), (x1, y1)}, R2(x, y) = c0 +
x−x0

c1
, which satisfies R2(xi, yi) = fi,

i = 0, 1. Thus, it follows that

c0 = f0, c1 =
x1 − x0

f1 − f0
≡ ϕ[x0, x1; y0, y1].

Moreover, for n = 2, Π3 = {(xi, yi), i = 0, 1, 2},

R3(x, y) = c0 +
x− x0 |
| c1

+
(y − y0)(x− x1) |

| c2
.
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By considering the interpolation at the node (x2, y2), we can obtain from the above formula

R3(x, y),

c1 +
(y2 − y0)(x2 − x1)

c2
=

x2 − x0

f2 − f0
≡ ϕ[x0, x2; y0, y2],

⇒c2 =
(y2 − y0)(x2 − x1)

ϕ[x0, x2; y0, y2]− ϕ[x0, x1; y0, y1]
≡ ϕ[x0, x1, x2; y0, y1, y2].

For n = 3, Π4 = {(xi, yi), i = 0, 1, 2, 3},

R4(x, y) = c0 +
x− x0 |
| c1

+
(y − y0)(x− x1) |

| c2
+

(y − y1)(x− x2) |
| c3

.

By substituting the interpolating node (x3, y3) into R4(x, y), we have

c1 +
(y3 − y0)(x3 − x1)|

| c2
+

(y3 − y1)(x3 − x2)|
| c3

=
x3 − x0

f3 − f0
≡ ϕ[x0, x3; y0, y3],

⇒c2 +
(y3 − y1)(x3 − x2)

c3
=

(y3 − y0)(x3 − x1)

ϕ[x0, x3; y0, y3]− ϕ[x0, x1; y0, y1]

≡ ϕ[x0, x1, x3; y0, y1, y3]

⇒c3 =
(y3 − y1)(x3 − x2)

ϕ[x0, x1, x3; y0, y1, y3]− ϕ[x0, x1, x2; y0, y1, y2]

≡ ϕ[x0, . . . , x3; y0, . . . , y3].

For n = 4, Π5 = {(xi, yi), i = 0, . . . , 4},

R5(x, y) = R4(x, y) +
(y − y2)(x− x3) |

| c4
.

By substituting the interpolating node (x4, y4) into R5(x, y), we have

c1 +
(y4 − y0)(x4 − x1)|

| c2
+

(y4 − y1)(x4 − x2)|
| c3

+
(y4 − y2)(x4 − x3)|

| c4

=
x4 − x0

f4 − f0
≡ ϕ[x0, x4; y0, y4],

⇒c2 +
(y4 − y1)(x4 − x2)|

| c3
+

(y4 − y2)(x4 − x3)|
| c4

=
(y4 − y0)(x4 − x1)

ϕ[x0, x4; y0, y4]− ϕ[x0, x1; y0, y1]
≡ ϕ[x0, x1, x4; y0, y1, y4]

⇒c3 +
(y4 − y2)(x4 − x3)

c4
=

(y4 − y1)(x4 − x2)

ϕ[x0, x1, x4; y0, y1, y4]− ϕ[x0, x1, x2; y0, y1, y2]

≡ ϕ[x0, x1, x2, x4; y0, y1, y2, y4]

⇒c4 =
(y4 − y2)(x4 − x3)

ϕ[x0, x1, x2, x4; y0, y1, y2, y4]− ϕ[x0, . . . , x3; y0, . . . , y3]

≡ ϕ[x0, . . . , x4; y0, . . . , y4].

Hence, we show it valid for the case of n = 1, 2, 3, 4, 5 in Theorem 2.3.

Furthermore, we assume the results hold for Πi, i = 1, . . . , 2n. To be more precise, we

denote the corresponding interpolating coefficients by c
′

is in Algorithm 2.1 and 2.2. Then on the
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one hand, it follows in the case of i = 2n+ 1,

R2n+1(x, y) = c0 +
x− x0 |
| c1

+K2n−2
i=0

(y − yi)(x− xi+1) |
| ci+2

.

By considering the interpolation at the node (x2n, y2n), we have from R2n+1(x, y)

c1 +
(y2n − y0)(x2n − x1) |

| c2
+ · · ·+ (y2n − y2n−2)(x2n − x2n−1) |

| c2n
x2n − x0

f2n − f0
≡ ϕ[x0, x2n; y0, y2n]

⇒c2 +
(y2n − y1)(x2n − x2) |

| c3
+ · · ·+ (y2n − y2n−2)(x2n − x2n−1) |

| c2n

=
(y2n − y0)(x2n − x1)

ϕ[x0, x2n; y0, y2n]− ϕ[x0, x1; y0, y1]
≡ ϕ[x0, x1, x2n; y0, y1, y2n]

⇒c3 +
(y2n − y2)(x2n − x3) |

| c4
+ · · ·+ (y2n − y2n−2)(x2n − x2n−1) |

| c2n

=
(y2n − y1)(x2n − x2)

ϕ[x0, x1, x2n; y0, y1, y2n]− ϕ[x0, x1, x2; y0, y1, y2]

≡ ϕ[x0, x1, x2, x2n; y0, y1, y2, y2n]

⇒c4 +
(y2n − y3)(x2n − x4) |

| c5
+ · · ·+ (y2n − y2n−2)(x2n − x2n−1) |

| c2n

=
(y2n − y2)(x2n − x3)

ϕ[x0, x1, x2, x2n; y0, y1, y2, y2n]− ϕ[x0, . . . , x3; y0, . . . , y3]

≡ ϕ[x0, . . . , x3, x2n; y0, . . . , y3, y2n]

⇒· · ·

⇒c2n−1 +
(y2n − y2n−2)(x2n − x2n−1) |

| c2n

=
(y2n − y2n−3)(x2n − x2n−2)

ϕ[x0, . . . , x2n−3, x2n; y0, . . . , y2n−3, y2n]− ϕ[x0, . . . , x2n−2; y0, . . . , y2n−2]

≡ ϕ[x0, . . . , x2n−2, x2n; y0, . . . , y2n−2, y2n]

⇒c2n

=
(y2n − y2n−2)(x2n − x2n−1)

ϕ[x0, . . . , x2n−2, x2n; y0, . . . , y2n−2, y2n]− ϕ[x0, . . . , x2n−1; y0, . . . , y2n−1]

≡ ϕ[x0, . . . , x2n; y0, . . . , y2n].

On the other hand, we deduce for i = 2n+ 2 similarly that

R2n+2(x, y) = c0 +
x− x0 |
| c1

+K2n−1
i=0

(y − yi)(x− xi+1) |
| ci+2

.

By considering the interpolation at the node (x2n+1, y2n+), we obtain from R2n+2(x, y)

c1 +
(y2n+1 − y0)(x2n+1 − x1) |

| c2
+ · · ·+ (y2n+1 − y2n−1)(x2n+1 − x2n) |

| c2n+1

=
x2n+1 − x0

f2n+1 − f0
≡ ϕ[x0, x2n+1; y0, y2n+1]

⇒c2 +
(y2n+1 − y1)(x2n+1 − x2) |

| c3
+ · · ·+ (y2n+1 − y2n−1)(x2n+1 − x2n) |

| c2n+1
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=
(y2n+1 − y0)(x2n+1 − x1)

ϕ[x0, x2n+1; y0, y2n+1]− ϕ[x0, x1; y0, y1]
≡ ϕ[x0, x1, x2n+1; y0, y1, y2n+1]

⇒c3 +
(y2n+1 − y2)(x2n+1 − x3) |

| c4
+ · · ·+ (y2n+1 − y2n−1)(x2n+1 − x2n) |

| c2n+1

=
(y2n+1 − y1)(x2n+1 − x2)

ϕ[x0, x1, x2n+1; y0, y1, y2n+1]− ϕ[x0, x1, x2; y0, y1, y2]

≡ ϕ[x0, x1, x2, x2n+1; y0, y1, y2, y2n+1]

⇒c4 +
(y2n+1 − y3)(x2n+1 − x4) |

| c5
+ · · ·+ (y2n+1 − y2n−1)(x2n+1 − x2n) |

| c2n+1

=
(y2n+1 − y2)(x2n+1 − x3)

ϕ[x0, x1, x2, x2n+1; y0, y1, y2, y2n+1]− ϕ[x0, . . . , x3; y0, . . . , y3]

≡ ϕ[x0, . . . , x3, x2n; y0, . . . , y3, y2n]

⇒· · ·

⇒c2n +
(y2n+1 − y2n−1)(x2n+1 − x2n) |

| c2n+1

=
(y2n+1 − y2n−2)(x2n+1 − x2n−1)

ϕ[x0, . . . , x2n−2, x2n+1; y0, . . . , y2n−2, y2n+1]− ϕ[x0, . . . , x2n−1; y0, . . . , y2n−1]

≡ ϕ[x0, . . . , x2n−1, x2n+1; y0, . . . , y2n−1, y2n+1]

⇒c2n+1

=
(y2n+1 − y2n−1)(x2n+1 − x2n)

ϕ[x0, . . . , x2n−1, x2n+1; y0, . . . , y2n−1, y2n+1]− ϕ[x0, . . . , x2n; y0, . . . , y2n]

≡ ϕ[x0, . . . , x2n+1; y0, . . . , y2n+1].

As a result, we show it valid for (2.10) up to (2.13) by induction. �
Since we establish the bivariate continued fraction interpolation, we shall make a further

study on the equivalent identities between the interpolated functions and the interpolating con-

tinued fractions. Before dealing with it, we shall define some bivariate non-tensor-product-typed

inverse divided differences with respect to x and y by means of Definition 2.1.

Definition 2.4 For arbitrary node form Π2n+2, where xi ̸= xj , yi ̸= yj , for i ̸= j, and x ̸= xi,

y ̸= yi, we define some bivariate non-tensor-product-typed inverse divided differences with re-

spect to x and y.

(1)

ϕ[x0, x; y0, y] =
x− x0

f(x, y)− f0
.

(2)

ϕ[x0, x1, x; y0, y1, y] =
(y − y0)(x− x1)

ϕ[x0, x; y0, y]− ϕ[x0, x1; y0, y1]
,

(3)

ϕ[x0, x1, x2, x; y0, y1, y2, y] =
(y − y1)(x− x2)

ϕ[x0, x1, x; y0, y1, y]− ϕ[x0, x1, x2; y0, y1, y2]
,

(4)

ϕ[x0, . . . , x3, x; y0, . . . , y3, y]
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=
(y − y2)(x− x3)

ϕ[x0, x1, x2, x; y0, y1, y2, y]− ϕ[x0, . . . , x3; y0, . . . , y3]
,

(5)

ϕ[x0, . . . , x4, x; y0, . . . , y4, y]

=
(y − y3)(x− x4)

ϕ[x0, . . . , x3, x; y0, . . . , y3, y]− ϕ[x0, . . . , x4; y0, . . . , y4]
,

(2n)

ϕ[x0, . . . , x2n−1, x; y0, . . . , y2n−1, y]

=
(y − y2n−2)(x− x2n−1)

ϕ[x0, . . . , x2n−2, x; y0, . . . , y2n−2, y]− ϕ[x0, . . . , x2n−1; y0, . . . , y2n−1]
,

(2n+ 1)

ϕ[x0, . . . , x2n, x; y0, . . . , y2n, y]

=
(y − y2n−1)(x− x2n)

ϕ[x0, . . . , x2n−1, x; y0, . . . , y2n−1, y]− ϕ[x0, . . . , x2n; y0, . . . , y2n]
,

Up to (2n+ 2)

ϕ[x0, . . . , x2n+1, x; y0, . . . , y2n+1, y]

=
(y − y2n)(x− x2n+1)

ϕ[x0, . . . , x2n, x; y0, . . . , y2n, y]− ϕ[x0, . . . , x2n+1; y0, . . . , y2n+1]
.

Theorem 2.5 By letting the interpolating nodes (xi, yi), i = 0, 1, 2, . . . , 2n, and using Definition

2.4, we have the equivalent identity

f(x, y) = c0 +
x− x0 |
| c1

+K2n−2
i=0

(y − yi)(x− xi+1) |
| ci+2

+
(y − y2n−1)(x− x2n) |

| c2n+1(x, y)
, (2.14)

where the interpolating coefficients satisfy

ci = ϕ[x0, . . . , xi; y0, . . . , yi], i = 0, 1, . . . , 2n.

And we calculate the function c2n+1(x, y) in the last term

c2n+1(x, y) = ϕ[x0, . . . , x2n, x; y0, . . . , y2n, y]. (2.15)

Theorem 2.6 Given the interpolating nodes (xi, yi), i = 0, 1, 2, . . . , 2n, we obtain the equivalent

identity by means of Definition 2.4

f(x, y) = c0 +
x− x0 |
| c1

+K2n−1
i=0

(y − yi)(x− xi+1) |
| ci+2

+
(y − y2n)(x− x2n+1) |

| c2n+2(x, y)
, (2.16)

where the interpolating coefficients satisfy

ci = ϕ[x0, . . . , xi; y0, . . . , yi], i = 0, 1, . . . , 2n+ 1,

and the function c2n+2(x, y) in the last term satisfies

c2n+2(x, y) = ϕ[x0, . . . , x2n+1, x; y0, . . . , y2n+1, y]. (2.17)

3. Characterization theorem
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In this section, one may see that the three-term recurrence relations for the bivariate con-

tinued fraction R2n+1(x, y) and R2n+2(x, y) play a vital role on determining the degrees of the

numerator and the denominator, respectively. This will be done with sufficient preparation for

them.

Denote by P2n+1(x, y) andQ2n+1(x, y) the numerator and the denominator of R2n+1(x, y) as

defined in (2.1), respectively, the degrees of which are denoted by degP2n+1 and degQ2n+1, respec-

tively. And we say the rational function R2n+1(x, y) is of type (degP2n+1)/(degQ2n+1). Similarly,

we denote by P2n+2(x, y) and Q2n+2(x, y) the numerator and the denominator of R2n+2(x, y) as

defined in (2.2), respectively, with degrees being denoted by degP2n+2 and degQ2n+2, respec-

tively. And we say the rational function R2n+2(x, y) is of type (degP2n+2)/(degQ2n+2).

Lemma 3.1 ([9]) For the continued fraction

b0 +
a1 |
| b1

+
a2 |
| b2

+ · · · = b0 +K∞
i=1

ai
bi
, (3.1)

and its nth convergent

Rn = b0 +Kn
i=1

ai
bi

≡ Pn

Qn
, (3.2)

the three-term recurrence relations for the continued fraction are valid, i.e.,

Pn = bnPn−1 + anPn−2, Qn = bnQn−1 + anQn−2, (3.3)

where P−1 = 1, P0 = b0, Q−1 = 0, Q0 = 1, n = 1, 2, . . ..

Lemma 3.2 ([9]) Let

Rn(x) = b0(x) +Kn
i=1

x− xi−1

bi
=

Pn(x)

Qn(x)
.

Then degPn(x) = [(n+1)/2], degQn(x) = [n/2]. In other words, the continued fraction Rn(x) is

of type [(n+ 1)/2]/[n/2], where [n/2] means the entire part of n/2.

Besides these, throughout the paper we let Pn,n(x, y) and Pn+1,n(x, y) denote the bivariate

tensor-product-type polynomial spaces

Pn,n = span{1, x, . . . , xn}
⊗

{1, y, . . . , yn},

Pn+1,n = span{1, x, . . . , xn+1}
⊗

{1, y, . . . , yn},

respectively.

Now by directly calculating, we can obtain the three-term recurrence relations for the bi-

variate continued fraction R2n+1(x, y) and R2n+2(x, y), respectively. And then we establish the

corresponding algorithms for computing them.

Theorem 3.3 By letting

R2n+1(x, y) ≡
P2n+1(x, y)

Q2n+1(x, y)
(3.4)

as defined in (2.1), we obtain the three-term recurrence relations

P2n+1(x, y) = c2nP2n(x, y) + (y − y2n−2)(x− x2n−1)P2n−1(x, y),
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Q2n+1(x, y) = c2nQ2n(x, y) + (y − y2n−2)(x− x2n−1)Q2n−1(x, y), (3.5)

where n = 1, 2, . . . , and

P1 = c0, Q1 = 1, P2 = c0c1 + x− x0, Q2 = c1. (3.6)

Theorem 3.4 Suppose

R2n+2(x, y) ≡
P2n+2(x, y)

Q2n+2(x, y)
(3.7)

as defined in (2.2), then for n = 0, 1, 2, . . . , the three-term recurrence relations

P2n+2(x, y) = c2n+1P2n+1(x, y) + (y − y2n−1)(x− x2n)P2n(x, y),

Q2n+2(x, y) = c2n+1Q2n+1(x, y) + (y − y2n−1)(x− x2n)Q2n(x, y), (3.8)

where

P0 = 1, P1 = c0, Q0 = 0, Q1 = 1, y − y−1 = 1. (3.9)

Algorithm 3.1 Let 2n+1 interpolating nodes (xi, yi) and the corresponding vertical coordinate

fi(i− 0, 1, . . . , 2n) be given.

1. Initialization: For i = 0, 1, . . . , 2n, calculate the interpolating coefficients

ci = ϕ[x0, . . . , xi; y0, . . . , yi].

2. Recursive case:

For k = 1, 2, . . . , n

P0 = 1; Q0 = 0;

P1 = c0; Q1 = 1;

P2k = c2k−1P2k−1 + (y − y2k−3)(x− x2k−2)P2k−2;

Q2k = c2k−1Q2k−1 + (y − y2k−3)(x− x2k−2)Q2k−2;

P2k+1 = c2kP2k + (y − y2k−2)(x− x2k−1)P2k−1;

Q2k+1 = c2kQ2k + (y − y2k−2)(x− x2k−1)Q2k−1;

end

3. Result: P2n+1(x, y), Q2n+1(x, y) → R2n+1(x, y) =
P2n+1(x,y)
Q2n+1(x,y)

.

Algorithm 3.2 Let 2n+2 interpolating nodes (xi, yi) and the corresponding vertical coordinate

fi(i = 0, 1, . . . , 2n+ 1) be given.

1. Initialization: For i = 0, 1, . . . , 2n+ 1, calculate the interpolating coefficients

ci = ϕ[x0, . . . , xi; y0, . . . , yi].

2. Recursive case:

For k = 1, 2, . . . , n

P1 = c0; Q1 = 1;
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P2 = c0c1 + x− x0; Q2 = c1;

P2k+1 = c2kP2k + (y − y2k−2)(x− x2k−1)P2k−1;

Q2k+1 = c2kQ2k + (y − y2k−2)(x− x2k−1)Q2k−1;

P2k+2 = c2k+1P2k+1 + (y − y2k−1)(x− x2k)P2k;

Q2k+2 = c2k+1Q2k+1 + (y − y2k−1)(x− x2k)Q2k;

end

3. Result: P2n+2(x, y), Q2n+2(x, y) → R2n+2(x, y) =
P2n+2(x, y)

Q2n+2(x, y)
.

Based upon the three-term recurrence relations for the bivariate continued fractionR2n+1(x, y)

in Theorem 3.3 and R2n+2(x, y) in Theorem 3.4, respectively, the degrees of the numerators

P2n+1(x, y), P2n+2(x, y) and the denominators Q2n+1(x, y), Q2n+2(x, y) can be determined,

which is called the characterization theorem.

Theorem 3.5 (i) The bivariate continued fraction R2n+1(x, y) is of type (2n)/(2n), and

P2n+1(x, y) ∈ Pn,n, Q2n+1(x, y) ∈ Pn,n, n = 0, 1, 2, . . . .

(ii) The bivariate continued fraction R2n+2(x, y) is of type (2n+ 1)/(2n), and

P2n+2(x, y) ∈ Pn+1,n, Q2n+2(x, y) ∈ Pn,n, n = 0, 1, 2, . . . .

Proof The proof of Theorem 3.5 is performed for n by induction.

For n = 0, with direct calculation, the continued fraction R2(x, y) over two interpolating

nodes is of type 1/0, and

P2(x, y) ∈ span{1, x}
⊗

{1} ≡ P1,0, Q2(x, y) ∈ span{1}
⊗

{1} ≡ P0,0.

Moreover, for n = 1, the continued fraction R3(x, y) over three interpolating nodes is of

type 2/2, and

P3(x, y) ∈ span{1, x}
⊗

{1, y} ≡ P1,1, Q3(x, y) ∈ span{1, x}
⊗

{1, y} ≡ P1,1.

For n = 2, the continued fraction R4(x, y) over four interpolating nodes is of type 3/2, and

P4(x, y) ∈ span{1, x, x2}
⊗

{1, y} ≡ P2,1, Q4(x, y) ∈ span{1, x}
⊗

{1, y} ≡ P1,1.

Furthermore, by assuming that the conclusion holds for the interpolating continued fraction

R2n−1(x, y) over Π2n−1 and R2n(x, y) over Π2n, respectively, we shall show it valid for R2n+1(x, y)

over Π2n+1.

degP2n+1(x, y) = max{c2nP2n(x, y), (y − y2n−2)(x− x2n−1)P2n−1(x, y)}

= max{2n− 1, 2n− 2 + 2} = 2n,

degQ2n+1(x, y) = max{c2nQ2n(x, y), (y − y2n−2)(x− x2n−1)Q2n−1(x, y)}

= max{2n− 2, 2n− 2 + 2} = 2n,

and

P2n−1(x, y) ∈ Pn−1,n−1, P2n(x, y) ∈ Pn,n ⇒ P2n+1(x, y) ∈ Pn,n,
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Q2n−1(x, y) ∈ Pn−1,n−1, Q2n(x, y) ∈ Pn−1,n−1 ⇒ Q2n+1(x, y) ∈ Pn,n.

Meanwhile, by using the above conclusion, we also prove the result for R2n+2(x, y) over

Π2n+2.

degP2n+2(x, y) = max{c2n+1P2n+1(x, y), (y − y2n−1)(x− x2n)P2n(x, y)}

= max{2n, 2n− 1 + 2} = 2n+ 1,

degQ2n+2(x, y) = max{c2n+1Q2n+1(x, y), (y − y2n−1)(x− x2n)Q2n(x, y)}

= max{2n, 2n− 2 + 2} = 2n,

and

P2n+1(x, y) ∈ Pn,n, P2n(x, y) ∈ Pn,n−1 ⇒ P2n+2(x, y) ∈ Pn+1,n,

Q2n+1(x, y) ∈ Pn,n, Q2n(x, y) ∈ Pn−1,n−1 ⇒ Q2n+2(x, y) ∈ Pn,n.

Thus, the proof of Theorem 3.5 is completed. �

Remark 3.6 For the sake of illustration, we list the number of the interpolating nodes, the

type of the bivariate continued fractions, the bivariate polynomial spaces which the numerators

and the denominators are contained in. All the results are shown in Table 2.

Scattered data Πn Type of Rn(x, y) Polynomial Space for Pn Space for Qn

Π2 1/0 P1,0 P0,0

Π3 2/2 P1,1 P1,1

Π4 3/2 P2,1 P1,1

Π5 4/4 P2,2 P2,2

Π6 5/4 P3,2 P2,2

· · · · · · · · · · · ·
Π2n−1 (2n− 2)/(2n− 2) Pn−1,n−1 Pn−1,n−1

Π2n (2n− 1)/(2n− 2) Pn,n−1 Pn−1,n−1

Π2n+1 (2n)/(2n) Pn,n Pn,n

Π2n+2 (2n+ 1)/(2n) Pn+1,n Pn,n

Table 2 The characterization of bivariate interpolating continued fractions over Πi’s

Remark 3.7 Bivariate Thiele-typed continued fraction interpolating scheme R̃2n+1(x, y) ≡
P̃2n+1(x, y)

Q̃2n+1(x, y)
shall be constructed over the tensor-product-typed mesh Π̃2n+1 = {(xi, yj), i, j =

0, . . . , 2n}, where xi ̸= xj , yi ̸= yj , for i ̸= j. Based upon Lemma 3.2, it follows that

P̃2n+1(x, y) ∈ Pn+1,n+1, Q̃2n+1(x, y) ∈ Pn,n, n = 0, 1, 2, . . . .

Obviously, the degree of P̃2n+1(x, y) is higher than that of P2n+1(x, y) in Theorem 3.5 (i).

Remark 3.8 One can also construct the bivariate Thiele-typed interpolating continued fraction
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R̃2n+2(x, y) ≡
P̃2n+2(x, y)

Q̃2n+2(x, y)
over Π̃2n+2 = {(xi, yj), i, j = 0, . . . , 2n+ 1}, where

P̃2n+2(x, y) ∈ Pn+1,n+1, Q̃2n+2(x, y) ∈ Pn+1,n+1, n = 0, 1, 2, . . . .

Consequently, the degrees of P̃2n+2(x, y) and Q̃2n+2(x, y) are higher than those of P2n+2(x, y)

and Q2n+2(x, y) in Theorem 3.5 (ii), respectively.

4. Numerical examples

By means of Algorithms 2.1, 2.2, 3.1 and 3.2, some bivariate continued fraction interpolations

are determined over scattered data with some numerical examples in the section. On the one

hand, we work out the representation of the numerators and the denominators. On the other

hand, we will plot the figures of continued fractions and the corresponding error functions.

For the sake of illustration, we make some preparation with some denotations for the numer-

ical examples. Denote the scattered data collection by Πk+1 = {(x0, y0), (x1, y1), . . . , (xk, yk)},
where k = 2, 3, 4, 5, and xi ̸= xj , yi ̸= yj , for i ̸= j. Then by (2.1) and (2.2), we obtain the

explicit representation of the interpolating continued fractions as follows

R3(x, y) ≡
P3(x, y)

Q3(x, y)
= c0 +

x− x0 |
| c1

+
(y − y0)(x− x1) |

| c2
, (4.1)

R4(x, y) ≡
P4(x, y)

Q4(x, y)

=c0 +
x− x0 |
| c1

+
(y − y0)(x− x1) |

| c2
+

(y − y1)(x− x2) |
| c3

, (4.2)

R5(x, y) ≡
P5(x, y)

Q5(x, y)

=c0 +
x− x0 |
| c1

+
(y − y0)(x− x1) |

| c2
+

(y − y1)(x− x2) |
| c3

+

(y − y2)(x− x3) |
| c4

, (4.3)

R6(x, y) ≡
P6(x, y)

Q6(x, y)

=c0 +
x− x0 |
| c1

+
(y − y0)(x− x1) |

| c2
+

(y − y1)(x− x2) |
| c3

+

(y − y2)(x− x3) |
| c4

+
(y − y3)(x− x4) |

| c5
(4.4)

Example 4.1 Suppose interpolating nodes P0(−7,−9.5), P1(−5,−4), P2(−3,−2), P3(0.2,−1),

P4(4, 2), P5(7.8, 8), and the corresponding node collection Πk+1, k = 2, 3, 4, 5 are given as shown

in Figure 1.1. We also give the corresponding vertical coordinates, i.e., VCs, fi at Pi(xi, yi),

i = 0, . . . , 5 in Table 3. Then we calculate the six interpolating coefficients ci’s in Table 4

by using Algorithms 2.1 and 2.2. Moreover, we determine the explicit representation of the

interpolating continued fractions over Πk+1, k = 2, 3, 4, 5 as the following, respectively. Actually,

we obtain R3(x, y) and R5(x, y) by using Algorithm 3.1, and R4(x, y) and R6(x, y) by means
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of Algorithm 3.2. Finally, we plot the figures of the interpolating rational functions Ri(x, y),

i = 3, 4, 5, 6 in Figure 1.2 to 1.5, respectively. To be mentioned, we provide the programming

procedure of calculating the interpolating coefficients, and testing the interpolating property of

the rational function R6(x, y) at the interpolating nodes, and plotting Figure 1.5 in the appendix.

VCs f0 f1 f2 f3 f4 f5

Values −0.058745 0.018686 −0.124112 0.835460 −0.217184 −0.088092

Table 3 The vertical coordinates (VCs) fi’s in Example 4.1

c0 c1 c2 c3 c4 c5

−0.058745 25.829193 −0.172369 −4.148767 −0.363684 158.478514

Table 4 The coefficients of Ri(x, y), i = 2, 3, 4, 5, in Example 4.1
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Figure 1.1 Scattered data Π6

P3(x, y) =− 0.730450x− 0.293727y − 0.058745xy − 3.735443,

Q3(x, y) =xy + 5.0y + 9.5x+ 43.047846,

R3(x, y) =
P3(x, y)

Q3(x, y)
,

P4(x, y) =36.961088x+ 17.666570y + 8.726376xy + x2y + 4.0x2 + 81.289351,

Q4(x, y) =63.903487x+ 56.743745y + 21.680426xy + 131.354841,

R4(x, y) =
P4(x, y)

Q4(x, y)
,

P5(x, y) =− 0.058745x2y2 − 1.211624x2y − 2.915635x2 − 0.281978xy2−

7.326952xy − 20.620862x+ 0.058745y2 − 5.560469y − 28.069457,

Q5(x, y) =x2y2 + 11.5x2y + 19.0x2 + 4.8xy2 + 42.863022xy + 59.055017x−

1.0y2 − 31.246360y − 64.990789,

R5(x, y) =
P5(x, y)

Q5(x, y)
,
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P6(x, y) =3.155002x3y2 + 15.775009x3y + 12.620007x3 − 14.460938x2y2−

524.7681670x2y − 1391.685375x2 − 195.377658xy2 − 3927.845914xy−

10520.412261x− 193.579579y2 − 4029.058999y − 15060.600628,

Q6(x, y) =568.401784x2y2 + 6020.017403x2y + 9701.615619x2+

2305.419482xy2 + 20944.892838xy + 29135.470886x− 1216.106476y2−

17996.985482y − 34153.093667,

R6(x, y) =
P6(x, y)

Q6(x, y)
.
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Example 4.2 Considering the scattered data P0(−0.9, 0.2), P1(−0.4, 0.6), P2(0.2, 0.8), P3(0.8,

0.4), P4(0.6,−0.4), P5(−0.6,−0.8), we denote by Πk+1, k = 2, 3, 4, 5 the corresponding node

collection as shown in Figure 2.1. By means of the given vertical coordinates zi’s at Pi’s in Table

5, we calculate the six interpolating coefficients ci’s in Table 6. Consequently, we work out the

representation of the bivariate interpolating continued fractions Ri(x, y)’s as the following. In

fact, we compute R3(x, y) and R5(x, y) by Algorithm 3.1, and R4(x, y) and R6(x, y) by means

of Algorithm 3.2. And then we plot the corresponding figures in Figure 2.2 to 2.5, respectively.
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VCs f0 f1 f2 f3 f4 f5

Values 1.576055 1.311592 1.432173 1.531926 1.311592 1.718282

Table 5 The vertical coordinates (VCs) fi’s in Example 4.2

c0 c1 c2 c3 c4 c5

1.576055 −1.890620 −0.062559 −2.142556 0.717394 −2.705955

Table 6 The coefficients of Ri(x, y)’s in Example 4.2
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Figure 2.1 Scattered data Π6

P3(x, y) =0.630442y − 0.377770x+ 1.576055xy + 0.004022,

Q3(x, y) =xy + 0.4y − 0.2x+ 0.038276,

R3(x, y) =
P3(x, y)

Q3(x, y)
,

P4(x, y) =2.177227x− 0.934770y − 5.656508xy + x2y − 0.600000x2 − 0.258183,

Q4(x, y) =1.562883x− 0.478898y − 4.033176xy − 0.308883,

R4(x, y) =
P4(x, y)

Q4(x, y)
,

P5(x, y) =1.576055x2y2 − 0.921220x2y − 0.128220x2 − 0.630422xy2−

3.247370xy + 1.316940x− 0.504338y2 − 0.270346y − 0.182645,

Q5(x, y) =x2y2 − 1.0x2y + 0.16x2 − 0.400000xy2 − 2.375101xy + 0.962582x−

0.320000y2 − 0.118180y − 0.197094,

R5(x, y) =
P5(x, y)

Q5(x, y)
,

P6(x, y) =2.309720x3y2 − 2.309720x3y + 0.554333x3 − 24.301130x2y2+

17.398228x2y − 1.542739x2 + 9.620051xy2 + 14.410494xy−

6.785431x+ 4.447545y2 + 1.529287y + 0.998413,

Q6(x, y) =− 15.565510x2y2 + 13.586028x2y − 2.443929x2 + 6.983185xy2+

10.171779xy − 4.864409x+ 2.663673y2 + 0.901214y + 1.060614,
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R6(x, y) =
P6(x, y)

Q6(x, y)
.
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Example 4.3 Consider 33 points (xi, yi, zi), i = 0, 1, . . . , 32, where

xi = −10 +
20

33
(i+ 1), yi = sin(i+ 1) · xi, zi = yi + sin

√
x2
i + y2i i = 0, 1, . . . , 32.

Then we plot these interpolating nodes in Figure 3.1, and obtain the representation of the rational

interpolating function as

R2n+1(x, y) =c0 +
x− x0 |
| c1

+
(y − y0)(x− x1) |

| c2
+

(y − y1)(x− x2) |
| c3

+ · · ·+

(y − y29)(x− x30) |
| c31

+
(y − y30)(x− x31) |

| c32
.
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Figure 3.1 Scattered data Π33

For the sake of illustration and convenience, we list the coordinates of the 33 interpolating

nodes in Tables 7, 8 and 9, respectively.

x0 x1 x2 x3 x4 x5 x6

−9.3939 −8.7879 −8.1818 −7.5758 −6.9697 −6.3636 −5.7576

x7 x8 x9 x10 x11 x12 x13

−5.1515 −4.5455 −3.9394 −3.3333 −2.7273 −2.1212 −1.5152

x14 x15 x16 x17 x18 x19 x20

−0.9091 −0.3030 0.3030 0.9091 1.5152 2.1212 2.7273

x21 x22 x23 x24 x25 x26 x27

3.3333 3.9394 4.5455 5.1515 5.7576 6.3636 6.9697

x28 x29 x30 x31 x32

7.5758 8.1818 8.7879 9.3939 10.0000

Table 7 The 33 xi’s in Example 4.3

y0 y1 y2 y3 y4 y5 y6

−7.9047 −7.9908 −1.1546 5.7334 6.6834 1.7781 −3.7827

y7 y8 y9 y10 y11 y12 y13

−5.0967 −1.8733 2.1431 3.3333 1.4634 −0.8913 −1.5009

y14 y15 y16 y17 y18 y19 y20

−0.5912 0.0872 −0.2913 −0.6827 0.2271 1.9366 2.2818

y21 y22 y23 y24 y25 y26 y27

−0.0295 −3.3336 −4.1163 −0.6818 4.3905 6.0860 1.8881

y28 y29 y30 y31 y32

−5.0275 −8.0839 −3.5506 5.1801 9.9991

Table 8 The 33 yi’s in Example 4.3
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z0 z1 z2 z3 z4 z5 z6

−8.1898 −8.6263 −0.2371 5.6575 6.4539 2.0966 −3.2132

z7 z8 z9 z10 z11 z12 z13

−4.2755 −2.8525 1.1689 2.3333 1.5099 −0.1461 −0.6547

z14 z15 z16 z17 z18 z19 z20

0.2929 0.3974 0.1168 0.2246 1.2263 2.2027 1.8792

z21 z22 z23 z24 z25 z26 z27

−0.2202 −4.2348 −4.2666 −1.5669 5.2082 6.6665 2.6944

z28 z29 z30 z31 z32

−4.7011 −8.9585 −3.6039 4.2158 10.9991

Table 9 The 33 zi’s in Example 4.3

And we also list the 33 interpolating coefficients in Table 10, which are calculated by means

of Algorithm 2.1.

c0 c1 c2 c3 c4 c5 c6

−8.1898 0.0625 16.7667 −0.4023 24.1140 0.3717 −52.5315

c7 c8 c9 c10 c11 c12 c13

−0.8585 13.8632 5.3770 −3.2423 −1.7277 7.0914 4.8380

c14 c15 c16 c17 c18 c19 c20

−0.1681 −6.8490 −0.4013 −3.3552 0.2729 4.4127 −23.0042

c21 c22 c23 c24 c25 c26 c27

−0.1554 26.3680 321.7954 −0.0150 −360.5940 0.4162 8.5241

c28 c29 c30 c31 c32

−0.4977 168.3309 0.0034 −151.2422 4.4141

Table 10 The 33 interpolating coefficients in Example 4.3

5. Complexity of the bivariate rational function interpolation

Now that we have learned the “how” of the bivariate non-tensor-product-typed continued

fraction interpolation, here are a few words about “why.” Since classic method for scattered

data interpolation involves radial basis functions, we shall make analysis of the complexity of the

rational interpolation and that of radial basis function interpolation.

As we know, every natural cubic spline s(x) has a representation of the form [17]

s(x) =

N∑
j=1

αjϕ(|x− xj |) + p(x), x ∈ R, (5.1)

where ϕ(r) = r3, r ≥ 0, and p(x) ∈ P1(R), i.e., a univariate polynomial with degree one.

From the first result on radial basis functions, the resulting interpolation is up to a low-

degree polynomial a linear combination of shifts of a radial function Φ = ϕ(| · |). Consequently,
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experts have generalized the idea to construct scattered data interpolation of the form over the

interpolating nodes Π = {x0, . . . ,xN} ⊂ R2

s(x) =

N∑
j=0

αjϕ(∥x− xj∥2) + p(x), x = (x, y),xj = (xj , yj) ∈ R2, (5.2)

where ϕ : [0,+∞] → R is a univariate fixed function and p(x) ∈ Pm−1(R2), i.e., a bivariate

polynomial with degree m− 1. And the additional conditions on the coefficients satisfy

N∑
j=0

αjq(xj) = 0, ∀q(x) ∈ Pm−1(R2). (5.3)

In the particular case, one only considers the interpolation problems without the addition-

al conditions (5.3), which boils down to the question whether the matrix Aϕ,Π = (ϕ(∥xk −
xj∥2))0≤k,j≤N is nonsingular. Astonishingly, there exist nonsingular matrix Aϕ,Π in the case

of the Gaussians ϕ(r) = e−αr2 (α > 0), the inverse multiquadric ϕ(r) = 1/
√
c2 + r2, and the

multiquadric ϕ(r) =
√
c2 + r2 (c > 0).

Hence, we can obtain the αi’s by solving the system of the linear equations.

s(xk) =
N∑
j=0

αjϕ(∥xk − xj∥2), k = 0, 1, . . . , N. (5.4)

One can make a total count of operations for the elimination step of Gaussian elimination

[18]. The elimination of each entry in the matrix Aϕ,Π requires the operations of addition-

s/substractions, multiplications, and divisions, which are 2
3 (N + 1)3 + 1

2 (N + 1)2 − 7
6 (N + 1),

i.e., O(N3). Then, because of the triangular shape of the nonzero coefficients of the equations,

one can start at the bottom and work your way up to the top equation. Counting operations of

solving the system of the linear equations (5.4) yields (N + 1)2.

To be mentioned, however, the approximate number of operations with the rational inter-

polation presented in the paper is O(N2), which is smaller than that with radial basis function

interpolation. Actually, we shall make an analysis of the operation count from two aspects.

On the one hand, based on ΠN+1 = {x0, . . . ,xN}, the computation of the bivariate non-

tensor-product-typed partially inverse divided difference ϕ0··· ,N will require 5
2N

2 + 1
2N (N ≥ 1)

operations, including additions/substractions, multiplications, and divisions.

In fact, we can prove it by induction. By Definition 2.1, Algorithms 2.1 and 2.2, for ϕ01, the

numbers of the operations of additions/substractions, multiplications, and divisions are 2,0,1,

respectively. Then for ϕ012, the numbers of them are 2× 2 + 3, 1, 2 + 1, respectively. Moreover,

for ϕ0123, the numbers of them are 2× 3+ 3× 2+ 3, 2 + 1, 3 + 2+ 1, respectively. Furthermore,

for ϕ0···4, they are 2 × 4 + 3 × 3 + 3 × 2 + 3, 3 + 2 + 1, 4 + 3 + 2 + 1, respectively. Hence, by

induction, for ϕ0··· ,N , they are

2N + 3(N − 1) + 3(N − 2) + · · ·+ 3× 2 + 3× 1 =
3

2
N2 +

1

2
N,

(N − 1) + (N − 2) + · · ·+ 2 + 1 =
1

2
N(N − 1),
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N + (N − 1) + · · ·+ 2 + 1 =
1

2
N(N + 1),

respectively, which is totaled up as 5
2N

2 + 1
2N (N ≥ 1).

On the other hand, similarly, for the rational interpolating function RN+1(x, y) over ΠN+1 =

{x0, . . . ,xN}, the numbers of operations of calculating PN+1(x, y) andQN+1(x, y) are 3(N−1)+2

and 3(N − 1) + 1 based on Algorithms 3.1 and 3.2, respectively.

Consequently, we approximate a total count of operations for the computation of RN+1(x, y)

as O(N2), which is smaller than that of radial basis function interpolation as O(N3).

Appendix: Programming procedure of calculating the results in Table 3, 4 and

plotting Figure 1.5

clc

(i) To give the vertical coordinates fi’s in Table 3

x=[-7,-5,-3,0.2,4,7.8];

y=[-9.5,-4,-2,-1,2,8];

for i=1:6

f(i)=sin(sqrt(x(i)∧2+y(i)∧2))/sqrt(x(i)∧2+y(i)∧2);
end

f=vpa(f)

(ii) To calculate the coefficients in Table 4

for i=1:5

phi1(i)=(x(i+1)-x(1))/(f(i+1)-f(1));

end

phi1;

for i=1:4

phi2(i)=(y(i+2)-y(1))*(x(i+2)-x(2))/(phi1(i+1)-phi1(1));

end

phi2;

for i=1:3

phi3(i)=(y(i+3)-y(2))*(x(i+3)-x(3))/(phi2(i+1)-phi2(1));

end

phi3;

for i=1:2

phi4(i)=(y(i+4)-y(3))*(x(i+4)-x(4))/(phi3(i+1)-phi3(1));

end

phi4;

phi5=(y(6)-y(4))*(x(6)-x(5))/(phi4(2)-phi4(1));

c=[f(1),phi1(1),phi2(1),phi3(1),phi4(1),phi5];

c=vpa(c)

(iii) To Simplify the representation of the bivariate interpolating continued fraction R6(x, y)
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syms u v

ff5=c(5)+(v-y(4))*(u-x(5))/c(6);

ff4=c(4)+(v-y(3))*(u-x(4))/ff5;

ff3=c(3)+(v-y(2))*(u-x(3))/ff4;

ff2=c(2)+(v-y(1))*(u-x(2))/ff3;

ff1=c(1)+(u-x(1))/ff2;

simplify(ff1);

(iv) To test the interpolating property of the rational function R6(x, y) at the interpolating

nodes

for i=1:6

P6(i)=3.155002*x(i)∧3*y(i)∧2+15.775009*x(i)∧3*y(i)+12.620007*x(i)∧3-14.460938*x(i)∧2*y(i)∧2-
...

524.7681670*x(i)∧2*y(i)-1391.685375*x(i)∧2-195.377658*x(i)*y(i)∧2-3927.845914*x(i)*y(i)-
...

10520.412261*x(i)-193.579579*y(i)∧2-4029.058999*y(i)-15060.600628;
Q6(i)=568.401784*x(i)∧2*y(i)∧2+6020.017403*x(i)∧2*y(i)+9701.615619*x(i)∧2+...

2305.419482*x(i)*y(i)∧2+20944.892838*x(i)*y(i)+29135.470886*x(i)-1216.106476*y(i)∧2-
...

17996.985482*y(i)-34153.093667;

R6(i)=P6(i)/Q6(i);

error6(i)=f(i)-R6(i);

end

R6=vpa(R6)

error6

(v) To plot the figure of R6(x, y), [2, 8]× [−1, 8] as shown in Fig. 1.5

[s,t]=meshgrid(2:0.2:8,-1:0.2:8);

polynomialP6=3.155002*s.∧3.*t.∧2+15.775009*s.∧3.*t+12.620007*s.∧3-14.460938*s.∧2.*t.∧2-
...

524.7681670*s.∧2.*t-1391.685375*s.∧2-195.377658*s.*t.∧2-3927.845914*s.*t-...
10520.412261*s-193.579579*t.∧2-4029.058999*t-15060.600628;

polynomialQ6=568.401784*s.∧2.*t.∧2+6020.017403*s.∧2.*t+9701.615619*s.∧2+...

2305.419482*s.*t.∧2+20944.892838*s.*t+29135.470886*s-1216.106476*t.∧2-...
17996.985482*t-34153.093667;

CFR6=polynomialP6./polynomialQ6;

mesh(s,t,CFR6)

title(’R6(x, y), [2, 8]× [−1, 8]’)

hold on

axis([2,8,-1,8])

xlabel(’X’)

ylabel(’Y’)
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zlabel(’Z’)
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