
Journal of Mathematical Research with Applications

Sept., 2016, Vol. 36, No. 5, pp. 621–630

DOI:10.3770/j.issn:2095-2651.2016.05.012

Http://jmre.dlut.edu.cn

Online Sequential Double Parallel Extreme Learning
Machine for Classifications

Mingchen YAO, Chao ZHANG∗, Wei WU

School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract Double parallel forward neural network (DPFNN) model is a mixture structure

of single-layer perception and single-hidden-layer forward neural network (SLFN). In this pa-

per, by making use of the idea of online sequential extreme learning machine (OS-ELM) on

DPFNN, we derive the online sequential double parallel extreme learning machine algorithm

(OS-DPELM). Compared to other similar algorithms, our algorithms can achieve approximate

learning performance with fewer numbers of hidden units, as well as the parameters to be de-

termined. The experimental results show that the proposed algorithm has good generalization

performance for real world classification problems, and thus can be a necessary and beneficial

complement to OS-ELM.

Keywords double parallel forward neural network; perception; extreme learning machine;

classification problems

MR(2010) Subject Classification 92B20; 68T05; 68W27

1. Introduction

Double parallel forward neural network (DPFNN) model is a mixture structure of single-

layer perception and single-hidden-layer forward neural network (SLFN) [1–3], in which there

exists an additional connection from the input layer to the output layer, therefore DPFNN is also

referred to as bypass neural network [4]. In DPFNN, the output nodes receive information not

only through the hidden nodes but also directly through the input nodes, thus it is possible to

improve the learning capacity via both reconstructed and original knowledge; From the mappings

point of view, if the activation function used in hidden units is non-linear, while the activation

function used in output units is linear, then DPFNN is a parallel mathematical model with

both linear and nonlinear structure [1]. Since it has good learning capacity and generalization

performance, the DPFNN model has been widely used in real world problems such as pattern

recognition, function approximation and feature selection [1–3,5]. However, the frequently used

learning algorithms in such a model are based on gradient descent of error function [3,6,7], which

means all the parameters in the network have to be tuned iteratively by using such a slow method.

As a result, the time expenditure is usually much higher than what we expected.

Received July 24, 2015; Accepted November 9, 2015

Supported by the National Natural Science Foundation of China (Grant Nos. 11401076; 61473328; 11171367;

61473059).

* Corresponding author

E-mail address: yaomingchen@hlju.edu.cn (Mingchen YAO); chao.zhang@dlut.edu.cn (Chao ZHANG); wuwei-

w@dlut.edu.cn (Wei WU)

622 Mingchen YAO, Chao ZHANG and Wei WU

Recently, an effective training algorithm for SLFNs called extreme learning machine (ELM),

originated by Huang et al. [8–10], has aroused many research interests, where the input weights

including hidden layer biases are randomly assigned and the output weights are determined by

the Moore-Penrose generalized inverse of the hidden output matrix. The advantage of ELM lies

in fast parameter learning speed for there exists no iteration process, and for many applications,

the time consuming by ELM algorithms would be smaller by several orders of magnitude than

that of by back prorogation (BP) or by support vector machine (SVM). According to Huang’s

results [8], to achieve an acceptable learning performance by using ELM algorithm, the network

needs more hidden units than those of gradient-based algorithms, which will lead to a larger

size of the network and adverse effect to the network generalization performance [11]. Huynh

[12] then proposed regularized least square extreme learning machine (RLS-ELM) to overcome

the above shortcomings, in which both input weights and outputs weights are calculated ana-

lytically by pseudo-inverse operation. For the same classification problem, this algorithm need

few hidden units, and can offer good performance with compact network architecture. Yao [5]

has successfully applied the idea of the ELM to the architecture of DPFNN, which results in the

double parallel extreme learning machine algorithm (DP-ELM).

The training method of traditional ELM algorithm is usually of batch-learning type, which

means the learning process is memory-consuming. In many applications, the training samples

may arrive one by one or group by group, thus the latest samples are hard to utilize for batch

training. To deal with these cases, Liang [13] proposed the online sequential extreme learning

machine (OS-ELM) algorithm, and Huynh developed the OS-ELM algorithm, referred to as

online RLS-ELM algorithm. All above methods can learn the data one by one or chunk by chunk

with fixed or varying chunk size. Since these methods are based on ELM algorithm, the learning

speed of them is much faster than that of traditional methods such as sequential stochastic

gradient descent back propagation (SGBP) and Levenberg-Marquart algorithm [14–16]. When

employing the idea of ELM, OS-ELM and RLS-ELM to the architecture of DPFNN, the online

DPELM algorithm can be derived. Compared with OS-ELM and OS-RLS-ELM, similar learning

speed and better generalization performance are achieved but fewer hidden units are used in the

proposed algorithms.

The rest of the paper is organized as follows. Section 2 gives a brief review of structure

DPFNN and DPELM algorithm. In Section 3, an illustration example is chosen to show that why

DPELM algorithm can resolve classical XOR problem with least hidden units. Online sequential

DEPLM algorithm is derived in Section 4. Performance evaluation for classification problem is

shown in Section 5. The conclusion is given in last Section.

2. Structure of DPFNN and DPELM algorithm

Consider a three-layer DPFNN with d input nodes, N hidden nodes and c output nodes, as

shown in Figure 1(a). We denote by W = (wij)d×N the weight matrix connecting the input and

hidden layers, where w(j) = (w1j , w2j , . . . , wdj)
⊤ ∈ Rd is the weight vector connecting the input

Online sequential double parallel extreme learning machine for classifications 623

layer and j-th nodes of the hidden layer. Similarly, we denote the weight matrix connecting the

hidden and the output layers by U = (uij)N×n, and u(k) = (u1k, u2k, . . . , uNk)
⊤ ∈ RN . The

weight matrix directly connecting the input and output layers is denoted by V = (vij)d×c, and

v(k) = (v1k, v2k, . . . , vdk)
⊤ ∈ Rd. For the hidden units with bias bj , it is a common strategy to

extend the dimension of w(j) and the input pattern x, that is, set wd+1,j = bj and xd+1 = 1. In

DPFNN, there exist no bias in the output units.

x1 x2

b

+1 +1

+2

1 1

. . .x1 x2 xd

. . .

t1 tc

U

V

W

. . .

h1 h2 hN

Figure 1 (a) Structure of DPFNN. (b) Network solving XOR problem.

For a given set of training examples {x(i), t(i)}ni=1 ⊂ Rd×Rc, where t(i) is the desired output

of the input pattern x(i), and y(i) is the actual output of x(i). The goal of the network learning

is to determine the weight matrix U,V and W minimizing the following error function,

E(U,V,W) =
n∑

i=1

∥∥y(i) − t(i)
∥∥2 =

n∑
i=1

c∑
j=1

(h(i) · u(j) + x(i) · v(j) − t(j))2, (2.1)

where h(i) = (g(x(i) ·w(1)), . . . , g(x(i) ·w(N)))T represents the i-th hidden unit output and g(·)
is the activation function of the hidden unit. The notation ∥ · ∥ represents the Euclidean norm,

and the notation x · y = (x,y) is the inner product of vector x and vector y, respectively. If we

denote

X =

(
x(1) . . . x(n)

1 . . . 1

)⊤

, P =
(
x(1), . . . ,x(n)

)⊤
, T == (t1, . . . , tn)

⊤, (2.2)

W =

(
w(1) . . . w(N)

b1 . . . bN

)
, U =

(
u(1), . . . ,u(c)

)
, V =

(
v(1), . . . ,v(c)

)
. (2.3)

By (2.2) and (2.3), Eq. (2.1) can be converted into the form of the matrix,

minE(U,V,W) = ∥g(XW)U+PV −T∥2 , (2.4)

where g (XW)ij = g([XW]ij) = g(x(i) ·w(j) + bj). It is somewhat difficult to resolve all three

unknown matrices U,V and W simultaneously for the activation function g(·) of the hidden

unit may be nonlinear. However, when the value of W is given, set H = (g(XW),P) and

A = (U,V)⊤, and Eq. (2.4) becomes

min ∥HA−T∥ . (2.5)

624 Mingchen YAO, Chao ZHANG and Wei WU

Since Eq. (2.5) is equivalent to the general least square problem, it suffices to determine matrix

A if the values of matrices H and T are known.

In summary, given training set {x(i), t(i)}ni=1 ⊂ Rd × Rc, activation function g(·) of hidden
units, and the number of hidden units N , the double parallel ELM algorithm is described as

follows:

Algorithm 1 Double Parallel Extreme Learning Machine Algorithm

Step 1. Randomly assign the values for weight matrix W of the input layer.

Step 2. Calculate the hidden-layer output weight matrix H = g (XW),

set H1 = (H,P) and A = (U,V)
⊤
.

Step 3. Determine the output layer weight matrix A by A = H†
1T,

where H†
1 denotes the pseudo-inverse of matrix H1.

Remark 2.1 Several methods can be used to calculate the pseudo-inverse of matrix H. These

methods may include orthogonal method, orthogonal projection method, iterative method, and

singular value decomposition (SVD). There are two cases when using orthogonal projection

methods, if H⊤H is nonsingular, then H† =
(
H⊤H

)−1
H⊤, and if HH⊤ is nonsingular, then

H† = H⊤ (HH⊤)−1
. Singular value decomposition method can always be used if H⊤H or

HH⊤ tends to become singular. For example, the function “pinv” used in MATLAB software is

adopted the methodology of truncated singular value decomposition (TSVD).

3. An illustration example

Here, we will present a simple instance to show that why DPELM algorithm can deal with

the classic exclusive-OR (XOR) problem perfectly with the minimum hidden units. There are

four points (patterns) in the plane that correspond to the input patterns (0,0), (0,1), (1,0) and

(1,1). The purpose is to construct a pattern classifier that produces the binary output 0 in

response to the input pattern (0,0) or (1,1), and the binary output 1 in response to the input

pattern (0,1) or (1,0). Figure 1(b) describes the network architecture involving a single hidden

neuron for solving the XOR problem. We will show that DPELM algorithm indeed solves the

XOR problem with only one hidden unit by constructing a truth table and the decision region.

For brevity, let w1 = w2 = 1 and b = −1
2 . The net input of the hidden units is XW =

(− 1
2 ,

1
2 ,

1
2 ,

3
2)

⊤, the hard limit activation function in the hidden units leads to the hidden output

(0, 1, 1, 1)⊤. Furthermore, we have

H = (g(XW,P)) =


0 0 0

1 0 1

1 1 0

1 1 1

 , and (U,V) =
(
H⊤H

)−1
H⊤T =

 2

−1

−1

 ,

Thus we obtain U = (2) and V = (−1,−1). The truth table of actual output of the network is

listed as follows:

Online sequential double parallel extreme learning machine for classifications 625

P g(XW)V PV actual output

(0,0) 0 0 0

(0,1) 2 -1 1

(1,0) 2 -1 1

(1,1) 2 -2 0

Table 1 The truth table for XOR problem

The network that solves the XOR problem consists of two neurons. The decision boundary

constructed by the hidden neuron is x1 + x2 − 1
2 = 0, as shown in Figure 2(a). For all points on

the lower left side of the line, neuron outputs 0; for all points on the other side of the line, neuron

outputs 1. Likewise, the decision boundary constructed by the output neuron is x1 + x2 = 0, as

shown in Figure 2(b). The neuron outputs 0 only at point (0, 0); otherwise, the neuron outputs

1. The final decision formed by the two neurons is x1 + x2 − 2x3 = 0, as shown in Figure 2(c).

All the points that lie in the hyper-plane output 0, whereas the other two points, say (1, 0, 1)

and (0, 1, 1) output 1.

We have to note that when the output neuron has the bias term, the two different clas-

sification patterns lie exactly on the two sides of the hyper-plane. This accords with Cover’s

theory [17], i.e., a complex pattern-classification problem, casting in a high-dimensional space

nonlinearly, is more likely to be linearly separable than in a low-dimensional space, provided that

the space is not densely populated. For XOR problem, four nonlinearly separable patterns are

mapped into three-dimensional space by the two neurons, which make it possible for them to be

separated linearly.

The above example shows that the DPELM algorithm can cope with the XOR problem

with one single hidden neuron. It is worthwhile to note that, for single hidden layer feed forward

neural network, BP algorithm requires at least two hidden neurons, RLS-RLM [12] requires at

least three hidden neurons, and original ELM [8] or online-ELM requires at least four hidden

neurons to solve the XOR problem.

x1

x2

x3

(0,0,0)

(1,1,1)(1,0,1)

(0,1,1)

x1

x2

output = 1

output

= 0

(0,0)

(1,1)

(1,0)

(0,1)

x1

x2

output = 1

(0,0)

(1,1)

(1,0)

(0,1)

Figure 2 (a) Decision boundary constructed by hidden neuron. (b) Decision boundary constructed

by output neuron. (c) Decision boundaries constructed by the complete network.

4. Online sequential double parallel ELM algorithm

626 Mingchen YAO, Chao ZHANG and Wei WU

For many real applications, batch training mode of DPELM where the entire data are

required may results in overflow of memories. Sometimes, the data presented to the learning

algorithm arrive one-by-one or chunk-by-chunk. Therefore the economical and reasonable way

to train the samples is adopted by online method, in other words, one may utilize the data

depending on their arrival time, or by partitioning the large dataset into small ones that are

mutually disjoint.

In the original ELM algorithm, the input weight matrix W is first assigned random values,

and then the output weight matrix A is determined by pseudo-inverse of hidden layer output

matrix. While in RLS-ELM [12], the random matrix C ∈ Rc×N is first given, and by linear

system

XW = TC, (4.1)

the weight matrix W and A then can be solved, which achieves a compact network of small

size. However, system (4.1) is a typical ill-posed problem, for which the Tikhonov regularization

method is commonly used. In this way, (4.1) can be replaced by seeking W that minimizes

∥XW −TC∥2 + λ∥W∥2, (4.2)

where λ > 0 denotes the regularization parameter.

In order to solve (4.2), note that for any real matrix A, we have

∥A∥2 = tr
(
A⊤A

)
, (4.3)

where tr(·) denotes the trace of a matrix. Now let f(W) = ∥XW −TC∥2 + λ∥W∥2, by using

(4.3), we arrive at

f(W) = tr
{
W⊤(X⊤X)W − (TC⊤)XW −W⊤X⊤TC+ λW⊤W

}
. (4.4)

It is easy to prove, by the theories of matrix calculus, that the following properties hold for the

matrix A and B with proper order,

∂

∂A
tr (BA) = B⊤,

∂

∂A
tr
(
A⊤B

)
= B,

∂

∂A
tr
(
A⊤A

)
= 2A, (4.5)

and
∂

∂A
tr
(
A⊤BA

)
= BA+B⊤A. (4.6)

By using (4.5) and (4.6), differentiating both sides of (4.4) with respect to W gives

∂f

∂W
= 2

(
X⊤XW + λW −X⊤TC

)
. (4.7)

Let ∂f
∂W = 0. We obtain

(
X⊤X+ λI

)
W = X⊤TC. For each λ > 0,

(
X⊤X+ λI

)
is positive

definite, and therefore

W =
(
X⊤X+ λI

)−1
X⊤TC (4.8)

Let the initial training subset be S0 =
{
(x(j), t(j))|j = 1, . . . , n0

}
. Substituting n0 for n in

(2.1) yields

X =

(
x(1) . . . x(n0)

1 . . . 1

)⊤

, T = (t1, . . . , tn0)
⊤
. (4.9)

Online sequential double parallel extreme learning machine for classifications 627

Since the matrix C in (4.8) is independent of the arriving data, the initial weights (including

hidden layer biases) are obtained as follows

W(0) =
(
X⊤

0 X0 + λI
)−1

X⊤
0 T0C. (4.10)

Set L(0) = W(0) =
(
X⊤

0 X0 + λI
)
, and equation (4.10) can be rewritten as

W(0) = L−1
(0)X

⊤
0 T0C. (4.11)

Let H0 = g
(
X0W(0)

)
and A(0) =

(
U(0),V(0)

)⊤
. Applying algorithm 1 yields

A(0) =
{
(H0,P0)

⊤
(H0,P0)

}−1
(H0,P0)

⊤
T0, (4.12)

where the definition of P0 is shown in (2.2). If we set Q(0) = {(H0,P0)
⊤(H0,P0)}−1, the

existence of initial Q(0) is guaranteed for the size of n0 is adjustable. Now (4.12) becomes

A(0) = Q(0) (H0,P0)
⊤
T0, (4.13)

For n1 observations of the next training subset S1 =
{
(x(j), t(j))|j = n0 + 1, . . . , n0 + n1

}
,

or in general, for the k-th training subset consisting of nk patterns

Sk =
{
(x(j), t(j))|j =

k−1∑
i=0

ni + 1, . . . ,
k−1∑
i=0

ni + nk

}
, (4.14)

online updating the output weights based on recursive least-squares solution is given in [14], that

is:

L(k) = L(k−1) +X⊤
k Xk, (4.15)

and

W(k) = W(k−1) + L−1
(k)X

⊤
k

(
TkC−XkW(k−1)

)
. (4.16)

For double parallel network structure described in Figure 1(a), one has to take the input

matrix Pk into account when determining the output weights matrix. According to [13], substi-

tuting (Hk,Pk) for the hidden weights output matrix Hk leads to

Q(k) = Q(k−1)−Q(k−1) (Hk,Pk)
⊤ {

I+(Hk,Pk)Q(k−1) (Hk,Pk)
⊤ }−1

(Hk,Pk)Q(k−1), (4.17)

and

A(k) = A(k−1) +Q(k) (Hk,Pk)
{
Tk − (Hk,Pk)A(k−1)

}
. (4.18)

In summary, given the training set S = {(x(j), t(j))|j = 1, . . . , n}, the activation function

g(·) of hidden layer, and the number of hidden units, the online sequential DPELM (OS-DPELM)

scheme consists of two phases, namely an initialization phase (IP) and a sequential learning phase

(LP), which is stated as in Algorithm 2.

628 Mingchen YAO, Chao ZHANG and Wei WU

Algorithm 2 Online Sequential DPELM Algorithm

IP. Initialization Phase for the first training subset S0.

Step 1. Assign random values uniformly from interval (−1, 1) for matrix C.

Step 2. Calculate the initial input weights and biases W(0) by (4.10) or (4.11).

Step 3. Determine the initial output weight matrix

A(0) =
(
U(0),V(0)

)
by (4.12) or (4.13).

LP. Learning Phase for the k-th (k ≥ 1) training subset Sk consisting of nk samples.

Step 4. Calculate the k-th input weights matrix W(k) by (4.15) and (4.16).

Step 5. Compute the hidden output weight matrix Hk = g
(
HkW(k)

)
.

Step 6. Determine the k-th output weight matrix A(k) by (4.17) and (4.18).

Step 7. Set k = k + 1 and repeat until all the training subsets are used for only one time.

Remark 4.1 Different from conventional online algorithms (e.g., online BP algorithm), OS-

DPELM makes use of each sample once but not cyclically in the training set. Like online ELM

or online RLS-ELM, the training examples can be used one-by-one or chunk-by-chunk. Once all

the training data is included in the initialization phase, the online DPELM then becomes batch

DPELM. Thus, batch DPELM can be considered as a special case of online DPELM.

5. Experimental results

Classification problems are very common in real world applications. For examples, it is

necessary to diagnose whether a patient’s tumor cell is malignant or not, or distinguish which

kind of mushroom is edible in expert system. In order to verify the performance of online double

parallel extreme learning machine, six data sets for classification are taken from UCI machine

learning repository, and the learning and testing results will be compared with those of online

ELM and online RLS-ELM.

All the simulations are carried out in MATLAB 7.8 environment running in Core2Duo, 2.53

GHZ CPU with 2GB RAM. For each dataset, one third of the whole data is used for training

while the remaining data for blind test. The input feature values are normalized into the range

[−1, 1] in case of inconsistency. The activation function adopted in the hidden layer of the

network is the form of sigmoid. The number of hidden units is gradually increased from only

one neuron and the nearly optimal number of units was chosen based on the best generalization

performance. For every data set, we run 50 trials and treat the average values as the final results.

In our experiments, to ensure the existence of Q(0), we generally choose the number of initial

dataset n0 ≥ N (the number of hidden units), and thus the existence of Q(k) is also guaranteed.

Except the initialization process, every 10 samples are used in one learning iteration.

It can be seen from Table 2 that, to achieve similar or better performance, our proposed

approach needs fewer hidden units than those of OS-ELM or OS-RLS-ELM. At the same time,

we get a compact network of small size, which means the parameters to be adjusted are highly

reduced. The regularization method used in OS-DPELM also gives rise to the promotion of

Online sequential double parallel extreme learning machine for classifications 629

the generalization performance according to Barlett’s results [11]. Furthermore, our proposed

method spends less time on training process than that of the other two methods.

Dataset Specifications Online # hidden Training Train Test

methods units times(s) Acc(%) Acc(%)

Diabetes # Features:8 DPELM 2 0.0042 76.63 78.13

Training:512 RLS-ELM 4 0.0048 76.39 77.73

Testing:256 ELM 20 0.0128 78.02 77.34

MUSK # Features:166 DPELM 2 0.1305 95.36 94.12

Training:4398 RLS-ELM 10 0.1868 94.95 93.37

Testing:2199 ELM 160 1.3581 94.38 93.42

Australian # Features:6 DPELM 2 0.0036 76.11 74.43

Credit # Training:460 RLS-ELM 4 0.0038 77.02 72.87

Testing:230 ELM 16 0.0112 76.52 73.30

Liver # Features:6 DPELM 2 0.0031 73.67 72.88

Training:230 RLS-ELM 8 0.0038 74.22 72.46

Testing:115 ELM 16 0.0052 74.35 72.17

Heart # Features:10 DPELM 1 0.0012 86.83 86.33

Training:455 RLS-ELM 4 0.0012 85.68 84.44

Testing:228 ELM 16 0.0031 85.61 83.67

Breast # Features:13 DPELM 2 0.0031 96.12 98.68

Cancer # Training:180 RLS-ELM 4 0.0047 95.18 97.55

Testing:90 ELM 16 0.0094 95.61 97.36

Table 2 Comparisons of online sequential DPELM, ELM and RLS-ELM

Remark 5.1 The value of regularization parameter λ in our simulations is not sensitive to the

results. Usually the positive parameter λ lies between 0 and 1, so we may choose a very small

value such as λ = 10−4 for it. Besides, we must point out that regularization parameter λ can

smooth the peak of a function, which results in the ability of function approximation of both

DPELM and RLS-ELM is no better than that of ELM. That is the reason why the approximation

problems are excluded from our numerical experiments.

6. Conclusion

ELM is an easy but efficient learning mechanism for the generalized SLFNs. However,

this algorithm often requires a large number of hidden units and thus slowly responds to new

observations. Although RLS-ELM was proposed to overcome the problem, it did not take the

direct influence of input patterns on the network outputs into account. In this paper, an online

sequential DPELM scheme is proposed based on double parallel network structure, in which the

linear component is involved and consequently the number of hidden units is greatly reduced.

630 Mingchen YAO, Chao ZHANG and Wei WU

Thus the proposed method can achieve good generalization performance with high speed for

both learning and testing processes.

References

[1] O. K. ERSOY, D. HONG. Parallel, self-organizing, hierarchical neural networks. IEEE Trans. Neural Netw.,

1990, 1(2): 167–178.

[2] Rui HUANG, Mingyi HE. Feature selection using double parallel feedforward neural networks and particle

swarm optimization. IEEE Congress on Evolutionary Computation, CEC2007, 692–696.

[3] Jian WANG, Wei WU, Zhengxue LI, et al. Convergence of gradient method for Double parallel feedforward

neural network. Int. J. Numer. Anal. Mod., 2011, 8(3): 484–495.

[4] M. T. HAGAN, H. B. DEMUTH, M. H. BEALE, et al. Neural Network Design. Pws Pub., Boston, 1996.

[5] Mingchen YAO, Wenting LI, Yan LIU. Double parallel extreme learning machine. Energy Proc., 2011, 13:

7413–7418.

[6] D. E. RUMELHART, G. E. HINTON, R. J. WILLIAMS. Learning representations by back-progagating

errors. Nature, 1986, 323: 533–536.

[7] Wei WU, Guorui FENG, Zhengxue LI, et al. Deterministic convergence of an online gradient method for

BP neural networks. IEEE Trans. Neural Netw., 2005, 16(3): 533–540.

[8] Guangbin HUANG, Qinyu ZHU, C. K. SIEW. Extreme learning machine: theory and applications. Neuro-

computing, 2011, 70(1): 489–501.

[9] Guangbin HUANG, Dianhui WANG, Yuan LAN. Extreme learning machines: A survey. International

Journal of Machine Leaning and Cybernetics, 2011, 2(2): 107–122.

[10] Guangbin HUANG, Hongming ZHOU, Xiaojian DING, et al. Extreme learning machine for regression and

multiclass classification. IEEE T. Syst. Man Cy. B., 2012, 42(2): 513–529.

[11] P. L. BARLETT. The sample complexity of pattern classification with neural networks: the size of the

weights is more important than the size of the network. IEEE T. Inform. Theory, 1998, 44(2): 525–536.

[12] H. T. HUYNH, Y. WON, J. J. KIM. An improvement of extreme learning machine for compact single-hidden-

layer feedforward neural networks. Int. J. Neural Syst., 2008, 18(05): 433–441.

[13] Nanying LIANG, Guangbin HUANG, P. SARATCHANDRAN, et al. A fast and accurate on-line sequential

learning algorithm for feedforward networks. IEEE Trans. Neural Netw., 2006, 17(6): 1411–1423.

[14] H. T. HUYNH, Y. WON. Online training for single hidden-layer feedforward neural networks using RLS-

ELM. IEEE International Symposium on Computational Intelligence in Robotics and Automation, 2009,

(CIRA2009): 469–473.

[15] Y. A. LECUN, L. BOTTOU, G. B. ORR, et al. Neural Networks: Tricks of the Trade. Springer, 2012.

[16] V. S. ASIRVADAM, S. F. MCLOONE, G. W. IRWIN. Parallel and separable recursive Levenberg-Marquardt

training algorithm. in Proc. 12th IEEE Workshop Neural Netw. Signal Process, 2002, 4(6): 129–138.

[17] T. M. COVER. Geometrical and statistical properties of systems of linear inequalities with applications in

pattern recognition. IEEE Transactions on Electronic Computers, 1965, EC-14(3): 326–334.

