On Minimal Asymptotic Basis of Order 4

Jingwen LI* ${ }^{*}$, Jiawen LI
School of Mathematics and Computer Science, Anhui Normal University, Anhui 241003, P. R. China

Abstract

Let \mathbb{N} denote the set of all nonnegative integers and A be a subset of \mathbb{N}. Let W be a nonempty subset of \mathbb{N}. Denote by $\mathcal{F}^{*}(W)$ the set of all finite, nonempty subsets of W. Fix integer $g \geq 2$, let $A_{g}(W)$ be the set of all numbers of the form $\sum_{f \in F} a_{f} g^{f}$ where $F \in \mathcal{F}^{*}(W)$ and $1 \leq a_{f} \leq g-1$. For $i=0,1,2,3$, let $W_{i}=\{n \in \mathbb{N} \mid n \equiv i(\bmod 4)\}$. In this paper, we show that the set $A=\bigcup_{i=0}^{3} A_{g}\left(W_{i}\right)$ is a minimal asymptotic basis of order four.

Keywords minimal asymptotic basis; g-adic representation
MR(2010) Subject Classification 11B13

1. Introduction

Let \mathbb{N} denote the set of all nonnegative integers and A be a subset of \mathbb{N}. Let $h \geq 2$ be an integer, and let $h A$ be the set of all numbers n of the form $n=a_{1}+\cdots+a_{h}$ where a_{1}, \ldots, a_{h} are elements of A and are not necessarily distinct. Let W be an nonempty subset of \mathbb{N}. Denote by $\mathcal{F}^{*}(W)$ the set of all finite, nonempty subsets of W. For integer $g \geq 2$, let $A_{g}(W)$ be the set of all numbers of the form $\sum_{f \in F} a_{f} g^{f}$ where $F \in \mathcal{F}^{*}(W)$ and $1 \leq a_{f} \leq g-1$. For $i=0, \ldots, h-1$, let $W_{i}=\{n \in \mathbb{N} \mid n \equiv i(\bmod h)\}$. The set A is called an asymptotic basis of order h if $h A$ contains all sufficiently large integers. An asymptotic basis A of order h is minimal if no proper subset of A is an asymptotic basis of order h.

In 1988, based on the properties of powers of 2, Nathanson [1] proved the following result:
Theorem $1.1([1])$ Let $h \geq 2$. For $i=0,1, \ldots, h-1$, let $W_{i}=\{n \in \mathbb{N} \mid n \equiv i(\bmod h)\}$. Let $A=A_{2}\left(W_{0}\right) \cup \cdots \cup A_{2}\left(W_{h-1}\right)$. Then A is a minimal asymptotic basis of order h.

It is hard to extend Nathanson's method to all $g \geq 3$. In 1996, Jia [2] considered the g-adic minimal asymptotic bases of order h.

Theorem 1.2 ([2, Corollary 2]) Let π be any partition of nonnegative integers into h pairwise disjoint infinite subsets $W_{0}, W_{1}, \ldots, W_{h-1}$. Then for any $g \geq h+1, A_{g}(\pi)=A_{g}\left(W_{0}\right) \cup \cdots \cup$ $A_{g}\left(W_{h-1}\right)$ is a minimal asymptotic basis of order h.

It is natural to consider the following problem:

[^0]Problem 1.3 Let $g, h \geq 2$ be integers. For $i=0, \ldots, h-1$, let $W_{i}=\{n \in \mathbb{N} \mid n \equiv i(\bmod h)\}$. Is $A=A_{g}\left(W_{0}\right) \cup \cdots \cup A_{g}\left(W_{h-1}\right)$ a minimal asymptotic basis of order h ?

Recently, Ling and Tang (by private communication) have proved that for $h=3$, the answer to Problem 1.3 is affirmative. For related problems we refer to $[3-6]$. In this paper, we prove the following result:

Theorem 1.4 For $i=0,1,2,3$, let $W_{i}=\{n \in \mathbb{N} \mid n \equiv i(\bmod 4)\}$. Then for any $g \geq 2$, $A=A_{g}\left(W_{0}\right) \cup A_{g}\left(W_{1}\right) \cup A_{g}\left(W_{2}\right) \cup A_{g}\left(W_{3}\right)$ is a minimal asymptotic basis of order 4.

2. Proof of Theorem 1.4

To prove Theorem 1.4, we need the following Lemma:
Lemma 2.1 ([7, Lemma 1]) Let $g \geq 2$ be any integer.
(a) If W_{1} and W_{2} are disjoint subsets of \mathbb{N}, then $A_{g}\left(W_{1}\right) \cap A_{g}\left(W_{2}\right)=\emptyset$.
(b) If $W \subseteq \mathbb{N}$ and $W(x)=\theta x+O(1)$ for some $\theta \in(0,1]$, then there exist positive constants c_{1} and c_{2} such that

$$
c_{1} x^{\theta}<A_{g}(W)(x)<c_{2} x^{\theta}
$$

for all x sufficiently large.
(c) Let $\mathbb{N}=W_{0} \cup \cdots \cup W_{h-1}$, where $W_{i} \neq \emptyset$ for $i=0,1, \ldots, h-1$. Then $A=A_{g}\left(W_{0}\right) \cup$ $\cdots \cup A_{g}\left(W_{h-1}\right)$ is an asymptotic basis of order h.

By Theorems 1.1 and 1.2, it is sufficient to prove that the theorem holds for $g=3,4$. Now we suppose that $g \in\{3,4\}$. Let $a \in A_{g}\left(W_{u}\right)$ for some $u \in\{0,1,2,3\}$, and so a has a unique g-adic representation in the form

$$
a=a_{n} g^{4 n+u}+\sum_{s \in S} a_{s} g^{4 s+u}
$$

where $n \geq 0$, and S is a finite, possibly empty, set of integers greater than $n, 1 \leq a_{n}, a_{s} \leq g-1$ for all $s \in S$. For any finite set T of integers greater than n, let

$$
\begin{gather*}
m=a_{0} g^{u}+\sum_{s \in S} a_{s} g^{4 s+u}+(g-1) \sum_{\substack{i \neq u \\
0 \leq i \leq 3}} g^{i}+\sum_{t \in T} g^{4 t+u+1}, \text { if } n=0 . \tag{1}\\
m=a_{n} g^{4 n+u}+\sum_{s \in S} a_{s} g^{4 s+u}+(g-1) \sum_{t=u}^{u+2} g^{4 n-3+t}+\sum_{t \in T} g^{4 t+u+1}, \text { if } n>0 . \tag{2}
\end{gather*}
$$

By Lemma 2.1(c), we know that for each $i \in\{0,1,2,3\}$ there exists $j_{i} \in\{0,1,2,3\}$ such that $m_{i} \in A_{g}\left(W_{j_{i}}\right)$ and

$$
\begin{equation*}
m=m_{0}+m_{1}+m_{2}+m_{3} . \tag{3}
\end{equation*}
$$

For $i=0,1,2,3$, let $c_{i}^{(k)}$ be the least nonnegative residue of m_{i} modulo g^{k}. Write $M=$ $\left\{m_{0}, m_{1}, m_{2}, m_{3}\right\}$. For fixed $j_{i} \in\{0,1,2,3\}$, let

$$
I_{j_{i}}=\sharp\left\{i: m_{i} \in A_{g}\left(W_{j_{i}}\right), i=0,1,2,3\right\} .
$$

We shall show that for any $j \in\{0,1,2,3\}$,

$$
\begin{equation*}
M \nsubseteq \bigcup_{i \in\{0,1,2,3\} \backslash\{j\}} A_{g}\left(W_{i}\right) \tag{4}
\end{equation*}
$$

It is equivalent to prove the following four statements.
(a) $M \nsubseteq A_{g}\left(W_{1}\right) \cup A_{g}\left(W_{2}\right) \cup A_{g}\left(W_{3}\right)$;
(b) $M \nsubseteq A_{g}\left(W_{0}\right) \cup A_{g}\left(W_{2}\right) \cup A_{g}\left(W_{3}\right)$;
(c) $M \nsubseteq A_{g}\left(W_{0}\right) \cup A_{g}\left(W_{1}\right) \cup A_{g}\left(W_{3}\right)$;
(d) $M \nsubseteq A_{g}\left(W_{0}\right) \cup A_{g}\left(W_{1}\right) \cup A_{g}\left(W_{2}\right)$.
(I) We shall show that (a)-(d) hold for $n=0$.

Proof of (a) Suppose that $M \subseteq \bigcup_{i \in\{1,2,3\}} A_{g}\left(W_{i}\right)$, then $m_{i} \equiv 0(\bmod g), i=0,1,2,3$, thus by (3) we have $m \equiv 0(\bmod g)$. On the other hand, by (1) we have $m \equiv a_{0}$ or $g-1(\bmod g)$, a contradiction.

Proof of (b) Suppose that $M \subseteq \bigcup_{i \in\{0,2,3\}} A_{g}\left(W_{i}\right)$. By (a) we know $I_{0}>0$, thus we have the following observations:
$\left(\mathrm{b}_{1}\right)$ If $I_{0}=4$, then $\sum_{i=0}^{3} c_{i}^{(3)} \leq 4(g-1)$; If $I_{0} \neq 4$, then $\sum_{i=0}^{3} c_{i}^{(2)} \leq 3(g-1)$;
(b_{2}) If $I_{0} \geq 3$, then $\sum_{i=0}^{3} c_{i}^{(4)} \leq g^{4}-g^{3}+3 g-3$; If $I_{0}<3$, then $\sum_{i=0}^{3} c_{i}^{(2)} \leq 2(g-1)$.
If $u=0,2,3$, then by (1) we have $m \equiv a_{0}+g^{2}-g$ or $g^{2}-1\left(\bmod g^{2}\right)$ and $m \equiv a_{0}+g^{3}-$ $g, g^{2} a_{0}+g^{2}-1$ or $g^{3}-1\left(\bmod g^{3}\right)$ which contradicts the fact $\left(\mathrm{b}_{1}\right)$.

If $u=1$, then by (1) we have

$$
\begin{gather*}
m \equiv \sum_{i=0}^{3} c_{i}^{(2)} \equiv g a_{0}+g-1 \quad\left(\bmod g^{2}\right) \tag{5}\\
m \equiv \sum_{i=0}^{3} c_{i}^{(4)} \equiv g a_{0}+g^{4}-g^{2}+g-1 \quad\left(\bmod g^{4}\right) \tag{6}
\end{gather*}
$$

By (b_{2}), we have (5), (6) cannot hold.
Proof of (c) Suppose that $M \subseteq \bigcup_{i \in\{0,1,3\}} A_{g}\left(W_{i}\right)$. By (a), (b) we know $I_{0}, I_{1}>0$, thus we have the following facts:
($\left.\mathrm{c}_{1}\right) \sum_{i=0}^{3} c_{i}^{(3)} \leq 3 g^{2}-2 g-1$; ($\left.\mathrm{c}_{2}\right)$ If $I_{3}=0$, then $\sum_{i=0}^{3} c_{i}^{(4)} \leq 3 g^{2}-2 g-1$; If $I_{3}>0$, then $\sum_{i=0}^{3} c_{i}^{(3)} \leq 2 g^{2}-g-1$.

If $u=0,1,3$, then by (1) we have $m \equiv a_{0}+g^{3}-g, g a_{0}+g^{3}-g^{2}+g-1$ or $g^{3}-1\left(\bmod g^{3}\right)$, which contradicts the fact $\left(c_{1}\right)$. If $u=2$, then by (1) we have

$$
\begin{equation*}
m \equiv g^{2} a_{0}+g^{4}-g^{3}+g^{2}-1 \quad\left(\bmod g^{4}\right), \quad m \equiv g^{2} a_{0}+g^{2}-1 \quad\left(\bmod g^{3}\right) \tag{7}
\end{equation*}
$$

By (c_{2}), we have (7) cannot hold.
Proof of (d) Suppose that $M \subseteq \bigcup_{i \in\{0,1,2\}} A_{g}\left(W_{i}\right)$. By (a)-(c) we know $I_{0}, I_{1}, I_{2}>0$, thus $\sum_{i=0}^{3} c_{i}^{(4)} \leq 2 g^{3}-g^{2}-1$. If $u=0,1,2,3$, then by (1) we have
$m \equiv a_{0}+g^{4}-g, g a_{0}+g^{4}-g^{2}+g-1, g^{2} a_{0}+g^{4}-g^{3}+g^{2}-1$ or $g^{3} a_{0}+g^{3}-1 \quad\left(\bmod g^{4}\right)$,
which contradicts $m \equiv \sum_{i=0}^{3} c_{i}^{(4)}\left(\bmod g^{4}\right)$.
(II) We shall show that (a)-(d) hold for $n>0$.

Case $1 u=0$. By (2) we have

$$
\begin{gather*}
m \equiv \sum_{i=0}^{3} c_{i}^{(4 n-2)} \equiv(g-1) g^{4 n-3} \quad\left(\bmod g^{4 n-2}\right), \tag{8}\\
m \equiv \sum_{i=0}^{3} c_{i}^{(4 n-1)} \equiv(g-1) g^{4 n-2}+(g-1) g^{4 n-3} \quad\left(\bmod g^{4 n-1}\right), \tag{9}\\
m \equiv \sum_{i=0}^{3} c_{i}^{(4 n)} \equiv(g-1) g^{4 n-1}+(g-1) g^{4 n-2}+(g-1) g^{4 n-3} \quad\left(\bmod g^{4 n}\right), \tag{10}\\
m \equiv \sum_{i=0}^{3} c_{i}^{(4 n+1)} \equiv a_{n} g^{4 n}+(g-1) g^{4 n-1}+(g-1) g^{4 n-2}+(g-1) g^{4 n-3} \quad\left(\bmod g^{4 n+1}\right) . \tag{11}
\end{gather*}
$$

Proof of (a) Suppose that $M \subseteq \bigcup_{i \in\{1,2,3\}} A_{g}\left(W_{i}\right)$. If $I_{3}>2$, then

$$
\sum_{i=0}^{3} c_{i}^{(4 n-1)} \leq 3(g-1) \sum_{i=0}^{n-2} g^{4 i+3}+(g-1) \sum_{i=0}^{n-1} g^{4 i+2}<(g-1) g^{4 n-2}+(g-1) g^{4 n-3}
$$

which contradicts (9). If $I_{3} \leq 2$, then

$$
\begin{aligned}
\sum_{i=0}^{3} c_{i}^{(4 n+1)} & \leq 2(g-1) \sum_{i=0}^{n-1} g^{4 i+3}+2(g-1) \sum_{i=0}^{n-1} g^{4 i+2} \\
& <a_{n} g^{4 n}+(g-1) g^{4 n-1}+(g-1) g^{4 n-2}+(g-1) g^{4 n-3}
\end{aligned}
$$

which contradicts (11).
Proof of (b) Suppose that $M \subseteq \bigcup_{i \in\{0,2,3\}} A_{g}\left(W_{i}\right)$. By (a) we know $I_{0}>0$. If $I_{0} \geq 3$, then

$$
\sum_{i=0}^{3} c_{i}^{(4 n)} \leq(g-1) \sum_{i=0}^{n-1} g^{4 i+3}+3(g-1) \sum_{i=0}^{n-1} g^{4 i}<(g-1) g^{4 n-1}+(g-1) g^{4 n-2}+(g-1) g^{4 n-3}
$$

which contradicts (10). If $I_{0}<3$, then

$$
\sum_{i=0}^{3} c_{i}^{(4 n-2)} \leq 2(g-1) \sum_{i=0}^{n-2} g^{4 i+3}+2(g-1) \sum_{i=0}^{n-1} g^{4 i}<(g-1) g^{4 n-3}
$$

which contradicts (8).
Proof of (c) Suppose that $M \subseteq \bigcup_{i \in\{0,1,3\}} A_{g}\left(W_{i}\right)$. By (a), (b) we know $I_{0}, I_{1}>0$, thus

$$
\sum_{i=0}^{3} c_{i}^{(4 n-1)} \leq 3(g-1) \sum_{i=0}^{n-1} g^{4 i+1}+(g-1) \sum_{i=0}^{n-1} g^{4 i}<(g-1) g^{4 n-2}+(g-1) g^{4 n-3}
$$

which contradicts (9).
Proof of (d) Suppose that $M \subseteq \bigcup_{i \in\{0,1,2\}} A_{g}\left(W_{i}\right)$. By (a)-(c) we know $I_{0}, I_{1}, I_{2}>0$, thus

$$
\sum_{i=0}^{3} c_{i}^{(4 n)} \leq 2(g-1) \sum_{i=0}^{n-1} g^{4 i+2}+(g-1) \sum_{i=0}^{n-1} g^{4 i+1}+(g-1) \sum_{i=0}^{n-1} g^{4 i}
$$

$$
<(g-1) g^{4 n-1}+(g-1) g^{4 n-2}+(g-1) g^{4 n-3}
$$

which contradicts (10).
Case $2 u=1$. By (2) we have

$$
\begin{gather*}
m \equiv \sum_{i=0}^{3} c_{i}^{(4 n-1)} \equiv(g-1) g^{4 n-2} \quad\left(\bmod g^{4 n-1}\right) \tag{12}\\
m \equiv \sum_{i=0}^{3} c_{i}^{(4 n)} \equiv(g-1) g^{4 n-1}+(g-1) g^{4 n-2} \quad\left(\bmod g^{4 n}\right) \tag{13}\\
m \equiv \sum_{i=0}^{3} c_{i}^{(4 n+1)} \equiv(g-1) g^{4 n}+(g-1) g^{4 n-1}+(g-1) g^{4 n-2} \quad\left(\bmod g^{4 n+1}\right) \tag{14}\\
m \equiv \sum_{i=0}^{3} c_{i}^{(4 n+2)} \equiv a_{n} g^{4 n+1}+(g-1) g^{4 n}+(g-1) g^{4 n-1}+(g-1) g^{4 n-2} \quad\left(\bmod g^{4 n+2}\right) \tag{15}
\end{gather*}
$$

Proof of (a) Suppose that $M \subseteq \bigcup_{i \in\{1,2,3\}} A_{g}\left(W_{i}\right)$. We have

$$
\sum_{i=0}^{3} c_{i}^{(4 n+1)} \leq 4(g-1) \sum_{i=0}^{n-1} g^{4 i+3}<(g-1) g^{4 n}+(g-1) g^{4 n-1}+(g-1) g^{4 n-2}
$$

which contradicts (14).
Proof of (b) Suppose that $M \subseteq \bigcup_{i \in\{0,2,3\}} A_{g}\left(W_{i}\right)$. By (a) we know $I_{0}>0$.
If $I_{3}=0$, then

$$
\sum_{i=0}^{3} c_{i}^{(4 n)} \leq 3(g-1) \sum_{i=0}^{n-1} g^{4 i+2}+(g-1) \sum_{i=0}^{n-1} g^{4 i}<(g-1) g^{4 n-1}+(g-1) g^{4 n-2}
$$

which contradicts (13). If $I_{3}>0, I_{2}=0$, then

$$
\sum_{i=0}^{3} c_{i}^{(4 n-1)} \leq(g-1) \sum_{i=0}^{n-2} g^{4 i+3}+3(g-1) \sum_{i=0}^{n-1} g^{4 i}<(g-1) g^{4 n-2}
$$

which contradicts (12). If $I_{3}>0, I_{2}>0$, then

$$
\begin{aligned}
\sum_{i=0}^{3} c_{i}^{(4 n+2)} & \leq(g-1) \sum_{i=0}^{n-1} g^{4 i+3}+(g-1) \sum_{i=0}^{n-1} g^{4 i+2}+2(g-1) \sum_{i=0}^{n} g^{4 i} \\
& <a_{n} g^{4 n+1}+(g-1) g^{4 n}+(g-1) g^{4 n-1}+(g-1) g^{4 n-2}
\end{aligned}
$$

which contradicts (15).
Proof of (c) Suppose that $M \subseteq \bigcup_{i \in\{0,1,3\}} A_{g}\left(W_{i}\right)$. By (a), (b) we know $I_{0}, I_{1}>0$. If $I_{3}>0$, then

$$
\sum_{i=0}^{3} c_{i}^{(4 n-1)} \leq(g-1) \sum_{i=0}^{n-2} g^{4 i+3}+2(g-1) \sum_{i=0}^{n-1} g^{4 i+1}+(g-1) \sum_{i=0}^{n-1} g^{4 i}<(g-1) g^{4 n-2}
$$

which contradicts (12). If $I_{3}=0$, then

$$
\sum_{i=0}^{3} c_{i}^{(4 n)} \leq 3(g-1) \sum_{i=0}^{n-1} g^{4 i+1}+(g-1) \sum_{i=0}^{n-1} g^{4 i}<(g-1) g^{4 n-1}+(g-1) g^{4 n-2}
$$

which contradicts (13).
Proof of (d) Suppose that $M \subseteq \bigcup_{i \in\{0,1,2\}} A_{g}\left(W_{i}\right)$. By $(a)-(c)$ we know $I_{0}, I_{1}, I_{2}>0$, thus $\sum_{i=0}^{3} c_{i}^{(4 n)} \leq 2(g-1) \sum_{i=0}^{n-1} g^{4 i+2}+(g-1) \sum_{i=0}^{n-1} g^{4 i+1}+(g-1) \sum_{i=0}^{n-1} g^{4 i}<(g-1) g^{4 n-1}+(g-1) g^{4 n-2}$, which contradicts (13).

Case $3 u=2$. By (2) we have

$$
\begin{gather*}
m \equiv \sum_{i=0}^{3} c_{i}^{(4 n)} \equiv(g-1) g^{4 n-1} \quad\left(\bmod g^{4 n}\right) \tag{16}\\
m \equiv \sum_{i=0}^{3} c_{i}^{(4 n+1)} \equiv(g-1) g^{4 n}+(g-1) g^{4 n-1} \quad\left(\bmod g^{4 n+1}\right), \tag{17}\\
m \equiv \sum_{i=0}^{3} c_{i}^{(4 n+2)} \equiv(g-1) g^{4 n+1}+(g-1) g^{4 n}+(g-1) g^{4 n-1} \quad\left(\bmod g^{4 n+2}\right), \tag{18}\\
m \equiv \sum_{i=0}^{3} c_{i}^{(4 n+3)} \equiv a_{n} g^{4 n+2}+(g-1) g^{4 n+1}+(g-1) g^{4 n}+(g-1) g^{4 n-1} \quad\left(\bmod g^{4 n+3}\right) . \tag{19}
\end{gather*}
$$

Proof of (a) Suppose that $M \subseteq \bigcup_{i \in\{1,2,3\}} A_{g}\left(W_{i}\right)$. If $I_{3}=4$, then

$$
\sum_{i=0}^{3} c_{i}^{(4 n+3)} \leq 4(g-1) \sum_{i=0}^{n-1} g^{4 i+3}<a_{n} g^{4 n+2}+(g-1) g^{4 n+1}+(g-1) g^{4 n}+(g-1) g^{4 n-1}
$$

which contradicts (19). If $I_{3}<4$, then

$$
\sum_{i=0}^{3} c_{i}^{(4 n+1)} \leq 3(g-1) \sum_{i=0}^{n-1} g^{4 i+3}+(g-1) \sum_{i=0}^{n-1} g^{4 i+2}<(g-1) g^{4 n}+(g-1) g^{4 n-1}
$$

which contradicts (17).
Proof of (b) Suppose that $M \subseteq \bigcup_{i \in\{0,2,3\}} A_{g}\left(W_{i}\right)$. By (a) we know $I_{0}>0$. We have

$$
\sum_{i=0}^{3} c_{i}^{(4 n+2)} \leq 4(g-1) \sum_{i=0}^{n} g^{4 i}<(g-1) g^{4 n+1}+(g-1) g^{4 n}+(g-1) g^{4 n-1}
$$

which contradicts (18).
Proof of (c) Suppose that $M \subseteq \bigcup_{i \in\{0,1,3\}} A_{g}\left(W_{i}\right)$. By (a), (b) we know $I_{0}, I_{1}>0$. If $I_{3}=0$, then

$$
\sum_{i=0}^{3} c_{i}^{(4 n)} \leq 3(g-1) \sum_{i=0}^{n-1} g^{4 i+1}+(g-1) \sum_{i=0}^{n-1} g^{4 i}<(g-1) g^{4 n-1}
$$

which contradicts (16). If $I_{3}>0$, then

$$
\begin{aligned}
\sum_{i=0}^{3} c_{i}^{(4 n+3)} & \leq(g-1) \sum_{i=0}^{n-1} g^{4 i+3}+2(g-1) \sum_{i=0}^{n} g^{4 i+1}+(g-1) \sum_{i=0}^{n} g^{4 i} \\
& <a_{n} g^{4 n+2}+(g-1) g^{4 n+1}+(g-1) g^{4 n}+(g-1) g^{4 n-1},
\end{aligned}
$$

which contradicts (19).
Proof of (d) Suppose that $M \subseteq \bigcup_{i \in\{0,1,2\}} A_{g}\left(W_{i}\right)$. By (a)-(c) we know $I_{0}, I_{1}, I_{2}>0$, thus

$$
\sum_{i=0}^{3} c_{i}^{(4 n)} \leq 2(g-1) \sum_{i=0}^{n-1} g^{4 i+2}+(g-1) \sum_{i=0}^{n-1} g^{4 i+1}+(g-1) \sum_{i=0}^{n-1} g^{4 i}<(g-1) g^{4 n-1}
$$

which contradicts (16).
Case $4 u=3$. By (2) we have

$$
\begin{gather*}
m \equiv \sum_{i=0}^{3} c_{i}^{(4 n+1)} \equiv(g-1) g^{4 n} \quad\left(\bmod g^{4 n+1}\right) \tag{20}\\
m \equiv \sum_{i=0}^{3} c_{i}^{(4 n+2)} \equiv(g-1) g^{4 n+1}+(g-1) g^{4 n} \quad\left(\bmod g^{4 n+2}\right) \tag{21}\\
m \equiv \sum_{i=0}^{3} c_{i}^{(4 n+3)} \equiv(g-1) g^{4 n+2}+(g-1) g^{4 n+1}+(g-1) g^{4 n} \quad\left(\bmod g^{4 n+3}\right) \tag{22}\\
m \equiv \sum_{i=0}^{3} c_{i}^{(4 n+4)} \equiv a_{n} g^{4 n+3}+(g-1) g^{4 n+2}+(g-1) g^{4 n}+(g-1) g^{4 n+1} \quad\left(\bmod g^{4 n+4}\right) \tag{23}
\end{gather*}
$$

Proof of (a) Suppose that $M \subseteq \bigcup_{i \in\{1,2,3\}} A_{g}\left(W_{i}\right)$. If $I_{3}=4$, then

$$
\sum_{i=0}^{3} c_{i}^{(4 n+2)} \leq 4(g-1) \sum_{i=0}^{n-1} g^{4 i+3}<(g-1) g^{4 n+1}+(g-1) g^{4 n}
$$

which contradicts (21). If $I_{3}=3$, then

$$
\sum_{i=0}^{3} c_{i}^{(4 n+3)} \leq 3(g-1) \sum_{i=0}^{n-1} g^{4 i+3}+(g-1) \sum_{i=0}^{n} g^{4 i+2}<(g-1) g^{4 n+2}+(g-1) g^{4 n+1}+(g-1) g^{4 n}
$$

which contradicts (22). If $I_{3}<3$, then

$$
\sum_{i=0}^{3} c_{i}^{(4 n+1)} \leq 2(g-1) \sum_{i=0}^{n-1} g^{4 i+3}+2(g-1) \sum_{i=0}^{n-1} g^{4 i+2}<(g-1) g^{4 n}
$$

which contradicts (20).
Proof of (b) Suppose that $M \subseteq \bigcup_{i \in\{0,2,3\}} A_{g}\left(W_{i}\right)$. By (a) we know $I_{0}>0$. If $I_{2}=0$, then

$$
\sum_{i=0}^{3} c_{i}^{(4 n+3)} \leq 4(g-1) \sum_{i=0}^{n} g^{4 i}<(g-1) g^{4 n+2}+(g-1) g^{4 n+1}+(g-1) g^{4 n}
$$

which contradicts (22). If $I_{2}>0$, then

$$
\sum_{i=0}^{3} c_{i}^{(4 n+2)} \leq(g-1) \sum_{i=0}^{n-1} g^{4 i+2}+3(g-1) \sum_{i=0}^{n} g^{4 i}<(g-1) g^{4 n+1}+(g-1) g^{4 n}
$$

which contradicts (21).
Proof of (c) Suppose that $M \subseteq \bigcup_{i \in\{0,1,3\}} A_{g}\left(W_{i}\right)$. By (a), (b) we know $I_{0}, I_{1}>0$, thus

$$
\sum_{i=0}^{3} c_{i}^{(4 n+3)} \leq 3(g-1) \sum_{i=0}^{n} g^{4 i+1}+(g-1) \sum_{i=0}^{n} g^{4 i}<(g-1) g^{4 n+2}+(g-1) g^{4 n+1}+(g-1) g^{4 n},
$$

which contradicts (22).
Proof of (d) Suppose that $M \subseteq \bigcup_{i \in\{0,1,2\}} A_{g}\left(W_{i}\right)$. By (a)-(c) we know $I_{0}, I_{1}, I_{2}>0$, thus

$$
\begin{aligned}
\sum_{i=0}^{3} c_{i}^{(4 n+4)} & \leq 2(g-1) \sum_{i=0}^{n} g^{4 i+2}+(g-1) \sum_{i=0}^{n} g^{4 i+1}+(g-1) \sum_{i=0}^{n} g^{4 i} \\
& <a_{n} g^{4 n+3}+(g-1) g^{4 n+2}+(g-1) g^{4 n+1}+(g-1) g^{4 n}
\end{aligned}
$$

which contradicts (23).
By (I) and (II), we show that for any $j \in\{0,1,2,3\}, M \nsubseteq \bigcup_{i \in\{0,1,2,3\} \backslash\{j\}} A_{g}\left(W_{i}\right)$. After suitable renumbering we have $m_{i} \in A_{g}\left(W_{i}\right), i=0,1,2,3$. Moreover, the g-adic representation of m is unique. Hence $m \notin 4(A \backslash\{a\})$.

This completes the proof of Theorem 1.4.
Acknowledgements We thank the referees for their time and comments.

References

[1] M. B. NATHANSON. Minimal bases and powers of 2. Acta Arith., 1988, 49(5): 525-532.
[2] Xingde JIA. Minimal Bases and g-Adic Representations of Integers. Springer, New York, 1996.
[3] E. HÄRTTER. Ein beitrag zur theorie der minimalbasen. J. Renie Angew. Math., 1956, 196: 170-204.
[4] Xingde JIA, M. B. NATHANSON. A simple construction of minimal asymptotic bases. Acta Arith., 1989, 51(2): 95-101.
[5] M. B. NATHANSON. Minimal bases and maximal nonbases in additive number theory. J. Number Theory, 1974, 6: 324-333.
[6] A. STÖHR. Gelöste und ungelöste fragen über basen der natürlichen zahlenreihe II. J. Renie Angew. Math., 1955, 194: 111-140.
[7] J. B. LEE. A construction of minimal asymptotic bases. Period. Math. Hungar., 1993, 26(3): 211-218.

[^0]: Received April 27, 2016; Accepted September 7, 2016
 Supported by the National Natural Science Foundation of China (Grant No. 11471017).

 * Corresponding author

 E-mail address: lijingwen917@163.com (Jingwen LI); asdklljw@sina.com (Jiawen LI)

