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Abstract In the paper we give some precise characterizations for the quasicontinuity on

weighted Sobolev spaces with variable exponent. Moreover, under the quasicontinuous mean-

ings we obtain the uniqueness result in the weighted Sobolev spaces with variable exponent.
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1. Introduction

In the paper we are mainly concerned with some properties of weighted function space

with variable exponent. Specifically speaking, our aim is to give some precise characterizations

for the quasicontinuity of functions in weighted Sobolev spaces with variable exponent. Since

Kováčik and Rákosńık [1] introduced the variable exponent Lebesgue space and Sobolev space

in higher dimensional Euclidean spaces, many mathematicians were deeply involved into this

field and obtained a very great deal of results. There are some books and surveys to deal with

systemly them in the nonweighted and weighted variable exponent cases, we may refer to [2–5].

Diening [6] proved the boundedness of maximal operator in variable exponent Lebesgue space,

and Hästö [7] introduced a simple and convenient method to pass from local to global results

in variable exponent function spaces, which greatly promoted the theoretical development of

variable exponent function spaces. From these interesting theoretical considerations, Aydin [8]

introduced the weighted Sobolev capacity with variable exponent, and generalized some results

from Harjulehto et al. [9–11], Kilpeläinen [12] and Samko [5] to the weighted case with variable

exponent. In addition, the strong p(·)-Laplacian operator related to Sobolev spaces with variable

exponent has also been investigated by Hästö et al. [13,14]. Heinonen [15] and Turesson [16]

studied quasicontinuity on Sobolev space, which was partly generalized by Aydin (see Lemmas

3.1 and 3.8 below). Inspired by the statements above, we continue to develop Turesson’s results

in weighted Sobolev spaces with variable exponent. For the better statements about our results,

in the next section we will provide some notations and background materials.
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2. Capacity, Sobolev spaces with variable exponents

For a measure function p(·) : RN → [1,∞), write

p− := essinfx∈RN p(x), p+ := esssupx∈RN p(x).

Let the weight function ω : RN → (0,∞) be a positive, measurable and locally integrable

function. We define the weight modular with respect to function f by

ϱp(·),ω(f) :=

∫
RN

|f(x)|p(x)ω(x)dx.

Denote by Lp(·)(RN , ω) the weighted Lebesgue space with variable exponent endowed with the

norm

∥f∥p(·),ω = ∥fω
1

p(·) ∥p(·)

on RN , where the Luxemburg norm ∥ · ∥p(·) satisfies

∥f∥p(·) := inf
{
λ > 0 : ϱp(·)(

f

λ
) ≤ 1

}
.

Obviously, when ω(x) is a constant function, i.e., ω(x) ≡ 1, we have ∥f∥p(·),ω = ∥f∥p(·),
ϱp(·),ω(f) = ϱp(·)(f) and Lp(·)(RN , ω) = Lp(·)(RN ). Similarly, if p(·) is a constant function

p, then Lp(·)(RN ) is clearly the usual Lebesgue space Lp(RN ).

The class Ap(·) consists of all weights ω with

∥ω∥Ap(·) = sup
B∈B

|B|−pB∥ω∥L1(B)∥
1

ω
∥
 Lp′(·)/p(·)

(B)
<∞,

where B denotes the set of all open balls in Rn, and

pB =
[ 1

|B|

∫
B

1

p(x)
dx

]−1

,
1

p(·)
+

1

p′(·)
= 1.

Note that, when p(·) ≡ p, Ap(·) is the classical Muckenhoupt class Ap.

For 1 < p− ≤ p(x) ≤ p+ < ∞, ω−1/(p(·)−1) ∈ L1
loc(RN ) and k ∈ N, we define the weighted

Sobolev spaces with variable exponents W k,p(·)(RN , ω) by

W k,p(·)(RN , ω) :=
{
f ∈ Lp(·)(RN , ω) : Dαf ∈ Lp(·)(RN , ω), 0 ≤ |α| ≤ k

}
with the norm

∥f∥k,p(·),ω =
∑

0≤|α|≤k

∥Dαf∥p(·),ω,

where α ∈ NN
0 = NN∪{0} is a multi-index with |α| = α1+α2+· · ·αN andDα = ∂|α|/(∂α1

x1
· · · ∂αN

xN
).

For α > 0, let gα be the Bessel kernel. Next we introduce the weighted Bessel potential

spaces with variable exponent Lα,p(·)(RN , ω) by

Lα,p(·)(RN , ω) = {h = gα ∗ f : f ∈ Lp(·)(RN , ω)}

equipped with the norm

∥h∥α,p(·),ω = ∥f∥p(·),ω.

Obviously, we have g0 ∗ f = f and L0,p(·)(RN , ω) = Lp(·)(RN , ω) when α = 0.
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For E ⊂ RN and α > 0, the Bα,p(·),ω-capacity in Lα,p(·)(RN , ω) is defined by

Bα,p(·),ω(E) := inf ϱp(·),ω(f),

where the infimum is taken over all f ∈ Lp(·)(RN , ω) such that the convolution gα ∗ f ≥ 1 on E.

It is well known that Bα,p(·),ω)-capacity satisfies the following properties [8,9]:

• Bα,p(·),ω(∅) = 0;

• For E1 ⊂ E2 ⊂ RN , Bα,p(·),ω(E1) ≤ Bα,p(·),ω(E2);

• For any set E ⊂ RN , Bα,p(·),ω(E) = infE⊂G,G openBα,p(·),ω(G);

• For Ei ⊂ RN , i = 1, 2, . . . , we have

Bα,p(·),ω

( ∞∪
i=1

Ei

)
≤

∞∑
i=1

Bα,p(·),ω(Ei).

A property holds Bα,p(·),ω-quasieverywhere (shorten by Bα,p(·),ω-q.e.), if it is true except in

a set of capacity zero. We say a function f is Bα,p(·),ω-quasicontinuous in RN , provided that, for

given ϵ > 0, there exists an open set G such that Bα,p(·),ω(E) < ϵ and f |Gc is continuous.

3. Statements of main results

For x ∈ RN and r > 0, we denote by B(x, r) an open ball with x and radius r. For

f ∈ L1
loc(RN ), the centered Hardy-Littlewood maximal operator Mf of the function f is defined

by

Mf := sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy,

where the supremum is taken over all the balls B(x, r) in RN . Let C be a constant. If

|p(x) − p(y)| ≤ C

log(e+ 1/|x− y|)

for x, y ∈ RN , then we call that p(·) satisfies the local log-Hölder continuity condition. If

|p(x) − p∞| ≤ C

log(e+ |x|)

for some p∞ > 1 and x ∈ RN , then we say that p(·) satisfies the log-Hölder decay condition. If

p(·) satisfies both the local log-Hölder continuity condition and the log-Hölder decay condition,

then we say it is log-Hölder continuous, and denote by P log(RN ) the class of variable exponents.

Next we start to sate our main theorems and the related lemmas.

Lemma 3.1 ([8, Proposition 3.19]) Let 1 < p− < p+ <∞. If f ∈ Lp(·)(RN , ω) and

E = {x ∈ RN : (gα ∗ f)(x) = ∞},

then Bα,p(·),ω(E) = 0.

Theorem 3.2 Suppose that the sequence {fn}∞n=1 converges to f in Lp(·)(RN , ω). Then there

is a subsequence {fnj}∞j=1 such that

gα ∗ fnj → gα ∗ f as j → ∞
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for Bα,p(·),ω-q.e. x ∈ RN , uniformly outside an open set of arbitrarily small Bα,p(·),ω-capacity.

Proof Among the procedure of proof we mainly follow the method of Meyer [17]. Obviously,

gα ∗ f , gα ∗ fn(n ∈ N) ∈ Lα,p(·)(RN , ω). Since {fn}∞n=1 converges to f in Lp(·)(RN , ω), we may

choose a subsequence {fnj}∞j=1 such that

∥gα ∗ fnj − gα ∗ f∥α,p(·),ω = ∥fnj − f∥p(·),ω → 0 as j → ∞.

From Lemma 3.1 we know that there exist set Enj for each j ∈ N and F such thatBα,p(·),ω(Enj ) =

0 and Bα,p(·),ω(F ) = 0, so we obtain that

Bα,p(·),ω

( ∞∪
j=1

Enj ∪ F
)
≤

∞∑
j=1

Bα,p(·),ω(Enj ) +Bα,p(·),ω(F ) = 0.

Set E =
∪∞

j=1Enj ∪ F . Therefore, for x ∈ Ec,

gα ∗ fnj (x) → gα ∗ f(x) as j → ∞.

Then there exists a subsequence {fnj}∞j=1 such that the previous limit holds uniformly outside

an open set of arbitrarily small Bα,p(·),ω-capacity so that Theorem 3.2 follows.�
Set

D(RN ) := {p(·) : 1 < p− ≤ p(x) ≤ p+ <∞, ∥Mf∥p(·),ω ≤ C∥f∥p(·),ω}.

For p(·) ∈ P log(RN ) and 1 < p− ≤ p+ < ∞, M : Lp(·)(RN , ω) ↪→ Lp(·)(RN , ω) if and only if

ω ∈ Ap(·) (see [18]). Based on Theorem 3.2 above, we have the following two theorems.

Theorem 3.3 Let 0 < α < N , p(·) ∈ P log(RN ) and ω ∈ Ap(·). If f ∈ Lp(·)(RN , ω), then gα ∗ f
is Bα,p(·),ω-quasicontinuous.

To be convenient to the readers, we state some preliminary lemmas needed in the proof of

Theorem 3.3.

Lemma 3.4 ([8, Lemma 3.2]) Let p(·) ∈ P log(RN ) and 1 < p− ≤ p+ <∞. If ω ∈ Ap(·), then

(i) C∞
0 (RN ) is dense in W k,p(·)(RN , ω) for k ∈ N;

(ii) the Schwartz class S is dense in Lα,p(·)(RN , ω) with α ≥ 0.

Lemma 3.5 ([8, Theorem 3.2]) Let p(·) ∈ D(RN ) and k ∈ N. Then

Lk,p(·)(RN , ω) = W k,p(·)(RN , ω)

and the corresponding norms are equivalent.

Lemma 3.6 ([8, Proposition 2.5]) Let p(·) ∈ D(RN ). The class C∞
0 (RN ) is dense in Lp(·)(RN , ω).

Proof of Theorem 3.3 From Lemma 3.1 we know that gα ∗f is defined and finite Bα,p(·),ω-q.e.

By (i) in Lemma 3.4, and Lemmas 3.5 and 3.6, we may choose a sequence of functions {fn}∞n=1

in C∞
0 (RN ) such that fn converges to f in Lp(·)(RN , ω). Therefore, from Theorem 3.2, we clearly

see that there exists a subsequence of functions {fnj}∞j=1 such that

gα ∗ fnj → gα ∗ f as j → ∞
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for Bα,p(·),ω-q.e. x ∈ RN and uniformly outside an open set of arbitrarily small Bα,p(·),ω-capacity.

So Theorem 3.3 follows from Lemmas 3.4 and 3.5. �

Theorem 3.7 Let 0 < α < N , 1 < p− < p+ < ∞ and ω ∈ Ap(·). Suppose that O is an open

subset of RN such that

lim sup
r→0

|O ∩Br(x)|
|Br(x)|

> 0 (1)

for Bα,p(·),ω-q.e. x ∈ ∂O. If f1 and f2 are two Bα,p(·),ω-quasicontinuous functions on RN , then

f1 = f2 Bα,p(·),ω-q.e. on O.

Lemma 3.8 Let 1 < p− < p+ <∞. If f ∈ LP (·)(RN , ω), then

lim
r→0

1

|B(x, r)|

∫
B(x,r)

(gα ∗ f)(y)dy = (gα ∗ f)(x)

for Bα,p(·),ω-q.e. x ∈ RN .

Here Lemma 3.8 plays a vital role to prove Theorem 3.7, and it is also due to Aydin [8,

Proposition 3.20]. In fact, when p(·) ≡ p, the uniqueness theorem above or Theorem 3.7 results

from Turesson [16]. As for the nonweighted case, we refer to Carlsson [19], which improves

the work by Maz’ya and Havin [20]. Carlsson did not consider the positive superior limit (i.e.,

inequality (1)) but the inferior limit being equal or greater than some positive constant. In

addition, Aikawa [21] generalized the results from Maz’ya and Havin into weighted version.

Proof of Theorem 3.7 Since the function f = f1 − f2 is Bα,p(·),ω-quasicontinuous, there exist

open sets Gn, n = 1, 2, . . . , such that Bα,p(·),ω(Gn) → 0 as n → ∞, and f |Gc
n

is continuous. Let

ϕn be nonnegative functions in Lp(·)(RN , ω) satisfying ∥ϕn∥Lp(·)(RN ,ω) → 0 and ψn = gα ∗ϕn ≥ 1

on Gn. By Theorem 3.2 we may assume that ψn → 0Bα,p(·),ω-q.e. by passing to a subsequence.

Let x ∈ O be a point such that ψn → 0 as n → ∞ the inequality holds. Then we see from

Lemma 3.8 that

lim sup
r→0

|Gn ∩Br(x)|
|Br(x)|

≤ lim sup
r→0

1

|Br(x)|

∫
Br(x)

χGn(y)ψn(y)dy

≤ lim
r→0

1

|Br(x)|

∫
Br(x)

ψn(y)dy = ψn(x).

Since ψn → 0 as n→ ∞, we may find some n such that

lim sup
r→0

|Gn ∩Br(x)|
|Br(x)|

< lim sup
r→0

|O ∩Br(x)|
|Br(x)|

.

Hence, for arbitrarily small r it follows that |O ∩ Br(x) ∩ Gc
n| > 0. Then we may choose a

sequence {xi}∞n=1 of points in O ∩ Gc
n such that xi → x as n → ∞ and f(xi) = 0 for every i.

Due to x ∈ Gc
n, it implies that f(x) = 0, which is exactly the desired result. �
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[12] T. KILPELÄINEN. Weighted Sobolev spaces and capacity. Ann. Acad. Sci. Fenn. Ser. A I Math., 1994,

19(1): 95–113.
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