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Abstract We establish a global limiting case of nonlinear Calderón-Zygmund theory to
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1. Introduction and main results

The most classical instance of Calderón-Zygmund theory, going back to Calderón and Zyg-

mund [1,2], occurs when considering the Poisson equation

∆u = divF.

By representation formula involving the so called fundamental solution, a priori estimate yields

for each 0 < γ < ∞,

∥Du∥Lγ ≤ C∥F∥Lγ , (1.1)

where C only depends on γ. This means that integrability of F transfers to integrability of Du.

Iwaniec [3] extended the above estimations (1.1) to p-Laplacian equations

∆pu = div(|F |p−2F ), (1.2)

where ∆pu is the p-Laplacian of u defined by ∆pu := div(|Du|p−2Du), and showed that, mostly

called nonlinear Calderoón-Zygmund theory, F ∈ Lγ(RN ,RN ) implies Du ∈ Lγ(RN ,RN ) for

every γ ≥ p.

Recently, Phuc [4], using some comparison lemmas obtained by Duzaar and Mingione [5,6],

established global Lγ boundedness of A-superharmonic function in RN with γ > max{1, p− 1}
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provided that
´
RN |Du|γdx < ∞, and in the same paper, Phuc also gave a simple proof of main

results of [7].

It would be interesting to extend above nonlinear Calderoón-Zygmund theory to p-Laplacian

system

∆pu = divp(|F|p−1F), (1.3)

where ∆pu is the p-Laplacian of u = (u1, u2, . . . , um) ∈ [W p
1 (Ω)]

m. Indeed, Dibenedetto and

Manfredi [8] improved the results of scalar equations (1.2) to p-Laplacian system (1.3). They

showed, similarly to scalar p-Laplacian equations,

∥Du∥Lγ(RN ) ≤ C∥F∥Lγ(RN ),

provided that u ∈
[
W p

1 (RN )
]m

is a weak solution of (1.3) with F = (F1, F2, . . . , Fm) ∈ [W p
1 (RN )]m

and γ ≥ p, where constant C depends only upon N, p and γ. The case |F |p−2F ∈ [BMO(RN )]m

was settled in the same paper. In this case, they obtained

∥Du∥BMO(RN ) ≤ C∥|F|p−2F∥BMO(RN ), (1.4)

where C depends only upon N, p. Recently, limiting BMO estimates (1.4) was extended to

certain general elliptic systems in [9],

−div(A(Du)) = −divF,

where A(Du) is defined by

A(Du) = φ′(|Du|) Du

|Du|
,

for a suitable N -function φ. For further interesting extension of nonlinear Calderoón-Zygmund

theory to nonlinear elliptic equations with discontinuous coefficients and measure data, we refer

for instance to [10–19] and the references therein.

It is worth pointing out that nonlinear Calderoón-Zygmund theory is closely related to

solvability and a priori estimates in Lγ as long as γ > p − 1, usually referred to as an estimate

below the natural growth exponent, to Dirichlet problem (1.2) with homogeneous boundary

condition in bounded domain. Unfortunately, such interesting estimate still remains a certainly

difficult open problem [20].

The aim of this paper is to establish limiting nonlinear Calderoón-Zygmund theory to de-

generate quasilinear equations in divergence form with p-growth of the type

−divA(x,Du) = div(|F |p−2F ), (1.5)

where the nonlinearity A : Rn × Rn → Rn in (1.5) is assumed to be at least measurable in

the coefficients x, C1-regular in the gradient variable ξ ∈ Rn \ {0} and satisfying the following

growth, ellipticity and continuity assumptions:

|A(x, ξ)|+ |Aξ(x, ξ)|(|ξ|2 + s2)
1
2 ≤ L(|ξ|2 + s2)

(p−1)
2 , (1.6)

ν(|ξ|2 + s2)
(p−1)

2 λ2 ≤ ⟨Aξ(x, ξ)λ, λ⟩, (1.7)
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fore very (λ, ξ) ∈ Rn × Rn \ {(0, 0)} a.e. x ∈ Ω. Here ν and L are positive structural constants.

Here and in the rest of the paper we are assuming that ν, L, s are fixed parameters such that

0 < ν ≤ L and s ≥ 0. Note that the parameter s ≥ 0 is used to distinguish the case of degenerate

ellipticity (s = 0) from the nondegenerate one (s > 0). Moreover, when p ≥ 2, assumption (1.7)

immediately implies that, there exists constant C, depending on p,N and ν, such that

C|ξ − η|p ≤ ⟨A(x, ξ)−A(x, η), ξ − η⟩. (1.8)

A typical example of such a nolinearity A, satisfying (1.6) and (1.7), is given by A(ξ) =

|ξ|p−2ξ.

For the purpose of this paper we also require that the nonlinearity A satisfy a smallness

condition of BMO-type in the x-variable. We call such a condition the (δ0, R0)-BMO condition.

Definition 1.1 We say that A(x, ξ) satisfies a (δ0, R0)-BMO condition for some δ0, R0 > 0 with

exponent α > 0, if

[A]R0
α = sup

y∈RN ,0<r≤R0

( 
Br(y)

Υα(A, Br(y))(x)dx
) 1

α ≤ δ0,

where

Υ(A, Br(y))(x) = sup
ξ∈RN\{0}

|A(x, ξ)−ABr(y)(ξ)|
|ξ|p−1

,

with ABr(y)(ξ) denoting the average of A(x, ξ) over the ball Br(y), i.e.,

ABr(y)(ξ) =

 
Br(y)

A(x, ξ)dx =
1

|Br(y)|

ˆ
Br(y)

A(x, ξ)dx.

Let us state the main result of this paper.

Theorem 1.2 Suppose that u ∈ W p
1 (RN ) is a weak solution of (1.5), p > 2 and

|F |p−2F ∈ BMO(RN ), (1.9)

then

Du ∈ BMO(RN ). (1.10)

Remark 1.3 It is interesting to note that F ∈ BMO(RN ) does not imply Fκ ∈ BMO(RN ) for

positive κ. An example in one variable is given by log |x|.
Let us briefly outline the strategy by describing the organization of the paper. In Section 2,

we derive a few comparison lemmas allowing to treat with low regularity coefficients. The proof

of Theorems 1.2 will be given in Section 3.

2. Preparations

2.1. General notation

In the following, we denote by C a general constant larger (or equal) than one, possibly

varying from line to line, to indicate a dependence of C on the real parameters N, p, ν, L, we
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shall write C = C(N, p, ν, L). We also denote by B(x0, r) = {x ∈ Rn : |x − x0| < r} the open

ball with center x0 and radius r > 0. When not important, or clear from the context, we shall

omit the center and denote the open ball as Br = B(x0, r). Unless otherwise stated, different

balls in the same context will have the same center.

The space of functions of bounded mean oscillation, called BMO space, naturally arises as

the class of functions whose deviation from their means over cubes is bounded. A function is

said to be of bounded mean oscillation if its mean oscillation over all balls is bounded. Precisely,

given a locally integrable function f on RN and a measurable set Ω in RN , denote by

(f)Ω =

 
Ω

f(x)dx,

the mean (or average) of f over Ω.

Definition 2.1 For f a locally integrable function on RN , set

∥f∥BMO = sup
Q

1

|Q|

ˆ
Q

|f(x)− (f)Q|dx,

where the supremum is taken over all balls Q in RN . The function f is called of bounded mean

oscillation if ∥f∥BMO < ∞.

Note that ∥ · ∥BMO is not a norm. The problem is that if ∥f∥BMO = 0, this does not imply

that f = 0, but that f is a constant. Moreover, every constant function C satisfies ∥C∥BMO = 0.

Consequently, functions f and f + C have the same BMO norms whenever C is a constant. In

the sequel, we keep in mind that elements of BMO whose difference is a constant are identified.

Although ∥ · ∥BMO is only a seminorm, we occasionally refer to it as a norm when there is no

possibility of confusion.

The following important Lp characterization of BMO norms will be used in the sequel.

Proposition 2.2 For all 1 < p < ∞ we have

c∥f∥BMO ≤ sup
Q

1

|Q|

ˆ
Q

|f(x)− (f)Q|pdx ≤ C∥f∥BMO,

where two constants c, C depend only upon N and p.

2.2. Comparison results

The proof of limiting nonlinear Calderoón-Zygmund theory (1.9) and (1.10) is done via

comparison to a suitable homogeneous problem, which provides good reference estimates. This

comparison will be performed within two steps. First we shall compare the original inhomoge-

neous problem (1.5) to the associated homogeneous problem{
−divA(x,Dw) = 0, x ∈ B2r(x0),

w = u, x ∈ ∂B2r(x0),
(2.1)

where w ∈ u + W 1,p
0 (B2r(x0)) is the unique solution to the Dirichlet problem (2.1) for a fixed

ball B2r ≡ B2r(x0) ⊂ Ω with suitably small radius 2r. Subsequently this homogeneous problem
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(2.1) shall be compared to a ABr(x0)(ξ)-harmonic functions{
−divABr (Dv) = 0, x ∈ Br(x0),

v = w, x ∈ ∂Br(x0).
(2.2)

Existence and uniqueness of w and v are guaranteed by standard monotonicity arguments, which

can be done also in the generalized Sobolev space W 1,p(Ω).

In this section we start recalling a few crucial comparison estimates between the original

solution of (1.5) and solutions to homogeneous boundary value problems (2.1). By a well-known

version of Gehring’s lemma applied to the function w defined as (2.1), yields the following reverse

Hölder type inequality.

Lemma 2.3 Let u ∈ W 1,p
loc (RN ) and w be as in (2.1). Then there exists a constant θ0 =

θ0(N, p, ν, L) > 1 such that for any t ∈ (0, p] the reverse Hölder type inequality(  
Bρ/2(z)

|Dw|θ0pdx
) 1

θ0p ≤ C
( 

Bρ(z)

|Dw|tdx
) 1

t

,

holds for all balls Bρ(z) ⊂ B2r(x0) for a constant C depending only on N, p, ν, L, t.

We now come to the decay estimate below the natural growth exponent.

Lemma 2.4 With p > 2, let u ∈ W 1,p
loc (RN ) be a solution of (1.5) and let w be as in (2.1). Then

there is a constant C = C(N, p, ν, L) such that( 
B2r(x0)

|Du−Dw|qdx
) 1

q ≤ C
( 

B2r(x0)

[|F |p−2F − (|F |p−1)B2r ]
p

p−1 dx
) 1

p

, (2.3)

holds with 0 < q ≤ p and 0 < 2r < R0, where R0 appears in Definition 1.1.

Proof According to (1.5) and (2.1), we know that
ˆ
B2r

⟨A(x,Du)−A(x,Dw), Dφ⟩dx =

ˆ
B2r

[|F |p−2F − (|F |p−1)B2r ]|Dφ|dx, (2.4)

for every φ ∈ W 1,p
0 (B2r). Take the testing function φ = u−w in (2.4). Thus, the fact that both

u and w are solutions, together with Hölder’s inequality, implies thatˆ
B2r

|Du−Dw|pdx ≤ C

ˆ
B2r

⟨A(x,Du)−A(x,Dw), Du−Dw⟩dx

= C

ˆ
B2r

[|F |p−2F − (|F |p−1)B2r ]|Du−Dw|dx

≤ C
(ˆ

B2r

[|F |p−2F − (|F |p−1)B2r ]
p

p−1 dx
) p−1

p
(ˆ

B2r

|Du−Dw|pdx
) 1

p

,

which leads to  
B2r

|Du−Dw|pdx ≤ C

 
B2r

[|F |p−2F − (|F |p−1)B2r
]

p
p−1 dx.

Consider 0 < q < p now. Using the previous inequality and Hölder’s inequality again we
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get that ( 
B2r

|Du−Dw|qdx
) 1

q ≤ C
( 

B2r

|Du−Dw|pdx
) 1

p

≤ C
( 

B2r

[|F |p−2F − (|F |p−1)B2r ]
p

p−1 dx
) 1

p

.

Thus we arrive at (2.3). �

Lemma 2.5 Let also w and v be as in (2.1) and (2.2), respectively. Then there is a constant

C = C(N, p, ν, L) such that( 
Br

|Dw −Dv|qdx
) 1

q ≤Cδ
1

p−1

0

 
B2r

|Du|dx+

Cδ
1

p−1

0

( 
B2r

[|F |p−2F − (|F |p−1)B2r ]
p

p−1 dx
) 1

p

(2.5)

holds with 0 < q ≤ p and 0 < 2r < R0.

Proof Indeed, according to the fact that both v and w are solutions, we get 
Br

|Dw −Dv|pdx ≤ c

 
Br

⟨ABr (Dw)−ABr (Dv), Dw −Dv⟩dx

= C

 
Br

⟨ABr (Dw)−A(x,Dw), Dw −Dv⟩dx

≤ C

 
Br

Υ(A, Br(y))|Dw|p−1|Dw −Dv|dx.

Using Hölder’s inequality with exponents

(α,
θp

p− 1
, p) := (

θp

(θ − 1)(p− 1)
,

θp

p− 1
, p),

we find 
Br

|Dw −Dv|pdx ≤ C
( 

Br

Υα(A, Br(y))dx
) 1

α
( 

Br

|Dw|θpdx
) p−1

θp
( 

Br

|Dw −Dv|pdx
) 1

p

≤ Cδ0

( 
Br

|Dw|θpdx
) p−1

θp
(  

Br

|Dw −Dv|pdx
) 1

p

,

which gives ( 
Br

|Dw −Dv|pdx
) 1

p ≤ Cδ
1

p−1

0

( 
Br

|Dw|θpdx
) 1

θp

.

On the other hand, by Lemma 2.3 with t = 1 and triangle inequality, we know that( 
Br

|Dw|θpdx
) 1

θp ≤ C

 
B2r

|Dw|dx ≤ C

 
B2r

|Du−Dw|dx+ C

 
B2r

|Du|dx. (2.6)

This fact combined with (2.3) leads to estimate (2.5) with q = p. In a similar way as the proof

of Lemma 2.4, we can prove that (2.5) holds with 0 < q < p. �
The next result encodes the Höder continuity properties of Dv in an integral way (see [6]

for a proof).
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Lemma 2.6 Let v ∈ W 1,p
0 (Br) be a weak solution to (2.2) under the assumptions (1.6) and

(1.7). Then there exist constants β ∈ (0, 1] and C ≥ 1, both depending only on N, p, υ, L, such

that the estimate 
Bϱ(x0)

|Dv − (Dv)Bϱ(z)|dx ≤ C(
ϱ

τ
)β
 
Bτ (x0)

|Dv − (Dv)Bτ (z)|dx (2.7)

holds whenever 0 < ϱ ≤ τ ≤ r < R0/2.

The next Lemma follows easily by (2.3), (2.5) and triangle inequality.

Lemma 2.7 Let u and v be as in (1.5) and (2.2) with 2r < R0, respectively. Then( 
Br(x0)

|Du−Dv|qdx
) 1

q

≤ Cδ
1

p−1

0

 
B2r(x0)

|Du|dx+ Cδ
1

p−1

0

( 
B2r(x0)

[|F |p−2F − (|F |p−1)B2r ]
p

p−1 dx
) 1

p

. (2.8)

The next result shows the regularity properties of v in decay estimates for a suitable excess

functionals of the gradient.

Lemma 2.8 Let u ∈ W 1,p
loc (RN ) be a weak solution to (1.5) and A satisfy small (δ0, R0)-BMO

condition with exponent α = θp
(θ−1)(p−1) for some θ ∈ (1, θ0], where θ0 > 1 is as in Lemma 2.3.

Then there are constants σ = σ(N, p, ν, L) ∈ (0, 1] and c = c(N, p, ν, L) ≥ 1 such that
 
Bϱ

|Du− (Du)Bϱ |dx ≤ C(
ϱ

r
)β
 
Br

|Du− (Du)Br |dx+

Cδ
1

p−1

0 (
r

ϱ
)n
[ 

B2r

|Du|dx+
( 

B2r

[|F |p−2F − (|F |p−1)B2r ]
p

p−1 dx
) 1

p
]
, (2.9)

holds with 0 < ϱ < r, where β appears in Lemma 2.6.

Proof According to Lemmas 2.6, 2.7 and triangle inequality, we have
 
Bϱ

|Du− (Du)Bϱ |dx ≤ 2

 
Bϱ

|Du− (Dv)Bϱ |dx

≤ 2

 
Bϱ

|Du−Dv|dx+ 2

 
Bϱ

|Dv − (Dv)Bϱ |dx

≤ 2(
r

ϱ
)n
 
Br

|Du−Dv|dx+ C(
ϱ

r
)β
 
Br

|Dv − (Dv)Br |dx, (2.10)

where β appears in Lemma 2.6, and we use the elementary property given by the following, for

every γ ∈ RN ,
 
Bϱ

|Du− (Du)Bϱ |dx ≤ 2

 
Bϱ

|Du− γ|dx, for every γ ∈ RN .

Recall that  
Br

|Dv − (Dv)Br |dx ≤
 
Br

|Du−Dv|dx+

 
Br

|Du− (Du)Br |dx. (2.11)
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Together with (2.8), (2.10) and (2.11), it follows 
Bϱ

|Du− (Du)Bϱ |dx

≤ C(
ϱ

r
)β
 
Br

|Du− (Du)Br |dx+ C[(
r

ϱ
)n + (

ϱ

r
)β ]

 
BR

|Du−Dv|dx

≤ C(
ϱ

r
)β
 
Br

|Du− (Du)Br |dx+

Cδ
1

p−1

0 (
r

ϱ
)n
[ 

B2r

|Du|dx+
( 

B2r

[|F |p−2F − (|F |p−1)B2r ]
p

p−1 dx
) 1

p
]
.

Therefore, (2.9) holds as desired. �

3. Proof of Theorem 1.2

In this section, We are now ready to prove the main theorem of this paper by preliminary

lemmas obtained in Section 2.

Proof of Theorem 1.2 Let 0 < ε < 1 which is to be chosen. According to Lemma 2.8, we

have  
Bεr

|Du− (Du)Bεr |dx

≤ Cεβ
 
Br

|Du− (Du)Br |dx+ Cδ
1

p−1

0 ε−n

 
B2r

|Du|dx+(  
B2r

[|F |p−2F − (|F |p−1)B2r ]
p

p−1 dx
) 1

p

≤ (Cεβ + Cδ
1

p−1

0 ε−n)

 
Br

|Du− (Du)Br |dx+

Cδ
1

p−1

0 ε−n
( 

B2r

[|F |p−2F − (|F |p−1)B2r ]
p

p−1 dx
) 1

p

. (3.1)

Choose ε such that Cεβ < 1/4 and then let δ0 be small enough so that Cδ
1

p−1

0 ε−n < 1/4. With

this choice of ε and δ0, we take the supremum over r > 0 in (3.1) to find (1.10) holds. �
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