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Abstract In this paper, we consider the density-dependent magnetohydrodynamic equations
with vacuum, and provide a regularity criterion involving the velocity and magnetic fields
in Besov space of negative order, which improves [Jishan FAN, Fucai LI, G. NAKAMURA,
Zhong TAN, Regularity criteria for the three-dimensional magnetohydrodynamic equations.
J. Differential Equations, 2014, 256(8): 2858-2875] in some sense. The method is to establish
a new bilinear estimate.
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1. Introduction

This paper studies the following density-dependent magnetohydrodynamic (MHD) equa-

tions

Op + div(pu) =0,

Ou(pu) + div(pu © w) — A+ V(x + JJb%) = (b- V)b,
Ob+ (u-V)b— (b V)u = Ab,

divu = divb = 0,

(1.1)

in {(t,x); te (0,00),z € R3} with prescribed initial data (p, u, b)|t=o = (po, w0, bo). Here, p is
the density of the fluid, u = (u1,u2, ug) is the velocity field of the charged fluid, b = (b1, be, b3) is
the magnetic field induced by the motion of the charged fluid, and 7 is the pressure of the fluid.

The system (1.1) has attracted many authors’ attention [1-8]. In case the initial density
has a positive lower bound, the existence of a weak solution with finite energy in the whole space
R3 and in the torus were established in [6] and [4], respectively; while the local existence of a
unique strong solution and small date global existence were obtained in [1]. However, whether

or not this local unique strong solution can exist globally is an outstanding open problem. In

Received October 30, 2015; Accepted July 26, 2016

Supported by the Natural Science Foundation of Jiangxi Province (Grant No.20151BAB201010) and the National
Natural Science Foundation of China (Grant Nos. 11501125; 11361004).

* Corresponding author

E-mail address: zhangzujin361@163.com (Zujin ZHANG)



Density-dependent MHD equations with velocity and magnetic fields in Besov spaces 683

[8], a regularity criterion
_2 < 3
u e LT7(0,T;X,.(R%)), 0<r<1 (1.2)

was established, that is, if (1.2) holds, then this strong solution can be extended smoothly beyond
T. Here, X,(R®) = M(Bj(R%),L*(R?)) is the multiplier space, whose elements f defines a
bounded linear mapping of Bg’l(R?’) (the Besov space, see Section 2 for details) into L?(R?) by
pointwise multiplication, and thus the norm is given by the operator norm,
Ifllx, = sup | fgllg-
Hgll )'3571 <1

On the other hand, when the initial density contains vacuum, the local existence of a strong

unique solution was established in [7] and [3]. Precisely, they show that if the initial data pg, uo

and by satisfy
0<po<M<oo, Vpg€ L>’NLIR?), 3<q<6;

(1.3)
ug, by € H*(R?), divug = divbg = 0,
and the following compatibility condition
1
—Aug + V(mo + §|b0|2) — (b - V)b = \/pog, for some g € L*(R?), (1.4)

then there exists a positive T* € (0, 0] and a unique strong solution p,u, b to the system (1.1)

verifying the following properties
0<p<M, Vp, dpeC(0,T];L* N LIR?));
u, b e C([0,T*]; H*(R?)) N L?(0, T*; W?5(R?));
Vporu € L*(0,T* L*(R?)), 9w € L*(0,T*; H'(R?));
Oib € L>=(0,T*; L*(R®)) N L*(0, T*; H*(R?)).

(1.5)

In [5, Theorem 1.1], the regularity criterion (1.2) was extended to the system (1.1) with vacuum.
And the motivation to the present paper is to improve the result in [6] from the multiplier spaces

X(R?) to be in the Besov spaces B3 (R?) of negative order. Concisely, we obtain

Theorem 1.1 Assume the initial data pg, wg, by satisfy (1.3) and the compatibility condition
(1.4). Let p, u, b be the corresponding strong solution to the system (1.1) with the properties
stated in (1.5). If

u, b € LT (0,T; B o (R?)), (1.6)

then the solution can be extended smoothly beyond T'.
Remark 1.2 Observe that [9, Eq.(1.9)]

X(R®) = M (B3, (R, L*(R%)) € B (R?)),
we indeed improve Theorem 1.1 of [5] in some sense.

Remark 1.3 For the incompressible MHD system, Chen-Miao-Zhang [10] already established

the regularity criterion involving the velocity field only. To see this, we only need to observe the
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following fact from [11]:
$s<0, pg>1= B;yq C B, ,

Before proving Theorem 1.1 in Section 3, we shall first introduce the definition of Besov
spaces and recall a bilinear estimates in Section 2. In the rest of the paper, we shall denote by
C a generic constant which may change from line to line. For simplicity of presentation, we shall

also omit the spatial domain R? in the integrals and in the norm of a function, that is,

/fdw:iésf¢a 112 = 171 sy

and etc.

2. Preliminaries

We first introduce the Littlewood-Paley decomposition. Let S(R?) be the Schwartz class of
rapidly decreasing functions. For f € S(R?), its Fourier transform Ff = f is defined as

fe = [ f@e=<ar

Let us choose a non-negative radial function ¢ € S(R?) such that

R . 1, if g <1,

0< <1, =

<) <1, @8 {Q el > 2,
and let

D(x) = p(x) —27%0(2/2), pj(x) = 2% p(27), Yy(x) =299 (2x), jeL.
For j € Z, the Littlewood-Paley projection operators S; and A; are, respectively, defined by
Sif=wj*xf, D;f=vjx[.
Observe that A; = S; — S;_1. Also, it is easy to check that if f € L?(R?), then
S;f =0, asj = —o0; S;f—=f, asj— oo,

in the L? sense. By telescoping the series, we have the following Littlewood-Paley decomposition

f= Z Ajfv (2'1)

j=—oc0

for all f € L?(R?), where the summation is in the L? sense. Notice that

j+2 j+2
Ajf: Z AlAjf: Z d)l*wj*f,
l=j—2 l=5j—2

we may use Young inequality to deduce that
(1_1
185£ll0 < 229G |2 £, (2:2)

for 1 < p < ¢q < o0, with C being a constant independent of f and j.
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Let s € R; p,q € [1,00]. The homogeneous Besov spaces B‘;)q(ﬂ@) and the homogeneous
Triebel-Lizorkin spaces F;’Q(R3) are defined by the full dyadic decomposition as

By, ={f € Z'®); Ifll5,, = IH2°I12 fllze}52 _cllen < 00},

By = {7 € 2@ 1flp, = 11218, flley2wllir < o0},
where Z’(IR?) is the dual space of

Z(R®) = {f € S(R®); D*f(0) =0, V a € N°},
and for series {ay}, we denote

1
Qg lag|f)e, 1< q< oo,
{ax . = k
supy, |ag|, q = oo.

It is well-known that (see [12] for example) for all s € R,
H*(R®) = B3 5(R?) = F5,(R%), B3 o(R?) = F5, o (R?), (2.3)

and the gradient operator V maps B;q(R?’) to B;fql; moreover,

Cillflls, <NV Fllggr < Collflip, (2.4)

for some positive constants Cy, Cs.

Also, Kozono-Shimada [13] proved the following bilinear estimates

1f - gll; . < (IS pen): (25)

izt 19l e, 1l pzs, N9l

P1.9 pQ,00 1,00
where , X X 1 1
5>0, >0, B3>0, —= —+ — = — 4+ —.

b D1 b2 1 T2

With (2.5), the following regularity criterion for the 3D incompressible Navier-Stokes equations
we LT (0,T; By ), 0<r<1

was proved in [13]. The main obstacle in utilizing (11) to system (1.1) is the strong coupling
of the velocity field and the magnetic field, and this leads us to derive a new bilinear estimate,
which corresponds to (2.5) with s = 0. Before stating the precise form, let us recall a refined
Sobolev embedding theorem [14, Theorem 2.42]

1—2 2
£l < CUALE_IA1E, 26)
with r >0, 8 =7(§ - 1), 2 <p < 0.

Now, our new bilinear estimate is as follows.

Lemma 2.1 Let0<r <1, f € Bgofoo NH?, g€ BO_OT’OQ NH'NH?. Then there exists a constant
C = C(r) such that

17Vl < CUE Dl g=_ IVgllz=" (V2 £, V29)| . - (2.7)

Proof By Hélder inequality, (2.6), and interpolation inequality,

2

2 _r_ _r_
179902 < 1l 2t 1961l < CUAIGEIAIET - IVal 55 IVl Ty
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<C‘Hfll’“ V2 f O

’*2 lg

22 19l (9%l

3. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1, which relies on establishing the a priori estimates
(1.5) under the condition (1.6).

First, invoking the divergence-free condition (1.1)3, we may rewrite (1.1); as
pt+ (u-V)p=0.

The maximum principle then implies that

0<p<M<oo. (3.1)
Next, taking the inner product of (1.1)s with w, (1.1)3 with b in L?(R3) respectively, we
obtain 1 4a
5 p|u\2dx+/|vu|2dz:/[(b-V)b} udz, (3.2)
as well as
3 dt/|b|2dx+/|Vb|2dx—/[( -V)u] - bdz. (3.3)

Summing up (3.2) and (3.3), and noticing that
/[(b-V)b] ~udx—|—/[(b-V)u]~bdx: /(b~V)(b-u)da:
:/(V-b)-(b-u)dxzo,

we get

1

3 /p|u|2 + [b)? d + / |Vu|? + |Vb|? dz = 0.
Integrating in time over (0,7") then yields

1 T
sup 5/p\u|2+|b|2dx+/ /|Vu|2—|—|Vb|2 dzdt < C. (3.4)
0

0<t<

Taking the inner product of (1.1)y with d;u in L?(R?), and integrating by parts, we obtain

3 dt/|Vu\2dx+/ |0yu|? d

= /[(b -V)b] - Qpudr — /[(pu -V)u] - dudx
Z /b 0;b;0pu; dx — /[(pu V)u] - dudz

,Jl

= Z /b b;0:0; uldxf/[(pu V)u| - Oyudx

'le

:_Z dt/bb@uzdsﬁ—Z/@tbb@uldzw—Z/b@tbauzdx

7,7=1 3,7=1 7,7=1
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/ (pu - V)] - B da.

Thus, by Holder inequality,

5 dt/|Vu|2dx+/p|8tu| dx

d
< ¢ [ (b®b) s Vude +2(|8:bl| 2 [[1b] - [Vull 12 + CllVeOeull g2 [[[u] - [Vull .

d 1 1
< [(®@b): Vudr+ 1 [10ib]7 + 5 | VAdeul 72 + C [[[(w, b)) - [V(u. b)||7. . (3.5)

Taking the inner product of (1.1)3 with 9;b in L?(R?), we obtain

3 dt/|Vb\2dx+/\6tb|2dac_—/[(u~V)b—(b-V)u] b da

< I, b)[ - [V (u, b)[[[ 2 [ 0:B]] 2 <

1
210172 + O ll(w, )] - [V(u,b)ll[72 . (3.6)

Gathering (3.5) and (3.6) together, and utilizing Lemma 2.1, (2.4) and interpolation in-
equality, we get

d
= / IV (u,b) 2 da + / plOvul?® + |0,b]? da
< C||(u,b)| - |V (u,b)|[32
< C|(u, b= IV (a, b>||2“ A, b)|1 2
< e|Alu, b>||L2 +Cl(u, b)] : 1V (u, B)|2 - (3.7)

To close the estimates, we need to get the bounds of ||Aul|,. and |Abl|,;.. By (1.1)1, we

may rewrite (1.1)9 as
1
—Au+V(7r+§|b|2) =(b-V)b— (pu-V)u — pdu, (3.8)
and invoke the H2-theory of the Stokes system [15] to deduce
[Aul[ g < OBl - VOl 2 + Cllful - [Vl 2 + ClVpdrul 2 - (3.9)
On the other hand, by (1.1)3,
[Ab] 2 < [10:b] 2 + [[[e] - [VBI]| L2 4 [[[b] - [Vl ]| 2 - (3.10)
Summing up (3.9) and (3.10), and estimating as in (3.7), we find
[A(w, b)[| > < CllVpoul . + Cll0eb] L2 + Cll[(w, b)] - [V (u, b)][] 2
1 e
< Cllvpoeull 2 + CllO:bll 2 + 5 1A(w,B)l 2 + Cll(w, bl 57 [V (w, )2
Consequently,
14w, b)] 2 < CllVpdrul 2 + CllO:b] L2 + Cl(u, bl ’l IV (w,b)] 2 - (3.11)

Putting (3.11) into (3.7), and taking ¢ sufficiently small, we obtain

/|V U b)|2dm+/ |0sul? + |0:b]? dz < C'||(u, b)| o ||V(u,b)||2LQ.

B_
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Applying Gronwall inequality then yields

HVUHL‘X’(O,T;LQ) < C’ H\/ﬁatuHL2(O,T;L2) < C’

(3.12)
16l e 0.1,y < C5 N10bll 120,77,12) < C.
With these uniform bounds at hand, it infers from (24) that
||vu||L2(0,T;H1 <C, Hb”Lz(o,T;HZ’) <C. (3.13)

Up to now, we may just follow [5] to complete the proof of Theorem 1.1. O
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