Density-Dependent Magnetohydrodynamic Equations with Velocity and Magnetic Fields in Besov Spaces of Negative Order

Zujin ZHANG*, Dingxing ZHONG, Shaohui GUI
School of Mathematics and Computer Sciences, Gannan Normal University, Jiangxi 341000, P. R. China

Abstract

In this paper, we consider the density-dependent magnetohydrodynamic equations with vacuum, and provide a regularity criterion involving the velocity and magnetic fields in Besov space of negative order, which improves [Jishan FAN, Fucai LI, G. NAKAMURA, Zhong TAN, Regularity criteria for the three-dimensional magnetohydrodynamic equations. J. Differential Equations, 2014, 256(8): 2858-2875] in some sense. The method is to establish a new bilinear estimate.

Keywords density-dependent MHD equations; regularity criterion; Besov spaces
MR(2010) Subject Classification 35Q35; 76D03; 76N10

1. Introduction

This paper studies the following density-dependent magnetohydrodynamic (MHD) equations

$$
\begin{align*}
& \partial_{t} \rho+\operatorname{div}(\rho \boldsymbol{u})=0, \\
& \partial_{t}(\rho \boldsymbol{u})+\operatorname{div}(\rho \boldsymbol{u} \otimes \boldsymbol{u})-\Delta \boldsymbol{u}+\nabla\left(\pi+\frac{1}{2}|\boldsymbol{b}|^{2}\right)=(\boldsymbol{b} \cdot \nabla) \boldsymbol{b}, \tag{1.1}\\
& \partial_{t} \boldsymbol{b}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{b}-(\boldsymbol{b} \cdot \nabla) \boldsymbol{u}=\triangle \boldsymbol{b}, \\
& \operatorname{div} \boldsymbol{u}=\operatorname{div} \boldsymbol{b}=0,
\end{align*}
$$

in $\left\{(t, x) ; t \in(0, \infty), x \in \mathbb{R}^{3}\right\}$ with prescribed initial data $\left.(\rho, \boldsymbol{u}, \boldsymbol{b})\right|_{t=0}=\left(\rho_{0}, \boldsymbol{u}_{0}, \boldsymbol{b}_{0}\right)$. Here, ρ is the density of the fluid, $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right)$ is the velocity field of the charged fluid, $\boldsymbol{b}=\left(b_{1}, b_{2}, b_{3}\right)$ is the magnetic field induced by the motion of the charged fluid, and π is the pressure of the fluid.

The system (1.1) has attracted many authors' attention [1-8]. In case the initial density has a positive lower bound, the existence of a weak solution with finite energy in the whole space \mathbb{R}^{3} and in the torus were established in [6] and [4], respectively; while the local existence of a unique strong solution and small date global existence were obtained in [1]. However, whether or not this local unique strong solution can exist globally is an outstanding open problem. In

[^0][8], a regularity criterion
\[

$$
\begin{equation*}
\boldsymbol{u} \in L^{\frac{2}{1-r}}\left(0, T ; \dot{\mathbb{X}}_{r}\left(\mathbb{R}^{3}\right)\right), \quad 0<r<1 \tag{1.2}
\end{equation*}
$$

\]

was established, that is, if (1.2) holds, then this strong solution can be extended smoothly beyond T. Here, $\dot{\mathbb{X}}_{r}\left(\mathbb{R}^{3}\right)=M\left(\dot{B}_{2,1}^{r}\left(\mathbb{R}^{3}\right), L^{2}\left(\mathbb{R}^{3}\right)\right)$ is the multiplier space, whose elements f defines a bounded linear mapping of $\dot{B}_{2,1}^{r}\left(\mathbb{R}^{3}\right)$ (the Besov space, see Section 2 for details) into $L^{2}\left(\mathbb{R}^{3}\right)$ by pointwise multiplication, and thus the norm is given by the operator norm,

$$
\|f\|_{\dot{X}_{r}}=\sup _{\|g\|_{\dot{B}_{2,1}} \leq 1}\|f g\|_{L^{2}}
$$

On the other hand, when the initial density contains vacuum, the local existence of a strong unique solution was established in $[7]$ and [3]. Precisely, they show that if the initial data $\rho_{0}, \boldsymbol{u}_{0}$ and \boldsymbol{b}_{0} satisfy

$$
\begin{align*}
& 0 \leq \rho_{0} \leq M<\infty, \quad \nabla \rho_{0} \in L^{2} \cap L^{q}\left(\mathbb{R}^{3}\right), \quad 3<q \leq 6 ; \\
& \boldsymbol{u}_{0}, \boldsymbol{b}_{0} \in H^{2}\left(\mathbb{R}^{3}\right), \quad \operatorname{div} \boldsymbol{u}_{0}=\operatorname{div} \boldsymbol{b}_{0}=0, \tag{1.3}
\end{align*}
$$

and the following compatibility condition

$$
\begin{equation*}
-\triangle \boldsymbol{u}_{0}+\nabla\left(\pi_{0}+\frac{1}{2}\left|\boldsymbol{b}_{0}\right|^{2}\right)-\left(\boldsymbol{b}_{0} \cdot \nabla\right) \boldsymbol{b}_{0}=\sqrt{\rho_{0}} \boldsymbol{g}, \text { for some } \boldsymbol{g} \in L^{2}\left(\mathbb{R}^{3}\right) \tag{1.4}
\end{equation*}
$$

then there exists a positive $T^{*} \in(0, \infty]$ and a unique strong solution $\rho, \boldsymbol{u}, \boldsymbol{b}$ to the system (1.1) verifying the following properties

$$
\begin{align*}
& 0 \leq \rho \leq M, \quad \nabla \rho, \partial_{t} \rho \in C\left(\left[0, T^{*}\right] ; L^{2} \cap L^{q}\left(\mathbb{R}^{3}\right)\right) \\
& \boldsymbol{u}, \boldsymbol{b} \in C\left(\left[0, T^{*}\right] ; H^{2}\left(\mathbb{R}^{3}\right)\right) \cap L^{2}\left(0, T^{*} ; W^{2,6}\left(\mathbb{R}^{3}\right)\right) \\
& \sqrt{\rho} \partial_{t} \boldsymbol{u} \in L^{\infty}\left(0, T^{*} ; L^{2}\left(\mathbb{R}^{3}\right)\right), \quad \partial_{t} \boldsymbol{u} \in L^{2}\left(0, T^{*} ; H^{1}\left(\mathbb{R}^{3}\right)\right) ; \tag{1.5}\\
& \partial_{t} \boldsymbol{b} \in L^{\infty}\left(0, T^{*} ; L^{2}\left(\mathbb{R}^{3}\right)\right) \cap L^{2}\left(0, T^{*} ; H^{1}\left(\mathbb{R}^{3}\right)\right) .
\end{align*}
$$

In [5, Theorem 1.1], the regularity criterion (1.2) was extended to the system (1.1) with vacuum. And the motivation to the present paper is to improve the result in $[6]$ from the multiplier spaces $\dot{\mathbb{X}}\left(\mathbb{R}^{3}\right)$ to be in the Besov spaces $\dot{B}_{\infty, \infty}^{-r}\left(\mathbb{R}^{3}\right)$ of negative order. Concisely, we obtain

Theorem 1.1 Assume the initial data $\rho_{0}, \boldsymbol{u}_{0}, \boldsymbol{b}_{0}$ satisfy (1.3) and the compatibility condition (1.4). Let $\rho, \boldsymbol{u}, \boldsymbol{b}$ be the corresponding strong solution to the system (1.1) with the properties stated in (1.5). If

$$
\begin{equation*}
\boldsymbol{u}, \boldsymbol{b} \in L^{\frac{2}{1-r}}\left(0, T ; \dot{B}_{\infty, \infty}^{-r}\left(\mathbb{R}^{3}\right)\right), \tag{1.6}
\end{equation*}
$$

then the solution can be extended smoothly beyond T.
Remark 1.2 Observe that [9, Eq.(1.9)]

$$
\dot{\mathbb{X}}\left(\mathbb{R}^{3}\right)=M\left(\dot{B}_{2,1}^{r}\left(\mathbb{R}^{3}, L^{2}\left(\mathbb{R}^{3}\right)\right) \subset \dot{B}_{\infty, \infty}^{-r}\left(\mathbb{R}^{3}\right)\right),
$$

we indeed improve Theorem 1.1 of [5] in some sense.
Remark 1.3 For the incompressible MHD system, Chen-Miao-Zhang [10] already established the regularity criterion involving the velocity field only. To see this, we only need to observe the
following fact from [11]:

$$
s<0, p, q \geq 1 \Rightarrow \dot{B}_{p, q}^{s} \subset B_{p, q}^{s} .
$$

Before proving Theorem 1.1 in Section 3, we shall first introduce the definition of Besov spaces and recall a bilinear estimates in Section 2. In the rest of the paper, we shall denote by C a generic constant which may change from line to line. For simplicity of presentation, we shall also omit the spatial domain \mathbb{R}^{3} in the integrals and in the norm of a function, that is,

$$
\int f \mathrm{~d} x=\int_{\mathbb{R}^{3}} f \mathrm{~d} x, \quad\|f\|_{L^{2}}=\|f\|_{L^{2}\left(\mathbb{R}^{3}\right)}
$$

and etc.

2. Preliminaries

We first introduce the Littlewood-Paley decomposition. Let $\mathcal{S}\left(\mathbb{R}^{3}\right)$ be the Schwartz class of rapidly decreasing functions. For $f \in \mathcal{S}\left(\mathbb{R}^{3}\right)$, its Fourier transform $\mathcal{F} f=\hat{f}$ is defined as

$$
\hat{f}(\xi)=\int_{\mathbb{R}^{3}} f(x) e^{-i x \cdot \xi} \mathrm{~d} x
$$

Let us choose a non-negative radial function $\varphi \in \mathcal{S}\left(\mathbb{R}^{3}\right)$ such that

$$
0 \leq \hat{\varphi}(\xi) \leq 1, \quad \hat{\varphi}(\xi)= \begin{cases}1, & \text { if }|\xi| \leq 1 \\ 0, & \text { if }|\xi| \geq 2\end{cases}
$$

and let

$$
\psi(x)=\varphi(x)-2^{-3} \varphi(x / 2), \varphi_{j}(x)=2^{3 j} \varphi\left(2^{j} x\right), \psi_{j}(x)=2^{3 j} \psi\left(2^{j} x\right), \quad j \in \mathbb{Z}
$$

For $j \in \mathbb{Z}$, the Littlewood-Paley projection operators S_{j} and \triangle_{j} are, respectively, defined by

$$
S_{j} f=\varphi_{j} * f, \quad \triangle_{j} f=\psi_{j} * f
$$

Observe that $\triangle_{j}=S_{j}-S_{j-1}$. Also, it is easy to check that if $f \in L^{2}\left(\mathbb{R}^{3}\right)$, then

$$
S_{j} f \rightarrow 0, \text { as } j \rightarrow-\infty ; \quad S_{j} f \rightarrow f, \text { as } j \rightarrow \infty,
$$

in the L^{2} sense. By telescoping the series, we have the following Littlewood-Paley decomposition

$$
\begin{equation*}
f=\sum_{j=-\infty}^{\infty} \triangle_{j} f \tag{2.1}
\end{equation*}
$$

for all $f \in L^{2}\left(\mathbb{R}^{3}\right)$, where the summation is in the L^{2} sense. Notice that

$$
\triangle_{j} f=\sum_{l=j-2}^{j+2} \triangle_{l} \triangle_{j} f=\sum_{l=j-2}^{j+2} \psi_{l} * \psi_{j} * f
$$

we may use Young inequality to deduce that

$$
\begin{equation*}
\left\|\triangle_{j} f\right\|_{L^{q}} \leq C 2^{3 j\left(\frac{1}{p}-\frac{1}{q}\right)}\left\|\triangle_{j} f\right\|_{L^{p}} \tag{2.2}
\end{equation*}
$$

for $1 \leq p \leq q \leq \infty$, with C being a constant independent of f and j.

Let $s \in \mathbb{R} ; p, q \in[1, \infty]$. The homogeneous Besov spaces $\dot{B}_{p, q}^{s}\left(\mathbb{R}^{3}\right)$ and the homogeneous Triebel-Lizorkin spaces $\dot{F}_{p, q}^{s}\left(\mathbb{R}^{3}\right)$ are defined by the full dyadic decomposition as

$$
\begin{aligned}
\dot{B}_{p, q}^{s} & =\left\{f \in \mathcal{Z}^{\prime}\left(\mathbb{R}^{3}\right) ;\|f\|_{\dot{B}_{p, q}^{s}}=\left\|\left\{2^{j s}\left\|\triangle_{j} f\right\|_{L^{p}}\right\}_{j=-\infty}^{\infty}\right\|_{\ell^{q}}<\infty\right\}, \\
\dot{F}_{p, q}^{s} & =\left\{f \in \mathcal{Z}^{\prime}\left(\mathbb{R}^{3}\right) ;\|f\|_{\dot{F}_{p, q}^{s}}=\left\|\left\{2^{j s}\left\|\triangle_{j} f\right\|_{\ell^{q}}\right\}_{j=-\infty}^{\infty}\right\|_{L^{p}}<\infty\right\},
\end{aligned}
$$

where $\mathcal{Z}^{\prime}\left(\mathbb{R}^{3}\right)$ is the dual space of

$$
\mathcal{Z}\left(\mathbb{R}^{3}\right)=\left\{f \in \mathcal{S}\left(\mathbb{R}^{3}\right) ; D^{\alpha} \hat{f}(0)=0, \forall \alpha \in \mathbb{N}^{3}\right\}
$$

and for series $\left\{a_{k}\right\}$, we denote

$$
\left\|\left\{a_{k}\right\}\right\|_{\ell^{q}}= \begin{cases}\left(\sum_{k}\left|a_{k}\right|^{q}\right)^{\frac{1}{q}}, & 1 \leq q<\infty \\ \sup _{k}\left|a_{k}\right|, & q=\infty\end{cases}
$$

It is well-known that (see [12] for example) for all $s \in \mathbb{R}$,

$$
\begin{equation*}
\dot{H}^{s}\left(\mathbb{R}^{3}\right)=\dot{B}_{2,2}^{s}\left(\mathbb{R}^{3}\right)=\dot{F}_{2,2}^{s}\left(\mathbb{R}^{3}\right), \quad \dot{B}_{\infty, \infty}^{s}\left(\mathbb{R}^{3}\right)=\dot{F}_{\infty, \infty}^{s}\left(\mathbb{R}^{3}\right), \tag{2.3}
\end{equation*}
$$

and the gradient operator ∇ maps $\dot{B}_{p, q}^{s}\left(\mathbb{R}^{3}\right)$ to $\dot{B}_{p, q}^{s-1}$; moreover,

$$
\begin{equation*}
C_{1}\|f\|_{\dot{B}_{p, q}^{s}} \leq\|\nabla f\|_{\dot{B}_{p, q}^{s-1}} \leq C_{2}\|f\|_{\dot{B}_{p, q}^{s}} \tag{2.4}
\end{equation*}
$$

for some positive constants C_{1}, C_{2}.
Also, Kozono-Shimada [13] proved the following bilinear estimates

$$
\begin{equation*}
\|f \cdot g\|_{\dot{F}_{p, q}^{s}} \leq C\left(\|f\|_{{\dot{F_{p}}, q}_{s+\alpha}^{s+\alpha}}\|g\|_{\dot{F}_{p_{2}, \infty}^{-\alpha}}+\|f\|_{{\dot{F_{r}, \infty}}_{-\beta}^{-\beta}}\|g\|_{\dot{F}_{r_{2}, q}^{s+\beta}}\right), \tag{2.5}
\end{equation*}
$$

where

$$
s>0, \alpha>0, \beta>0, \frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{r_{1}}+\frac{1}{r_{2}} .
$$

With (2.5), the following regularity criterion for the 3D incompressible Navier-Stokes equations

$$
\boldsymbol{u} \in L^{\frac{2}{1-r}}\left(0, T ; \dot{B}_{\infty, \infty}^{-r}\right), \quad 0<r<1
$$

was proved in [13]. The main obstacle in utilizing (11) to system (1.1) is the strong coupling of the velocity field and the magnetic field, and this leads us to derive a new bilinear estimate, which corresponds to (2.5) with $s=0$. Before stating the precise form, let us recall a refined Sobolev embedding theorem [14, Theorem 2.42]

$$
\begin{equation*}
\|f\|_{L^{p}} \leq C\|f\|_{\dot{B}_{\infty}, x_{\infty}}^{1-\frac{2}{p}}\|f\|_{\dot{H}^{\beta}}^{\frac{2}{p}}, \tag{2.6}
\end{equation*}
$$

with $r>0, \beta=r\left(\frac{p}{2}-1\right), 2<p<\infty$.
Now, our new bilinear estimate is as follows.
Lemma 2.1 Let $0<r \leq 1, f \in \dot{B}_{\infty, \infty}^{-r} \cap \dot{H}^{2}, g \in \dot{B}_{\infty, \infty}^{-r} \cap \dot{H}^{1} \cap \dot{H}^{2}$. Then there exists a constant $C=C(r)$ such that

$$
\begin{equation*}
\|f \nabla g\|_{L^{2}} \leq C\|(f, g)\|_{\dot{B}_{\infty}^{-r}, \infty}^{-r}\|\nabla g\|_{L^{2}}^{1-r}\left\|\left(\nabla^{2} f, \nabla^{2} g\right)\right\|_{L^{2}}^{r} \tag{2.7}
\end{equation*}
$$

Proof By Hölder inequality, (2.6), and interpolation inequality,

$$
\|f \nabla g\|_{L^{2}} \leq\|f\|_{L^{2+}}\|\nabla g\|_{L^{r+2}} \leq C\|f\|_{\dot{B}_{\infty}^{-r}, \infty}^{\frac{2}{r+2}}\|f\|_{\dot{H}^{2}}^{\frac{r}{r+2}} \cdot\|\nabla g\|_{\dot{B}_{\infty}^{-1}, \infty}^{\frac{r}{r+2}}\|\nabla g\|_{\dot{H}}^{\frac{2}{r+2}} \frac{r(r+1)}{2}
$$

$$
\leq C\|f\|_{\dot{B}_{\infty}^{-r}, \infty}^{\frac{2}{r+2}}\left\|\nabla^{2} f\right\|_{L^{2}}^{\frac{r}{r+2}}\|g\|_{\dot{B}_{\infty}^{-r}, \infty}^{\frac{r}{r+2}}\|\nabla g\|_{L^{2}}^{1-r}\left\|\nabla^{2} g\right\|_{L^{2}}^{\frac{r(r+1)}{r+2}} .
$$

3. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1, which relies on establishing the a priori estimates (1.5) under the condition (1.6).

First, invoking the divergence-free condition $(1.1)_{3}$, we may rewrite $(1.1)_{1}$ as

$$
\rho_{t}+(\boldsymbol{u} \cdot \nabla) \rho=0
$$

The maximum principle then implies that

$$
\begin{equation*}
0 \leq \rho \leq M<\infty . \tag{3.1}
\end{equation*}
$$

Next, taking the inner product of $(1.1)_{2}$ with $\boldsymbol{u},(1.1)_{3}$ with \boldsymbol{b} in $L^{2}\left(\mathbb{R}^{3}\right)$ respectively, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int \rho|\boldsymbol{u}|^{2} \mathrm{~d} x+\int|\nabla \boldsymbol{u}|^{2} \mathrm{~d} x=\int[(\boldsymbol{b} \cdot \nabla) \boldsymbol{b}] \cdot \boldsymbol{u} \mathrm{d} x \tag{3.2}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int|\boldsymbol{b}|^{2} \mathrm{~d} x+\int|\nabla \boldsymbol{b}|^{2} \mathrm{~d} x=\int[(\boldsymbol{b} \cdot \nabla) \boldsymbol{u}] \cdot \boldsymbol{b} \mathrm{d} x . \tag{3.3}
\end{equation*}
$$

Summing up (3.2) and (3.3), and noticing that

$$
\begin{aligned}
& \int[(\boldsymbol{b} \cdot \nabla) \boldsymbol{b}] \cdot \boldsymbol{u} \mathrm{d} x+\int[(\boldsymbol{b} \cdot \nabla) \boldsymbol{u}] \cdot \boldsymbol{b} \mathrm{d} x=\int(\boldsymbol{b} \cdot \nabla)(\boldsymbol{b} \cdot \boldsymbol{u}) \mathrm{d} x \\
& =\int(\nabla \cdot \boldsymbol{b}) \cdot(\boldsymbol{b} \cdot \boldsymbol{u}) \mathrm{d} x=0
\end{aligned}
$$

we get

$$
\frac{1}{2} \int \rho|\boldsymbol{u}|^{2}+|\boldsymbol{b}|^{2} \mathrm{~d} x+\int|\nabla \boldsymbol{u}|^{2}+|\nabla \boldsymbol{b}|^{2} \mathrm{~d} x=0
$$

Integrating in time over $(0, T)$ then yields

$$
\begin{equation*}
\sup _{0 \leq t \leq T} \frac{1}{2} \int \rho|\boldsymbol{u}|^{2}+|\boldsymbol{b}|^{2} \mathrm{~d} x+\int_{0}^{T} \int|\nabla \boldsymbol{u}|^{2}+|\nabla \boldsymbol{b}|^{2} \mathrm{~d} x \mathrm{~d} t \leq C . \tag{3.4}
\end{equation*}
$$

Taking the inner product of $(1.1)_{2}$ with $\partial_{t} \boldsymbol{u}$ in $L^{2}\left(\mathbb{R}^{3}\right)$, and integrating by parts, we obtain

$$
\begin{aligned}
\frac{1}{2} & \frac{\mathrm{~d}}{\mathrm{~d} t} \int|\nabla \boldsymbol{u}|^{2} \mathrm{~d} x+\int \rho\left|\partial_{t} \boldsymbol{u}\right|^{2} \mathrm{~d} x \\
& =\int[(\boldsymbol{b} \cdot \nabla) \boldsymbol{b}] \cdot \partial_{t} \boldsymbol{u} \mathrm{~d} x-\int[(\rho \boldsymbol{u} \cdot \nabla) \boldsymbol{u}] \cdot \partial_{t} \boldsymbol{u} \mathrm{~d} x \\
& =\sum_{i, j=1}^{3} \int b_{j} \partial_{j} b_{i} \partial_{t} u_{i} \mathrm{~d} x-\int[(\rho \boldsymbol{u} \cdot \nabla) \boldsymbol{u}] \cdot \partial_{t} \boldsymbol{u} \mathrm{~d} x \\
& =-\sum_{i, j=1}^{3} \int b_{j} b_{i} \partial_{t} \partial_{j} u_{i} \mathrm{~d} x-\int[(\rho \boldsymbol{u} \cdot \nabla) \boldsymbol{u}] \cdot \partial_{t} \boldsymbol{u} \mathrm{~d} x \\
& =-\sum_{i, j=1}^{3} \frac{\mathrm{~d}}{\mathrm{~d} t} \int b_{j} b_{i} \partial_{j} u_{i} \mathrm{~d} x+\sum_{i, j=1}^{3} \int \partial_{t} b_{j} b_{i} \partial_{j} u_{i} \mathrm{~d} x+\sum_{i, j=1}^{3} \int b_{j} \partial_{t} b_{i} \partial_{j} u_{i} \mathrm{~d} x-
\end{aligned}
$$

$$
\int[(\rho \boldsymbol{u} \cdot \nabla) \boldsymbol{u}] \cdot \partial_{t} \boldsymbol{u} \mathrm{~d} x
$$

Thus, by Hölder inequality,

$$
\begin{align*}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int|\nabla \boldsymbol{u}|^{2} \mathrm{~d} x+\int \rho\left|\partial_{t} \boldsymbol{u}\right|^{2} \mathrm{~d} x \\
& \leq \frac{\mathrm{d}}{\mathrm{~d} t} \int(\boldsymbol{b} \otimes \boldsymbol{b}): \nabla \boldsymbol{u} \mathrm{d} x+2\left\|\partial_{t} \boldsymbol{b}\right\|_{L^{2}}\||\boldsymbol{b}| \cdot|\nabla \boldsymbol{u}|\|_{L^{2}}+C\left\|\sqrt{\rho} \partial_{t} \boldsymbol{u}\right\|_{L^{2}}\||\boldsymbol{u}| \cdot|\nabla \boldsymbol{u}|\|_{L^{2}} \\
& \quad \leq \frac{\mathrm{d}}{\mathrm{~d} t} \int(\boldsymbol{b} \otimes \boldsymbol{b}): \nabla \boldsymbol{u} \mathrm{d} x+\frac{1}{4}\left\|\partial_{t} \boldsymbol{b}\right\|_{L^{2}}^{2}+\frac{1}{2}\left\|\sqrt{\rho} \partial_{t} \boldsymbol{u}\right\|_{L^{2}}^{2}+C\||(\boldsymbol{u}, \boldsymbol{b})| \cdot \mid \nabla(\boldsymbol{u}, \boldsymbol{b})\| \|_{L^{2}}^{2} . \tag{3.5}
\end{align*}
$$

Taking the inner product of $(1.1)_{3}$ with $\partial_{t} \boldsymbol{b}$ in $L^{2}\left(\mathbb{R}^{3}\right)$, we obtain

$$
\begin{align*}
\frac{1}{2} & \frac{\mathrm{~d}}{\mathrm{~d} t} \int|\nabla \boldsymbol{b}|^{2} \mathrm{~d} x+\int\left|\partial_{t} \boldsymbol{b}\right|^{2} \mathrm{~d} x=-\int[(\boldsymbol{u} \cdot \nabla) \boldsymbol{b}-(\boldsymbol{b} \cdot \nabla) \boldsymbol{u}] \cdot \partial_{t} \boldsymbol{b} \mathrm{~d} x \\
& \leq\left\|| (\boldsymbol { u } , \boldsymbol { b }) | \cdot \left|\nabla(\boldsymbol{u}, \boldsymbol{b})\| \|_{L^{2}}\left\|\partial_{t} \boldsymbol{b}\right\|_{L^{2}} \leq \frac{1}{4}\left\|\partial_{t} \boldsymbol{b}\right\|_{L^{2}}^{2}+C\||(\boldsymbol{u}, \boldsymbol{b})| \cdot \mid \nabla(\boldsymbol{u}, \boldsymbol{b})\| \|_{L^{2}}^{2}\right.\right. \tag{3.6}
\end{align*}
$$

Gathering (3.5) and (3.6) together, and utilizing Lemma 2.1, (2.4) and interpolation inequality, we get

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int|\nabla(\boldsymbol{u}, \boldsymbol{b})|^{2} \mathrm{~d} x+\int \rho\left|\partial_{t} \boldsymbol{u}\right|^{2}+\left|\partial_{t} \boldsymbol{b}\right|^{2} \mathrm{~d} x \\
& \quad \leq C\||(\boldsymbol{u}, \boldsymbol{b})| \cdot|\nabla(\boldsymbol{u}, \boldsymbol{b})|\|_{L^{2}}^{2} \\
& \quad \leq C\|(\boldsymbol{u}, \boldsymbol{b})\|_{\dot{B}_{\infty}^{-r}, \infty}^{2}\|\nabla(\boldsymbol{u}, \boldsymbol{b})\|_{L^{2}}^{2(1-r)}\|\triangle(\boldsymbol{u}, \boldsymbol{b})\|_{L^{2}}^{2 r} \\
& \quad \leq \varepsilon\|\triangle(\boldsymbol{u}, \boldsymbol{b})\|_{L^{2}}^{2}+C\|(\boldsymbol{u}, \boldsymbol{b})\|_{\dot{B}_{\infty}^{-r}, \infty}^{\frac{2}{1-r}}\|\nabla(\boldsymbol{u}, \boldsymbol{b})\|_{L^{2}}^{2} . \tag{3.7}
\end{align*}
$$

To close the estimates, we need to get the bounds of $\|\triangle \boldsymbol{u}\|_{L^{2}}$ and $\|\triangle \boldsymbol{b}\|_{L^{2}}$. By $(1.1)_{1}$, we may rewrite (1.1) ${ }_{2}$ as

$$
\begin{equation*}
-\triangle \boldsymbol{u}+\nabla\left(\pi+\frac{1}{2}|\boldsymbol{b}|^{2}\right)=(\boldsymbol{b} \cdot \nabla) \boldsymbol{b}-(\rho \boldsymbol{u} \cdot \nabla) \boldsymbol{u}-\rho \partial_{t} \boldsymbol{u} \tag{3.8}
\end{equation*}
$$

and invoke the H^{2}-theory of the Stokes system [15] to deduce

$$
\begin{equation*}
\|\triangle \boldsymbol{u}\|_{L^{2}} \leq C\||\boldsymbol{b}| \cdot|\nabla \boldsymbol{b}|\|_{L^{2}}+C\||\boldsymbol{u}| \cdot|\nabla \boldsymbol{u}|\|_{L^{2}}+C\left\|\sqrt{\rho} \partial_{t} \boldsymbol{u}\right\|_{L^{2}} . \tag{3.9}
\end{equation*}
$$

On the other hand, by $(1.1)_{3}$,

$$
\begin{equation*}
\|\triangle \boldsymbol{b}\|_{L^{2}} \leq\left\|\partial_{t} \boldsymbol{b}\right\|_{L^{2}}+\||\boldsymbol{u}| \cdot|\nabla \boldsymbol{b}|\|_{L^{2}}+\||\boldsymbol{b}| \cdot \mid \nabla \boldsymbol{u}\|\| \|_{L^{2}} \tag{3.10}
\end{equation*}
$$

Summing up (3.9) and (3.10), and estimating as in (3.7), we find

$$
\begin{aligned}
\|\triangle(\boldsymbol{u}, \boldsymbol{b})\|_{L^{2}} & \leq C\left\|\sqrt{\rho} \partial_{t} \boldsymbol{u}\right\|_{L^{2}}+C\left\|\partial_{t} \boldsymbol{b}\right\|_{L^{2}}+C\||(\boldsymbol{u}, \boldsymbol{b})| \cdot \mid \nabla(\boldsymbol{u}, \boldsymbol{b})\| \|_{L^{2}} \\
& \leq C\left\|\sqrt{\rho} \partial_{t} \boldsymbol{u}\right\|_{L^{2}}+C\left\|\partial_{t} \boldsymbol{b}\right\|_{L^{2}}+\frac{1}{2}\|\Delta(\boldsymbol{u}, \boldsymbol{b})\|_{L^{2}}+C\|(\boldsymbol{u}, \boldsymbol{b})\|_{B_{\infty}^{-\infty}, \infty}^{\frac{1}{1-r}}\|\nabla(\boldsymbol{u}, \boldsymbol{b})\|_{L^{2}}
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\|\triangle(u, b)\|_{L^{2}} \leq C\left\|\sqrt{\rho} \partial_{t} \boldsymbol{u}\right\|_{L^{2}}+C\left\|\partial_{t} \boldsymbol{b}\right\|_{L^{2}}+C\|(\boldsymbol{u}, \boldsymbol{b})\|_{\dot{B}_{\infty}^{-r}, \infty}^{\frac{1}{1-r}}\|\nabla(\boldsymbol{u}, \boldsymbol{b})\|_{L^{2}} \tag{3.11}
\end{equation*}
$$

Putting (3.11) into (3.7), and taking ε sufficiently small, we obtain

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int|\nabla(\boldsymbol{u}, \boldsymbol{b})|^{2} \mathrm{~d} x+\int \rho\left|\partial_{t} \boldsymbol{u}\right|^{2}+\left|\partial_{t} \boldsymbol{b}\right|^{2} \mathrm{~d} x \leq C\|(\boldsymbol{u}, \boldsymbol{b})\|_{\dot{B}_{\infty}^{-r}, \infty}^{\frac{2}{1-r}}\|\nabla(\boldsymbol{u}, \boldsymbol{b})\|_{L^{2}}^{2}
$$

Applying Gronwall inequality then yields

$$
\begin{array}{ll}
\|\nabla \boldsymbol{u}\|_{L^{\infty}\left(0, T ; L^{2}\right)} \leq C ; & \left\|\sqrt{\rho} \partial_{t} \boldsymbol{u}\right\|_{L^{2}\left(0, T ; L^{2}\right)} \leq C \tag{3.12}\\
\|\boldsymbol{b}\|_{L^{\infty}\left(0, T ; H^{1}\right)} \leq C ; \quad\left\|\partial_{t} \boldsymbol{b}\right\|_{L^{2}\left(0, T ; L^{2}\right)} \leq C .
\end{array}
$$

With these uniform bounds at hand, it infers from (24) that

$$
\begin{equation*}
\|\nabla \boldsymbol{u}\|_{L^{2}\left(0, T ; H^{1}\right)} \leq C, \quad\|\boldsymbol{b}\|_{L^{2}\left(0, T: H^{2}\right)} \leq C . \tag{3.13}
\end{equation*}
$$

Up to now, we may just follow [5] to complete the proof of Theorem 1.1.
Acknowledgements We thank the referees for their time and comments.

References

[1] H. ABIDI, T. HMIDI. Résultats d'exstence dans des espaces critiques pour le systéme de la MHD inhomogéne. Ann. Math. Blaise Pascal, 2007, 14(1): 103-148.
[2] H. ABIDI, M. PAICU. Global existence for the magnetohydrodynamic system in critical spaces. Proc. Roy. Soc. Edinburgh Sect. A, 2008, 138(3): 447-476.
[3] Qing CHEN, Zhong TAN, Yanjin WANG. Strong solutions to the incompressible magnetohydrodynamic equations. Math. Methods Appl. Sci., 2011, 34(1): 94-107.
[4] B. DESJARDINS, C. LE BRIS. Remarks on a nonhomogeneous model of magnetohydrodynamics. Differential Integral Equations, 1998, 11(3): 377-394.
[5] Jishan FAN, Fucai LI, G. NAKAMURA, et al. Regularity criteria for the three-dimensional magnetohydrodynamic equations. J. Differential Equations, 2014, 256(8): 2858-2875.
[6] J. F. GERBEAU, C. LE BRIS. Existence of solution for a density-dependent magnetohydrodynamic equation. Adv. Differential Equations, 1997, 2(3): 427-452.
[7] Hongwei WU. Strong solution to the incompressible MHD equations with vacuum. Comput. Math. Appl., 2011, 61(9): 2742-2753.
[8] Yong ZHOU, Jishan FAN. A regularity criterion for the density-dependent magnetohydrodynamic equations. Math. Meth. Appl. Sci., 2010, 33(11): 1350-1355.
[9] Jishan FAN, T. OZAWA. Regularity criteria for the 3D density-dependent Boussinesq equations. Nonlinearity, 2009, 22(3): 553-568.
[10] Qionglei CHEN, Changxing MIAO, Zhifei ZHANG. On the regularity criterion of weak solutions for the $3 D$ viscous magneto-hydrodynamics equations. Comm. Math. Phys., 2008, 284(3): 919-930.
[11] Changxing MIAO, Jiahong WU, Zhifei ZHANG. Littlewood-Paley Theory and Its Application in Hydrodynamic Equations (Chinese Edition). Science Press, Beijing, 2012.
[12] H. TRIEBEL. Theory of Function Spaces. Monogr. Math. 78, Birkhäuser-Verlag, Basel, 1983.
[13] H. KOZONO, Y. SHIMADA. Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the NavierStokes equations. Math. Nachr., 2004, 276: 63-74.
[14] H. BAHOURI, J. Y. CHEMIN, R. DANCHIN. Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Heidelberg, 2011.
[15] R. TEMAM. Navier-Stokes Equations: Theory and Numercial Analysis. AMS Chelsea Publishing, 2001.

[^0]: Received October 30, 2015; Accepted July 26, 2016
 Supported by the Natural Science Foundation of Jiangxi Province (Grant No. 20151BAB201010) and the National Natural Science Foundation of China (Grant Nos. 11501125; 11361004).

 * Corresponding author

 E-mail address: zhangzujin361@163.com (Zujin ZHANG)

