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Abstract In this paper, we consider the density-dependent magnetohydrodynamic equations

with vacuum, and provide a regularity criterion involving the velocity and magnetic fields

in Besov space of negative order, which improves [Jishan FAN, Fucai LI, G. NAKAMURA,

Zhong TAN, Regularity criteria for the three-dimensional magnetohydrodynamic equations.

J. Differential Equations, 2014, 256(8): 2858–2875] in some sense. The method is to establish

a new bilinear estimate.
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1. Introduction

This paper studies the following density-dependent magnetohydrodynamic (MHD) equa-

tions
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)−△u+∇
(
π +

1

2
|b|2

)
= (b · ∇)b,

∂tb+ (u · ∇)b− (b · ∇)u = △b,

divu = divb = 0,

(1.1)

in
{
(t, x); t ∈ (0,∞), x ∈ R3

}
with prescribed initial data (ρ,u, b)|t=0 = (ρ0,u0, b0). Here, ρ is

the density of the fluid, u = (u1, u2, u3) is the velocity field of the charged fluid, b = (b1, b2, b3) is

the magnetic field induced by the motion of the charged fluid, and π is the pressure of the fluid.

The system (1.1) has attracted many authors’ attention [1–8]. In case the initial density

has a positive lower bound, the existence of a weak solution with finite energy in the whole space

R3 and in the torus were established in [6] and [4], respectively; while the local existence of a

unique strong solution and small date global existence were obtained in [1]. However, whether

or not this local unique strong solution can exist globally is an outstanding open problem. In
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[8], a regularity criterion

u ∈ L
2

1−r (0, T ; Ẋr(R3)), 0 < r < 1 (1.2)

was established, that is, if (1.2) holds, then this strong solution can be extended smoothly beyond

T . Here, Ẋr(R3) = M(Ḃr
2,1(R3), L2(R3)) is the multiplier space, whose elements f defines a

bounded linear mapping of Ḃr
2,1(R3) (the Besov space, see Section 2 for details) into L2(R3) by

pointwise multiplication, and thus the norm is given by the operator norm,

∥f∥Ẋr
= sup

∥g∥Ḃr
2,1

≤1

∥fg∥L2 .

On the other hand, when the initial density contains vacuum, the local existence of a strong

unique solution was established in [7] and [3]. Precisely, they show that if the initial data ρ0,u0

and b0 satisfy

0 ≤ ρ0 ≤M <∞, ∇ρ0 ∈ L2 ∩ Lq(R3), 3 < q ≤ 6;

u0, b0 ∈ H2(R3), divu0 = divb0 = 0,
(1.3)

and the following compatibility condition

−△u0 +∇
(
π0 +

1

2
|b0|2

)
− (b0 · ∇)b0 =

√
ρ0g, for some g ∈ L2(R3), (1.4)

then there exists a positive T ∗ ∈ (0,∞] and a unique strong solution ρ,u, b to the system (1.1)

verifying the following properties

0 ≤ ρ ≤M, ∇ρ, ∂tρ ∈ C([0, T ∗];L2 ∩ Lq(R3));

u, b ∈ C([0, T ∗];H2(R3)) ∩ L2(0, T ∗;W 2,6(R3));
√
ρ∂tu ∈ L∞(0, T ∗;L2(R3)), ∂tu ∈ L2(0, T ∗;H1(R3));

∂tb ∈ L∞(0, T ∗;L2(R3)) ∩ L2(0, T ∗;H1(R3)).

(1.5)

In [5, Theorem 1.1], the regularity criterion (1.2) was extended to the system (1.1) with vacuum.

And the motivation to the present paper is to improve the result in [6] from the multiplier spaces

Ẋ(R3) to be in the Besov spaces Ḃ−r
∞,∞(R3) of negative order. Concisely, we obtain

Theorem 1.1 Assume the initial data ρ0, u0, b0 satisfy (1.3) and the compatibility condition

(1.4). Let ρ, u, b be the corresponding strong solution to the system (1.1) with the properties

stated in (1.5). If

u, b ∈ L
2

1−r (0, T ; Ḃ−r
∞,∞(R3)), (1.6)

then the solution can be extended smoothly beyond T .

Remark 1.2 Observe that [9, Eq.(1.9)]

Ẋ(R3) =M(Ḃr
2,1(R), L2(R3)) ⊂ Ḃ−r

∞,∞(R3)),

we indeed improve Theorem 1.1 of [5] in some sense.

Remark 1.3 For the incompressible MHD system, Chen-Miao-Zhang [10] already established

the regularity criterion involving the velocity field only. To see this, we only need to observe the



684 Zujin ZHANG, Dingxing ZHONG and Shaohui GUI

following fact from [11]:

s < 0, p, q ≥ 1 ⇒ Ḃs
p,q ⊂ Bs

p,q.

Before proving Theorem 1.1 in Section 3, we shall first introduce the definition of Besov

spaces and recall a bilinear estimates in Section 2. In the rest of the paper, we shall denote by

C a generic constant which may change from line to line. For simplicity of presentation, we shall

also omit the spatial domain R3 in the integrals and in the norm of a function, that is,∫
f dx =

∫
R3

f dx, ∥f∥L2 = ∥f∥L2(R3) ,

and etc.

2. Preliminaries

We first introduce the Littlewood-Paley decomposition. Let S(R3) be the Schwartz class of

rapidly decreasing functions. For f ∈ S(R3), its Fourier transform Ff = f̂ is defined as

f̂(ξ) =

∫
R3

f(x)e−ix·ξ dx.

Let us choose a non-negative radial function φ ∈ S(R3) such that

0 ≤ φ̂(ξ) ≤ 1, φ̂(ξ) =

{
1, if |ξ| ≤ 1,

0, if |ξ| ≥ 2,

and let

ψ(x) = φ(x)− 2−3φ(x/2), φj(x) = 23jφ(2jx), ψj(x) = 23jψ(2jx), j ∈ Z.

For j ∈ Z, the Littlewood-Paley projection operators Sj and △j are, respectively, defined by

Sjf = φj ∗ f, △jf = ψj ∗ f.

Observe that △j = Sj − Sj−1. Also, it is easy to check that if f ∈ L2(R3), then

Sjf → 0, as j → −∞; Sjf → f, as j → ∞,

in the L2 sense. By telescoping the series, we have the following Littlewood-Paley decomposition

f =

∞∑
j=−∞

△jf, (2.1)

for all f ∈ L2(R3), where the summation is in the L2 sense. Notice that

△jf =

j+2∑
l=j−2

△l△jf =

j+2∑
l=j−2

ψl ∗ ψj ∗ f,

we may use Young inequality to deduce that

∥△jf∥Lq ≤ C23j(
1
p−

1
q ) ∥△jf∥Lp (2.2)

for 1 ≤ p ≤ q ≤ ∞, with C being a constant independent of f and j.
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Let s ∈ R; p, q ∈ [1,∞]. The homogeneous Besov spaces Ḃs
p,q(R3) and the homogeneous

Triebel-Lizorkin spaces Ḟ s
p,q(R3) are defined by the full dyadic decomposition as

Ḃs
p,q =

{
f ∈ Z ′(R3); ∥f∥Ḃs

p,q
= ∥{2js∥△jf∥Lp}∞j=−∞∥ℓq <∞

}
,

Ḟ s
p,q =

{
f ∈ Z ′(R3); ∥f∥Ḟ s

p,q
= ∥{2js∥△jf∥ℓq}∞j=−∞∥Lp <∞

}
,

where Z ′(R3) is the dual space of

Z(R3) =
{
f ∈ S(R3); Dαf̂(0) = 0, ∀ α ∈ N3

}
,

and for series {ak}, we denote

∥{ak}∥ℓq =

{
(
∑

k |ak|q)
1
q , 1 ≤ q <∞,

supk |ak|, q = ∞.

It is well-known that (see [12] for example) for all s ∈ R,

Ḣs(R3) = Ḃs
2,2(R3) = Ḟ s

2,2(R3), Ḃs
∞,∞(R3) = Ḟ s

∞,∞(R3), (2.3)

and the gradient operator ∇ maps Ḃs
p,q(R3) to Ḃs−1

p,q ; moreover,

C1 ∥f∥Ḃs
p,q

≤ ∥∇f∥Ḃs−1
p,q

≤ C2 ∥f∥Ḃs
p,q

(2.4)

for some positive constants C1, C2.

Also, Kozono-Shimada [13] proved the following bilinear estimates

∥f · g∥Ḟ s
p,q

≤ C
(
∥f∥Ḟ s+α

p1,q
∥g∥Ḟ−α

p2,∞
+ ∥f∥Ḟ−β

r1,∞
∥g∥Ḟ s+β

r2,q

)
, (2.5)

where

s > 0, α > 0, β > 0,
1

p
=

1

p1
+

1

p2
=

1

r1
+

1

r2
.

With (2.5), the following regularity criterion for the 3D incompressible Navier-Stokes equations

u ∈ L
2

1−r (0, T ; Ḃ−r
∞,∞), 0 < r < 1

was proved in [13]. The main obstacle in utilizing (11) to system (1.1) is the strong coupling

of the velocity field and the magnetic field, and this leads us to derive a new bilinear estimate,

which corresponds to (2.5) with s = 0. Before stating the precise form, let us recall a refined

Sobolev embedding theorem [14, Theorem 2.42]

∥f∥Lp ≤ C ∥f∥1−
2
p

Ḃ−r
∞,∞

∥f∥
2
p

Ḣβ
, (2.6)

with r > 0, β = r(p2 − 1), 2 < p <∞.

Now, our new bilinear estimate is as follows.

Lemma 2.1 Let 0 < r ≤ 1, f ∈ Ḃ−r
∞,∞∩ Ḣ2, g ∈ Ḃ−r

∞,∞∩ Ḣ1∩ Ḣ2. Then there exists a constant

C = C(r) such that

∥f∇g∥L2 ≤ C ∥(f, g)∥Ḃ−r
∞,∞

∥∇g∥1−r
L2

∥∥(∇2f,∇2g)
∥∥r
L2 . (2.7)

Proof By Hölder inequality, (2.6), and interpolation inequality,

∥f∇g∥L2 ≤ ∥f∥
L2+ 4

r
∥∇g∥Lr+2 ≤ C ∥f∥

2
r+2

Ḃ−r
∞,∞

∥f∥
r

r+2

Ḣ2
· ∥∇g∥

r
r+2

Ḃ−1−r
∞,∞

∥∇g∥
2

r+2

Ḣ
r(r+1)

2
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≤ C ∥f∥
2

r+2

Ḃ−r
∞,∞

∥∥∇2f
∥∥ r

r+2

L2 ∥g∥
r

r+2

Ḃ−r
∞,∞

∥∇g∥1−r
L2

∥∥∇2g
∥∥ r(r+1)

r+2

L2 . �

3. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1, which relies on establishing the a priori estimates

(1.5) under the condition (1.6).

First, invoking the divergence-free condition (1.1)3, we may rewrite (1.1)1 as

ρt + (u · ∇)ρ = 0.

The maximum principle then implies that

0 ≤ ρ ≤M <∞. (3.1)

Next, taking the inner product of (1.1)2 with u, (1.1)3 with b in L2(R3) respectively, we

obtain
1

2

d

dt

∫
ρ|u|2 dx+

∫
|∇u|2 dx =

∫
[(b · ∇)b] · u dx, (3.2)

as well as
1

2

d

dt

∫
|b|2 dx+

∫
|∇b|2 dx =

∫
[(b · ∇)u] · b dx. (3.3)

Summing up (3.2) and (3.3), and noticing that∫
[(b · ∇)b] · u dx+

∫
[(b · ∇)u] · b dx =

∫
(b · ∇)(b · u) dx

=

∫
(∇ · b) · (b · u) dx = 0,

we get
1

2

∫
ρ|u|2 + |b|2 dx+

∫
|∇u|2 + |∇b|2 dx = 0.

Integrating in time over (0, T ) then yields

sup
0≤t≤T

1

2

∫
ρ|u|2 + |b|2 dx+

∫ T

0

∫
|∇u|2 + |∇b|2 dxdt ≤ C. (3.4)

Taking the inner product of (1.1)2 with ∂tu in L2(R3), and integrating by parts, we obtain

1

2

d

dt

∫
|∇u|2 dx+

∫
ρ|∂tu|2 dx

=

∫
[(b · ∇)b] · ∂tu dx−

∫
[(ρu · ∇)u] · ∂tudx

=
3∑

i,j=1

∫
bj∂jbi∂tui dx−

∫
[(ρu · ∇)u] · ∂tudx

= −
3∑

i,j=1

∫
bjbi∂t∂jui dx−

∫
[(ρu · ∇)u] · ∂tu dx

= −
3∑

i,j=1

d

dt

∫
bjbi∂jui dx+

3∑
i,j=1

∫
∂tbjbi∂jui dx+

3∑
i,j=1

∫
bj∂tbi∂jui dx−
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[(ρu · ∇)u] · ∂tu dx.

Thus, by Hölder inequality,

1

2

d

dt

∫
|∇u|2 dx+

∫
ρ|∂tu|2 dx

≤ d

dt

∫
(b⊗ b) : ∇udx+ 2 ∥∂tb∥L2 ∥|b| · |∇u|∥L2 + C ∥√ρ∂tu∥L2 ∥|u| · |∇u|∥L2

≤ d

dt

∫
(b⊗ b) : ∇udx+

1

4
∥∂tb∥2L2 +

1

2
∥√ρ∂tu∥2L2 + C ∥|(u, b)| · |∇(u, b)|∥2L2 . (3.5)

Taking the inner product of (1.1)3 with ∂tb in L2(R3), we obtain

1

2

d

dt

∫
|∇b|2 dx+

∫
|∂tb|2 dx = −

∫
[(u · ∇)b− (b · ∇)u] · ∂tb dx

≤ ∥|(u, b)| · |∇(u, b)|∥L2 ∥∂tb∥L2 ≤ 1

4
∥∂tb∥2L2 + C ∥|(u, b)| · |∇(u, b)|∥2L2 . (3.6)

Gathering (3.5) and (3.6) together, and utilizing Lemma 2.1, (2.4) and interpolation in-

equality, we get

d

dt

∫
|∇(u, b)|2 dx+

∫
ρ|∂tu|2 + |∂tb|2 dx

≤ C ∥|(u, b)| · |∇(u, b)|∥2L2

≤ C ∥(u, b)∥2Ḃ−r
∞,∞

∥∇(u, b)∥2(1−r)
L2 ∥△(u, b)∥2rL2

≤ ε ∥△(u, b)∥2L2 + C ∥(u, b)∥
2

1−r

Ḃ−r
∞,∞

∥∇(u, b)∥2L2 . (3.7)

To close the estimates, we need to get the bounds of ∥△u∥L2 and ∥△b∥L2 . By (1.1)1, we

may rewrite (1.1)2 as

−△u+∇(π +
1

2
|b|2) = (b · ∇)b− (ρu · ∇)u− ρ∂tu, (3.8)

and invoke the H2-theory of the Stokes system [15] to deduce

∥△u∥L2 ≤ C ∥|b| · |∇b|∥L2 + C ∥|u| · |∇u|∥L2 + C ∥√ρ∂tu∥L2 . (3.9)

On the other hand, by (1.1)3,

∥△b∥L2 ≤ ∥∂tb∥L2 + ∥|u| · |∇b|∥L2 + ∥|b| · |∇u||∥L2 . (3.10)

Summing up (3.9) and (3.10), and estimating as in (3.7), we find

∥△(u, b)∥L2 ≤ C ∥√ρ∂tu∥L2 + C ∥∂tb∥L2 + C ∥|(u, b)| · |∇(u, b)|∥L2

≤ C ∥√ρ∂tu∥L2 + C ∥∂tb∥L2 +
1

2
∥△(u, b)∥L2 + C ∥(u, b)∥

1
1−r

Ḃ−r
∞,∞

∥∇(u, b)∥L2 .

Consequently,

∥△(u, b)∥L2 ≤ C ∥√ρ∂tu∥L2 + C ∥∂tb∥L2 + C ∥(u, b)∥
1

1−r

Ḃ−r
∞,∞

∥∇(u, b)∥L2 . (3.11)

Putting (3.11) into (3.7), and taking ε sufficiently small, we obtain

d

dt

∫
|∇(u, b)|2 dx+

∫
ρ|∂tu|2 + |∂tb|2 dx ≤ C ∥(u, b)∥

2
1−r

Ḃ−r
∞,∞

∥∇(u, b)∥2L2 .
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Applying Gronwall inequality then yields

∥∇u∥L∞(0,T ;L2) ≤ C;
∥∥√ρ∂tu∥∥L2(0,T ;L2)

≤ C;

∥b∥L∞(0,T ;H1) ≤ C; ∥∂tb∥L2(0,T ;L2) ≤ C.
(3.12)

With these uniform bounds at hand, it infers from (24) that

∥∇u∥L2(0,T ;H1) ≤ C, ∥b∥L2(0,T :H2) ≤ C. (3.13)

Up to now, we may just follow [5] to complete the proof of Theorem 1.1. �
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Ann. Math. Blaise Pascal, 2007, 14(1): 103–148.

[2] H. ABIDI, M. PAICU. Global existence for the magnetohydrodynamic system in critical spaces. Proc. Roy.

Soc. Edinburgh Sect. A, 2008, 138(3): 447–476.

[3] Qing CHEN, Zhong TAN, Yanjin WANG. Strong solutions to the incompressible magnetohydrodynamic

equations. Math. Methods Appl. Sci., 2011, 34(1): 94–107.

[4] B. DESJARDINS, C. LE BRIS. Remarks on a nonhomogeneous model of magnetohydrodynamics. Differen-

tial Integral Equations, 1998, 11(3): 377–394.

[5] Jishan FAN, Fucai LI, G. NAKAMURA, et al. Regularity criteria for the three-dimensional magnetohydro-

dynamic equations. J. Differential Equations, 2014, 256(8): 2858–2875.

[6] J. F. GERBEAU, C. LE BRIS. Existence of solution for a density-dependent magnetohydrodynamic equation.

Adv. Differential Equations, 1997, 2(3): 427–452.

[7] Hongwei WU. Strong solution to the incompressible MHD equations with vacuum. Comput. Math. Appl.,

2011, 61(9): 2742–2753.

[8] Yong ZHOU, Jishan FAN. A regularity criterion for the density-dependent magnetohydrodynamic equations.

Math. Meth. Appl. Sci., 2010, 33(11): 1350–1355.

[9] Jishan FAN, T. OZAWA. Regularity criteria for the 3D density-dependent Boussinesq equations. Nonlinear-

ity, 2009, 22(3): 553–568.

[10] Qionglei CHEN, Changxing MIAO, Zhifei ZHANG. On the regularity criterion of weak solutions for the 3D

viscous magneto-hydrodynamics equations. Comm. Math. Phys., 2008, 284(3): 919–930.

[11] Changxing MIAO, Jiahong WU, Zhifei ZHANG. Littlewood-Paley Theory and Its Application in Hydrody-

namic Equations (Chinese Edition). Science Press, Beijing, 2012.

[12] H. TRIEBEL. Theory of Function Spaces. Monogr. Math. 78, Birkhäuser-Verlag, Basel, 1983.
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