Dunkl Multiplier Operators on a Class of Reproducing Kernel Hilbert Spaces

Fethi SOLTANI

Department of Mathematics, Faculty of Science, Jazan University, P. O. Box 277, Jazan 45142, Saudi Arabia

Abstract We study some class of Dunkl multiplier operators; and we establish for them the Heisenberg-Pauli-Weyl uncertainty principle and the Donoho-Stark's uncertainty principle. For these operators we give also an application of the theory of reproducing kernels to the Tikhonov regularization on the Sobolev-Dunkl spaces.

Keywords Sobolev-Dunkl spaces; Dunkl multiplier operators; Heisenberg-Pauli-Weyl uncertainty principle; Donoho-Stark uncertainty principle; Tikhonov regularization; extremal functions

MR(2010) Subject Classification 42B10; 42B15; 46E35

1. Introduction

In this paper, we consider \mathbb{R}^d with the Euclidean inner product $\langle ., . \rangle$ and norm $|y| := \sqrt{\langle y, y \rangle}$. For $\alpha \in \mathbb{R}^d \setminus \{0\}$, let σ_α be the reflection in the hyperplane $H_\alpha \subset \mathbb{R}^d$ orthogonal to α :

$$\sigma_{\alpha}x := x - \frac{2\langle \alpha, x \rangle}{|\alpha|^2}\alpha.$$

A finite set $\Re \subset \mathbb{R}^d \setminus \{0\}$ is called a root system, if $\Re \cap \mathbb{R}.\alpha = \{-\alpha, \alpha\}$ and $\sigma_\alpha \Re = \Re$ for all $\alpha \in \Re$. We assume that it is normalized by $|\alpha|^2 = 2$ for all $\alpha \in \Re$. For a root system \Re , the reflections σ_α , $\alpha \in \Re$, generate a finite group G. The Coxeter group G is a subgroup of the orthogonal group O(d). All reflections in G correspond to suitable pairs of roots. For a given $\beta \in \mathbb{R}^d \setminus \bigcup_{\alpha \in \Re} H_\alpha$, we fix the positive subsystem $\Re_+ := \{\alpha \in \Re : \langle \alpha, \beta \rangle > 0\}$. Then for each $\alpha \in \Re$ either $\alpha \in \Re_+$ or $-\alpha \in \Re_+$.

Let $k, \ell : \Re \to \mathbb{C}$ be two multiplicity functions on \Re (functions which are constants on the orbits under the action of G). As an abbreviation, we introduce the index $\gamma_k := \sum_{\alpha \in \Re_+} k(\alpha)$ and $\gamma_\ell := \sum_{\alpha \in \Re_+} \ell(\alpha)$.

Throughout this paper, we will assume that $k(\alpha), \ell(\alpha) \geq 0$ for all $\alpha \in \Re$, and $\gamma_{\ell} \geq \gamma_{k}$. Moreover, let w_{k} denote the weight function $w_{k}(x) := \prod_{\alpha \in \Re_{+}} |\langle \alpha, x \rangle|^{2k(\alpha)}$, for all $x \in \mathbb{R}^{d}$, which is G-invariant and homogeneous of degree $2\gamma_{k}$.

Received January 30, 2016; Accepted May 6, 2016

Supported by the DGRST Research Project LR11ES11 and CMCU Program $10\mathrm{G}/1503$.

E-mail address: fethisoltani10@yahoo.com

Let c_k be the Mehta-type constant given by

$$c_k := \left(\int_{\mathbb{R}^d} e^{-|x|^2/2} w_k(x) dx \right)^{-1}. \tag{1.1}$$

We denote by μ_k the measure on \mathbb{R}^d given by $d\mu_k(x) := c_k w_k(x) dx$; and by $L^p(\mu_k)$, $1 \le p \le \infty$, the space of measurable functions f on \mathbb{R}^d , such that

$$||f||_{L^p(\mu_k)} := \left(\int_{\mathbb{R}^d} |f(x)|^p \mathrm{d}\mu_k(x) \right)^{1/p} < \infty, \quad 1 \le p < \infty,$$
$$||f||_{L^\infty(\mu_k)} := \operatorname{ess \ sup}_{x \in \mathbb{P}^d} |f(x)| < \infty.$$

For $f \in L^1(\mu_k)$ the Dunkl transform is defined (see [1]) by

$$\mathcal{F}_k(f)(y) := \int_{\mathbb{R}^d} E_k(-ix, y) f(x) d\mu_k(x), \quad y \in \mathbb{R}^d,$$

where $E_k(-ix, y)$ denotes the Dunkl kernel (for more details, see the next section).

Many uncertainty principles have already been proved for the Dunkl transform, namely by Rösler [2] and Shimeno [3] who established the Heisenberg-Pauli-Weyl inequality for the Dunkl transform, by showing that for every $f \in L^2(\mu_k)$,

$$||f||_{L^{2}(\mu_{k})}^{2} \leq \frac{2}{2\gamma_{k} + d} ||x|f||_{L^{2}(\mu_{k})} ||y|\mathcal{F}_{k}(f)||_{L^{2}(\mu_{k})}.$$

$$(1.2)$$

Recently, the author [4,5] proved general forms of the Heisenberg-Pauli-Weyl inequality for the Dunkl transform.

Let $s \in \mathbb{R}$. We consider the Sobolev type space's $H_{k\ell}^s$ consisting of all $f \in \mathcal{S}'(\mathbb{R}^d)$ (the space of tempered distributions) such that $\mathcal{F}_{\ell}(f)$ is a function and $(1+|z|^2)^{s/2}\mathcal{F}_{\ell}(f) \in L^2(\mu_k)$. The space $H_{k\ell}^s$ is a Hilbert space when endowed with the inner product

$$\langle f, g \rangle_{H_{k\ell}^s} := \int_{\mathbb{P}^d} (1 + |z|^2)^s \mathcal{F}_{\ell}(f)(z) \overline{\mathcal{F}_{\ell}(g)(z)} d\mu_k(z).$$

Let m be a function in $L^2(\mu_k)$. The Dunkl multiplier operators $T_{k,\ell,m}$, are defined for $f \in H^s_{k\ell}$ by

$$T_{k,\ell,m}f(a,x) := \mathcal{F}_{k}^{-1}\big(m(a)\mathcal{F}_{\ell}(f)\big)(x), \quad (a,x) \in (0,\infty) \times \mathbb{R}^{d}.$$

These operators were studied in [6] where the author established some applications (Calderón's reproducing formulas, best approximation formulas, extremal functions ...). In particular, when $k = \ell$ these operators were studied in [7].

For $m \in L^2(\mu_k)$ verifying the admissibility condition $\int_0^\infty |m(ax)|^2 \frac{da}{a} = 1$, a.e. $x \in \mathbb{R}^d$, then the operators $T_{k,\ell,m}$ satisfy

$$||T_{k,\ell,m}f||_{L^2(\Omega_k)} = ||f||_{H^0_{k\ell}}, f \in H^0_{k\ell},$$

where Ω_k is the measure on $(0, \infty) \times \mathbb{R}^d$ given by $d\Omega_k(a, x) := \frac{da}{a} d\mu_k(x)$.

For the operators $T_{k,\ell,m}$ we establish a Heisenberg-Pauli-Weyl uncertainty principle. More precisely, we will show for $f \in H^0_{k\ell}$ that

$$||f||_{H_{k\ell}^0}^2 \le \frac{2}{2\gamma_k + d} ||y| \mathcal{F}_{\ell}(f) ||_{L^2(\mu_k)} ||x| T_{k,\ell,m} f||_{L^2(\Omega_k)},$$

provided $m \in L^2(\mu_k)$ satisfying $\int_0^\infty |m(ax)|^2 \frac{da}{a} = 1$, a.e. $x \in \mathbb{R}^d$.

Building on the techniques of Donoho-Stark [8], we show a continuous-time principle for the L^2 theory. Let E be a measurable subset of \mathbb{R}^d and S be a measurable subset of $(0, \infty) \times \mathbb{R}^d$ and let $f \in H^s_{k\ell}$. If f is ε -concentrated on E and $T_{k,\ell,m}f$ is η -concentrated on S (see Section 4 for more details), then

$$\left(\mu_{\ell}(E)\right)^{1/2} \left(\int \int_{S} \frac{\mathrm{d}\Omega_{k}(a,x)}{a^{2(2\gamma_{k}+d)}}\right)^{1/2} \geq \frac{(1-\eta-\varepsilon)}{2^{(\gamma_{\ell}-\gamma_{k})/2} \|m\|_{L^{1}(\mu_{k})}} \sqrt{\frac{c_{k}}{c_{\ell}}},$$

provided $m \in L^1 \cap L^2(\mu_k)$ satisfying $\int_0^\infty |m(ax)|^2 \frac{da}{a} = 1$, a.e. $x \in \mathbb{R}^d$.

Building on the ideas of [9–12], we give an application of the theory of reproducing kernels to the Tikhonov regularization, which gives the best approximation of the operator $T_{k,\ell,m}$ on the Sobolev-Dunkl spaces $H_{k\ell}^s$. More precisely, for all $\lambda > 0$, $g \in L^2(\Omega_k)$, the infimum

$$\inf_{f \in H_{k\ell}^s} \left\{ \lambda \|f\|_{H_{k\ell}^s}^2 + \|g - T_{k,\ell,m} f\|_{L^2(\Omega_k)}^2 \right\},\,$$

is attained at one function $f_{\lambda,q}^*$, called the extremal function.

This paper is organized as follows. In Section 2 we define and study the Sobolev-Dunkl type spaces $H_{k\ell}^s$. In Section 3 we define and study the Dunkl multiplier operators $T_{k,\ell,m}$ on the spaces $H_{k\ell}^s$. In Section 4 we establish the Heisenberg-Pauli-Weyl uncertainty principle and the Donoho-Stark's uncertainty principle for the operators $T_{k,\ell,m}$. In the last section we give an application of the theory of reproducing kernels to the Tikhonov regularization for the operators $T_{k,\ell,m}$ on the Sobolev-Dunkl spaces $H_{k\ell}^s$.

2. Sobolev-Dunkl type spaces

The Dunkl operators \mathcal{D}_j ; j = 1, ..., d, on \mathbb{R}^d associated with the finite reflection group G and multiplicity function k are given, for a function f of class C^1 on \mathbb{R}^d , by

$$\mathcal{D}_j f(x) := \frac{\partial}{\partial x_j} f(x) + \sum_{\alpha \in \Re_+} k(\alpha) \alpha_j \frac{f(x) - f(\sigma_\alpha x)}{\langle \alpha, x \rangle}.$$

For $y \in \mathbb{R}^d$, the initial problem $\mathcal{D}_j u(x,y)(x) = y_j u(x,y)$, $j = 1, \dots, d$, with u(0,y) = 1 admits a unique analytic solution on \mathbb{R}^d , which will be denoted by $E_k(x,y)$ and called Dunkl kernel [13,14]. This kernel has a unique analytic extension to $\mathbb{C}^d \times \mathbb{C}^d$ (see [15]). In our case [1,13],

$$|E_k(\pm ix, y)| \le 1, \quad x, y \in \mathbb{R}^d. \tag{2.1}$$

The Dunkl kernel gives rise to an integral transform, which is called Dunkl transform on \mathbb{R}^d , and was introduced by Dunkl in [1], where already many basic properties were established. Dunkl's results were completed and extended later by De Jeu [14]. The Dunkl transform of a function f in $L^1(\mu_k)$, is defined by

$$\mathcal{F}_k(f)(y) := \int_{\mathbb{R}^d} E_k(-ix, y) f(x) d\mu_k(x), \quad y \in \mathbb{R}^d.$$

We notice that \mathcal{F}_0 agrees with the Fourier transform \mathcal{F} that is given by

$$\mathcal{F}(f)(y) := (2\pi)^{-d/2} \int_{\mathbb{R}^d} e^{-i\langle x, y \rangle} f(x) dx, \quad x \in \mathbb{R}^d.$$

Some of the properties of Dunkl transform \mathcal{F}_k are collected below [1,14].

Theorem 2.1 (i) $L^1 - L^{\infty}$ -boundedness. For all $f \in L^1(\mu_k)$, $\mathcal{F}_k(f) \in L^{\infty}(\mu_k)$ and

$$\|\mathcal{F}_k(f)\|_{L^{\infty}(\mu_k)} \le \|f\|_{L^1(\mu_k)}.$$

(ii) Inversion theorem. Let $f \in L^1(\mu_k)$, such that $\mathcal{F}_k(f) \in L^1(\mu_k)$. Then

$$f(x) = \mathcal{F}_k(\mathcal{F}_k(f))(-x), \quad \text{a.e.} \quad x \in \mathbb{R}^d.$$

(iii) Plancherel theorem. The Dunkl transform \mathcal{F}_k extends uniquely to an isometric isomorphism of $L^2(\mu_k)$ onto itself. In particular,

$$\|\mathcal{F}_k(f)\|_{L^2(\mu_k)} = \|f\|_{L^2(\mu_k)}.$$

(iv) The Dunkl transform \mathcal{F}_k is a topological isomorphism from $\mathcal{S}(\mathbb{R}^d)$ onto itself, and from $\mathcal{S}'(\mathbb{R}^d)$ onto itself.

Let $s \in \mathbb{R}$. We define the Sobolev-Dunkl type space of order s, that will be denoted $H_{k\ell}^s$, as the set of all $f \in \mathcal{S}'(\mathbb{R}^d)$ such that $\mathcal{F}_{\ell}(f)$ is a function and $(1+|z|^2)^{s/2}\mathcal{F}_{\ell}(f) \in L^2(\mu_k)$. The space $H_{k\ell}^s$ is endowed with the inner product

$$\langle f, g \rangle_{H_{k\ell}^s} := \int_{\mathbb{R}^d} \mathcal{F}_{\ell}(f)(z) \overline{\mathcal{F}_{\ell}(g)(z)} d\mu_{k,s}(z),$$

and the norm

$$||f||_{H_{k\ell}^s} := \left(\int_{\mathbb{R}^d} |\mathcal{F}_{\ell}(f)(z)|^2 d\mu_{k,s}(z)\right)^{1/2},$$

where $\mu_{k,s}$ is the measure on \mathbb{R}^d given by

$$d\mu_{k,s}(z) := (1 + |z|^2)^s d\mu_k(z).$$

The space $H_{k\ell}^s$ satisfies the following properties.

Lemma 2.2 Let $s \in \mathbb{R}$. The space $H_{k\ell}^s$ is a Hilbert space.

Proof Let $(f_n)_{n\in\mathbb{N}}$ be a Cauchy sequence of $H^s_{k\ell}$. From the definition of the norm $\|.\|_{H^s_{k\ell}}$, it is easy to see that $(\mathcal{F}_{\ell}(f_n))_{n\in\mathbb{N}}$ is a Cauchy sequence of $L^2(\mu_{k,s})$. Since $L^2(\mu_{k,s})$ is complete, there exists a function $g \in L^2(\mu_{k,s})$ such that

$$\lim_{n \to \infty} \|\mathcal{F}_{\ell}(f_n) - g\|_{L^2(\mu_{k,s})} = 0.$$
 (2.2)

Then $g \in \mathcal{S}'(\mathbb{R}^d)$ and from Theorem 2.1 (iv), we obtain $f = (\mathcal{F}_\ell)^{-1}(g) \in \mathcal{S}'(\mathbb{R}^d)$. So, $\mathcal{F}_\ell(f) = g \in L^2(\mu_{k,s})$, which proves that $f \in H^s_{k\ell}$. Furthermore, using the relation (2.2), we obtain

$$\lim_{n \to \infty} \|f_n - f\|_{H_{k\ell}^s} = \lim_{n \to \infty} \|\mathcal{F}_{\ell}(f_n) - g\|_{L^2(\mu_{k,s})} = 0.$$

Hence, $H_{k\ell}^s$ is complete. \square

Lemma 2.3 Let $s \geq \gamma_{\ell} - \gamma_{k}$. The space $H_{k\ell}^{s}$ is continuously contained in $L^{2}(\mu_{\ell})$ and

$$||f||_{L^2(\mu_\ell)} \le 2^{(\gamma_\ell - \gamma_k)/2} \sqrt{\frac{c_\ell}{c_k}} ||f||_{H^s_{k\ell}}.$$

Proof Let $s \geq \gamma_{\ell} - \gamma_k$ and let $f \in H^s_{k\ell}$. Then

$$||f||_{L^2(\mu_\ell)}^2 = \frac{c_\ell}{c_k} \int_{\mathbb{R}^d} |\mathcal{F}_\ell(f)(z)|^2 w_{\ell-k}(z) d\mu_k(z).$$

By using the fact that $w_{\ell-k}(z) \leq 2^{\gamma_{\ell}-\gamma_{k}}|z|^{2(\gamma_{\ell}-\gamma_{k})}$, we obtain

$$||f||_{L^{2}(\mu_{\ell})}^{2} \leq 2^{\gamma_{\ell} - \gamma_{k}} \frac{c_{\ell}}{c_{k}} \int_{\mathbb{R}^{d}} \frac{|\mathcal{F}_{\ell}(f)(z)|^{2}}{(1 + |z|^{2})^{s - (\gamma_{\ell} - \gamma_{k})}} d\mu_{k,s}(z) \leq 2^{\gamma_{\ell} - \gamma_{k}} \frac{c_{\ell}}{c_{k}} ||f||_{H_{k\ell}^{s}}^{2}.$$

This completes the proof. \Box

Lemma 2.4 Let $s > 2\gamma_{\ell} - \gamma_k + d/2$. If $f \in H^s_{k\ell}$, then $\mathcal{F}_{\ell}(f) \in L^1(\mu_{\ell})$ and

$$\|\mathcal{F}_{\ell}(f)\|_{L^{1}(\mu_{\ell})} \leq C_{k,\ell} \|f\|_{H_{k,\ell}^{s}},$$

where

$$C_{k,\ell} = \left(\frac{c_\ell}{c_k} \int_{\mathbb{R}^d} w_{\ell-k}(z) \mathrm{d}\mu_{\ell,-s}(z)\right)^{1/2}.$$
 (2.3)

Proof Let $s > 2\gamma_{\ell} - \gamma_k + d/2$ and let $f \in H^s_{k\ell}$. Then

$$\|\mathcal{F}_{\ell}(f)\|_{L^{1}(\mu_{\ell})} = \frac{c_{\ell}}{c_{k}} \int_{\mathbb{R}^{d}} |\mathcal{F}_{\ell}(f)(z)| w_{\ell-k}(z) \mathrm{d}\mu_{k}(z).$$

Then by Hölder's inequality we obtain

$$||f||_{L^{1}(\mu_{\ell})} \leq \frac{c_{\ell}}{c_{k}} \left(\int_{\mathbb{R}^{d}} \left(w_{\ell-k}(z) \right)^{2} d\mu_{k,-s}(z) \right)^{1/2} ||f||_{H_{k\ell}^{s}}$$

$$\leq \left(\frac{c_{\ell}}{c_{k}} \int_{\mathbb{R}^{d}} w_{\ell-k}(z) d\mu_{\ell,-s}(z) \right)^{1/2} ||f||_{H_{k\ell}^{s}}$$

$$\leq C_{k,\ell} ||f||_{H_{k\ell}^{s}},$$

which yields the desired result. \square

Remark 2.5 Let $s > 2\gamma_{\ell} - \gamma_k + d/2$. If $f \in H^s_{k\ell}$, then by Lemmas 2.3 and 2.4 the function $\mathcal{F}_{\ell}(f)$ belongs to $L^1 \cap L^2(\mu_{\ell})$, and therefore

$$f(x) = \int_{\mathbb{R}^d} E_{\ell}(ix, z) \mathcal{F}_{\ell}(f)(z) d\mu_{\ell}(z), \text{ a.e. } x \in \mathbb{R}^d.$$

3. Dunkl type multiplier operators

Let m be a function in $L^2(\mu_k)$. The Dunkl multiplier operators $T_{k,\ell,m}$, are defined for $f \in H^s_{k\ell}$ by

$$T_{k,\ell,m}f(a,x) := \mathcal{F}_k^{-1}(m(a)\mathcal{F}_{\ell}(f))(x), \quad (a,x) \in (0,\infty) \times \mathbb{R}^d.$$
 (3.1)

The operators $T_{k,\ell,m}$ satisfy the following integral representation.

Lemma 3.1 If $m \in L^1 \cap L^2(\mu_k)$ and $f \in L^1(\mu_\ell) \cap H^s_{k\ell}$, then

$$T_{k,\ell,m}f(a,x) = \frac{1}{a^{2\gamma_k + d}} \int_{\mathbb{R}^d} W_{k\ell}(\frac{x}{a}, \frac{y}{a}, m) f(y) d\mu_{\ell}(y), \quad (a,x) \in (0, \infty) \times \mathbb{R}^d,$$

where

$$W_{k\ell}(x,y,m) = \int_{\mathbb{R}^d} m(z) E_k(ix,z) E_\ell(-iy,z) d\mu_k(z).$$

Proof From (3.1) and Theorem 2.1 (ii), we have

$$T_{k,\ell,m}f(a,x) = \int_{\mathbb{R}^d} m(az)\mathcal{F}_{\ell}(f)(z)E_k(ix,z)d\mu_k(z)$$
$$= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} m(az)f(y)E_k(ix,z)E_{\ell}(-iy,z)d\mu_{\ell}(y)d\mu_k(z).$$

The result follows from Fubini-Tonnelli's theorem. \Box

We denote by Ω_k the measure on $(0,\infty) \times \mathbb{R}^d$ given by $d\Omega_k(a,x) := \frac{da}{a} d\mu_k(x)$; and by $L^2(\Omega_k)$, the space of measurable functions F on $(0,\infty) \times \mathbb{R}^d$, such that

$$||F||_{L^2(\Omega_k)} := \left(\int_{\mathbb{R}^d} \int_0^\infty |F(a,x)|^2 d\Omega_k(a,x)\right)^{1/2} < \infty.$$

In the following, we give Plancherel formula for the operators $T_{k,\ell,m}$.

Theorem 3.2 Let m be a function in $L^2(\mu_k)$ satisfying the admissibility condition

$$\int_0^\infty |m(ax)|^2 \frac{\mathrm{d}a}{a} = 1, \quad \text{a.e. } x \in \mathbb{R}^d.$$
 (3.2)

Then, for $f \in H^0_{k\ell}$, we have

$$||T_{k,\ell,m}f||_{L^2(\Omega_k)} = ||f||_{H^0}. \tag{3.3}$$

Proof From Fubini-Tonnelli's theorem, Theorem 2.1 (iii) and (3.2) we obtain

$$\int_{\mathbb{R}^{d}} \int_{0}^{\infty} |T_{k,\ell,m} f(a,x)|^{2} d\Omega_{k}(a,x) = \int_{0}^{\infty} \int_{\mathbb{R}^{d}} |m(ay)|^{2} |\mathcal{F}_{\ell}(f)(y)|^{2} d\mu_{k}(y) \frac{da}{a}
= \int_{\mathbb{R}^{d}} |\mathcal{F}_{\ell}(f)(y)|^{2} \left(\int_{0}^{\infty} |m(ay)|^{2} \frac{da}{a} \right) d\mu_{k}(y)
= \int_{\mathbb{R}^{d}} |\mathcal{F}_{\ell}(f)(y)|^{2} d\mu_{k}(y) = ||f||_{H_{k\ell}^{0}}^{2}.$$

This gives the result. \square

As applications, we give the following examples.

Example 3.3 Let the function m_t , t > 0, be defined by

$$m_t(x) := -\sqrt{8} t|x|^2 e^{-t|x|^2}, \quad x \in \mathbb{R}^d.$$

Then

(a) m_t belongs to $L^1 \cap L^2(\mu_k)$, and by (1.1), we have

$$||m_t||_{L^1(\mu_k)} = \sqrt{8} t \int_{\mathbb{R}^d} |x|^2 e^{-t|x|^2} d\mu_k(x) = -\sqrt{8} t \frac{\partial}{\partial t} \left(\int_{\mathbb{R}^d} e^{-t|x|^2} d\mu_k(x) \right) = \frac{\sqrt{2}(2\gamma_k + d)}{(\sqrt{2t})^{2\gamma_k + d}},$$

and

$$||m_t||_{L^2(\mu_k)}^2 = 8t^2 \int_{\mathbb{R}^d} |x|^4 e^{-2t|x|^2} d\mu_k(x) = 2t^2 \frac{\partial^2}{\partial t^2} \left(\int_{\mathbb{R}^d} e^{-2t|x|^2} d\mu_k(x) \right)$$
$$= \frac{(2\gamma_k + d)(\gamma_k + d/2 + 1)}{(2\sqrt{t})^{2\gamma_k + d}}.$$

(b) m_t satisfies the admissibility condition (3.2), that is

$$\int_0^\infty |m_t(ax)|^2 \frac{\mathrm{d}a}{a} = 8t^2 |x|^4 \int_0^\infty a^3 e^{-2t|x|^2 a^2} \mathrm{d}a = 1.$$

Then the associated operators T_{k,ℓ,m_t} satisfy the formula (3.3).

We use Lemma 3.1, then for $f \in L^1(\mu_\ell) \cap H^s_{k\ell}$, we have

$$T_{k,\ell,m_t} f(a,x) = \frac{\sqrt{8} t}{a^{2\gamma_k + d}} \int_{\mathbb{R}^d} \frac{\partial}{\partial t} \left[h_{k\ell}(\frac{x}{a}, \frac{y}{a}, t) \right] f(y) d\mu_{\ell}(y), \quad x \in \mathbb{R}^d,$$
(3.4)

where

$$h_{k\ell}(x,y,t) = \int_{\mathbb{R}^d} e^{-t|z|^2} E_k(ix,z) E_{\ell}(-iy,z) d\mu_k(z).$$

If $k = \ell$, then h_{kk} is the Dunkl-type heat kernel [16,17] and this kernel is given by

$$h_{kk}(x,y,t) = \frac{1}{(2t)^{\gamma_k + d/2}} e^{-(|x|^2 + |y|^2)/4t} E_k(\frac{x}{\sqrt{2t}}, \frac{y}{\sqrt{2t}}).$$

Example 3.4 Let the function m_t , t > 0, be defined by

$$m_t(x) := -2t|x|e^{-t|x|}, \quad x \in \mathbb{R}^d.$$

Then

(a) m_t belongs to $L^1 \cap L^2(\mu_k)$, and

$$||m_t||_{L^1(\mu_k)} = 2t \int_{\mathbb{R}^d} |x| e^{-t|x|} d\mu_k(x) = -2t \frac{\partial}{\partial t} \left(\int_{\mathbb{R}^d} e^{-t|x|} d\mu_k(x) \right).$$

Since,

$$e^{-t|x|} = \frac{1}{\sqrt{\pi}} \int_0^\infty \frac{e^{-s}}{\sqrt{s}} e^{-\frac{t^2}{4s}|x|^2} ds, \tag{3.5}$$

by Fubini-Tonnelli's theorem and (1.1), we deduce that

$$\int_{\mathbb{R}^d} e^{-t|x|} d\mu_k(x) = \frac{1}{\sqrt{\pi}} \int_0^\infty \frac{e^{-s}}{\sqrt{s}} \left(\int_{\mathbb{R}^d} e^{-\frac{t^2}{4s}|x|^2} d\mu_k(x) \right) ds = \frac{1}{\sqrt{\pi}} \int_0^\infty \frac{e^{-s}}{\sqrt{s}} \left(\frac{\sqrt{2s}}{t} \right)^{2\gamma_k + d} ds
= \frac{\Gamma(\gamma_k + \frac{d+1}{2})}{\sqrt{\pi}} \left(\frac{\sqrt{2}}{t} \right)^{2\gamma_k + d}.$$

Thus,

$$||m_t||_{L^1(\mu_k)} = \frac{2(2\gamma_k + d)\Gamma(\gamma_k + \frac{d+1}{2})}{\sqrt{\pi}} (\frac{\sqrt{2}}{t})^{2\gamma_k + d}.$$

On the other hand,

$$||m_t||_{L^2(\mu_k)}^2 = 4t^2 \int_{\mathbb{R}^d} |x|^2 e^{-2t|x|} d\mu_k(x) = \frac{\partial^2}{\partial t^2} \left(\int_{\mathbb{R}^d} e^{-2t|x|} d\mu_k(x) \right)$$
$$= \frac{\partial^2}{\partial t^2} \left(\frac{\Gamma(\gamma_k + \frac{d+1}{2})}{\sqrt{\pi}(\sqrt{2}t)^{2\gamma_k + d}} \right).$$

Thus,

$$||m_t||_{L^2(\mu_k)}^2 = \frac{4(2\gamma_k + d)\Gamma(\gamma_k + \frac{d+3}{2})}{\sqrt{\pi}(\sqrt{2}t)^{2\gamma_k + d + 2}}.$$

(b) m_t satisfies the admissibility condition (3.2), that is

$$\int_0^\infty |m_t(ax)|^2 \frac{\mathrm{d}a}{a} = 4t^2 |x|^2 \int_0^\infty ae^{-2t|x|a} \mathrm{d}a = 1.$$

Then the associated operators T_{k,ℓ,m_t} satisfy the formula (3.3).

We use Lemma 3.1, then for $f \in L^1(\mu_\ell) \cap H^s_{k\ell}$, we have

$$T_{k,\ell,m_t} f(a,x) = \frac{2t}{a^{2\gamma_k+d}} \int_{\mathbb{R}^d} \frac{\partial}{\partial t} \left[p_{k\ell}(\frac{x}{a}, \frac{y}{a}, t) \right] f(y) d\mu_{\ell}(y), \tag{3.6}$$

where

$$p_{k\ell}(x,y,t) = \int_{\mathbb{R}^d} e^{-t|z|} E_k(ix,z) E_\ell(-iy,z) \mathrm{d}\mu_k(z).$$

If $k = \ell$, then p_{kk} is the Dunkl-type Poisson kernel [18], and from (3.5) this kernel is given by

$$p_{kk}(x,y,t) = \frac{1}{\sqrt{\pi}} \int_0^\infty \frac{e^{-s}}{\sqrt{s}} h_{kk}(x,y,\frac{t^2}{4s}) ds.$$

4. Uncertainty principles

We can obtain the following inequality from the Heisenberg-Pauli-Weyl uncertainty principle.

Theorem 4.1 Let m be a function in $L^2(\mu_k)$ satisfying the admissibility condition (3.2). Then, for $f \in H^0_{k\ell}$, we have

$$||f||_{H_{k\ell}^0}^2 \le \frac{2}{2\gamma_k + d} ||y| \mathcal{F}_{\ell}(f) ||_{L^2(\mu_k)} ||x| T_{k,\ell,m} f||_{L^2(\Omega_k)}.$$

Proof Let $f \in H^s_{k\ell}$, $s \ge \gamma_\ell - \gamma_k$. Assume that $||y|\mathcal{F}_\ell(f)||_{L^2(\mu_k)} < \infty$ and $||x|T_{k,\ell,m}f||^2_{L^2(\Omega_k)} < \infty$. The inequality (1.2) leads to

$$\int_{\mathbb{R}^d} |T_{k,\ell,m} f(a,x)|^2 d\mu_k(x) \leq \frac{2}{2\gamma_k + d} \left(\int_{\mathbb{R}^d} |x|^2 |T_{k,\ell,m} f(a,x)|^2 d\mu_k(x) \right)^{1/2} \times \left(\int_{\mathbb{R}^d} |y|^2 |\mathcal{F}_k(T_{k,\ell,m} f(a,.))(y)|^2 d\mu_k(y) \right)^{1/2}.$$

Integrating with respect to $\frac{da}{a}$ gives

$$||T_{k,\ell,m}f||_{L^{2}(\Omega_{k})}^{2} \leq \frac{2}{2\gamma_{k}+d} \int_{0}^{\infty} \left(\int_{\mathbb{R}^{d}} |x|^{2} |T_{k,\ell,m}f(a,x)|^{2} d\mu_{k}(x) \right)^{1/2} \times \left(\int_{\mathbb{R}^{d}} |y|^{2} |\mathcal{F}_{k}(T_{k,\ell,m}f(a,.))(y)|^{2} d\mu_{k}(y) \right)^{1/2} \frac{da}{a}.$$

From Theorem 3.2 and the Schwarz's inequality, we get

$$||f||_{H_{k\ell}^0}^2 \le \frac{2}{2\gamma_k + d} \Big(\int_0^\infty \int_{\mathbb{R}^d} |x|^2 |T_{k,\ell,m} f(a,x)|^2 d\mu_k(x) \frac{da}{a} \Big)^{1/2} \times \Big(\int_0^\infty \int_{\mathbb{R}^d} |y|^2 |\mathcal{F}_k(T_{k,\ell,m} f(a,.))(y)|^2 d\mu_k(y) \frac{da}{a} \Big)^{1/2}.$$

But by (3.1), Fubini-Tonnelli's theorem and (3.2), we have

$$\int_{0}^{\infty} \int_{\mathbb{R}^{d}} |y|^{2} |\mathcal{F}_{k}(T_{k,\ell,m}f(a,.))(y)|^{2} d\mu_{k}(y) \frac{da}{a} = \int_{0}^{\infty} \int_{\mathbb{R}^{d}} |y|^{2} |m(ay)|^{2} |\mathcal{F}_{\ell}(f)(y)|^{2} d\mu_{k}(y) \frac{da}{a}$$
$$= \int_{\mathbb{R}^{d}} |y|^{2} |\mathcal{F}_{\ell}(f)(y)|^{2} d\mu_{k}(y).$$

This yields the result and completes the proof of the theorem. \Box

Let E be a measurable subset of \mathbb{R}^d . We say that a function $f \in H^s_{k\ell}$, is ε -concentrated on E, if

$$||f - \chi_E f||_{H^s_{h,\ell}} \le \varepsilon ||f||_{H^s_{h,\ell}},\tag{4.1}$$

where χ_E is the indicator function of the set E.

Let S be a measurable subset of $(0, \infty) \times \mathbb{R}^d$ and let $f \in H^s_{k\ell}$. We say that $T_{k,\ell,m}f$ is η -concentrated on S, if

$$||T_{k,\ell,m}f - \chi_S T_{k,\ell,m}f||_{L^2(\Omega_k)} \le \eta ||T_{k,\ell,m}f||_{L^2(\Omega_k)}. \tag{4.2}$$

Similarly as Theorem 4.1, we can obtain an inequality from the classical Donoho-Stark's uncertainty principle.

Theorem 4.2 Let $f \in H^s_{k\ell}$, $s \ge \gamma_\ell - \gamma_k$ and let $m \in L^1 \cap L^2(\mu_k)$ satisfying (3.2). If f is ε -concentrated on E and $T_{k,\ell,m}f$ is η -concentrated on S, then

$$\left(\mu_{\ell}(E)\right)^{1/2} \left(\int \int_{S} \frac{\mathrm{d}\Omega_{k}(a,x)}{a^{2(2\gamma_{k}+d)}} \right)^{1/2} \ge \frac{(1-\eta-\varepsilon)}{2^{(\gamma_{\ell}-\gamma_{k})/2} \|m\|_{L^{1}(\mu_{k})}} \sqrt{\frac{c_{k}}{c_{\ell}}}.$$

Proof Let $f \in H^s_{k\ell}$, $s \geq \gamma_\ell - \gamma_k$ and let $m \in L^1 \cap L^2(\mu_k)$. Assume that $\mu_\ell(E) < \infty$ and $\int \int_S \frac{d\Omega_k(a,x)}{a^{2(2\gamma_k+d)}} < \infty$. From (4.1), (4.2) and Theorem 3.2 it follows that

$$||T_{k,\ell,m}f - \chi_{S}T_{k,\ell,m}(\chi_{E}f)||_{L^{2}(\Omega_{k})}$$

$$\leq ||T_{k,\ell,m}f - \chi_{S}T_{k,\ell,m}f||_{L^{2}(\Omega_{k})} + ||\chi_{S}T_{k,\ell,m}(f - \chi_{E}f)||_{L^{2}(\Omega_{k})}$$

$$\leq \eta ||T_{k,\ell,m}f||_{L^{2}(\Omega_{k})} + ||T_{k,\ell,m}(f - \chi_{E}f)||_{L^{2}(\Omega_{k})}$$

$$\leq \eta ||\mathcal{F}_{\ell}(f)||_{L^{2}(\mu_{k})} + ||f - \chi_{E}f||_{H^{s}_{k,\ell}} \leq (\eta + \varepsilon)||f||_{H^{s}_{k,\ell}}.$$

Then the triangle inequality shows that

$$||T_{k,\ell,m}f||_{L^{2}(\Omega_{k})} \leq ||\chi_{S}T_{k,\ell,m}(\chi_{E}f)||_{L^{2}(\Omega_{k})} + ||T_{k,\ell,m}f - \chi_{S}T_{k,\ell,m}(\chi_{E}f)||_{L^{2}(\Omega_{k})}$$
$$\leq ||\chi_{S}T_{k,\ell,m}(\chi_{E}f)||_{L^{2}(\Omega_{k})} + (\eta + \varepsilon)||f||_{H^{s,\varepsilon}_{s,\ell}}.$$

But

$$\|\chi_S T_{k,\ell,m}(\chi_E f)\|_{L^2(\Omega_k)} = \left(\int \int_S |T_{k,\ell,m}(\chi_E f)(a,x)|^2 d\Omega_k(a,x)\right)^{1/2}.$$

Since $f \in H^s_{k\ell}$, by Lemma 2.3, the function f belongs to $L^2(\mu_\ell)$, and we have

$$|T_{k,\ell,m}(\chi_E f)(a,x)| \leq ||m(a.)\mathcal{F}_{\ell}(\chi_E f)||_{L^1(\mu_k)} \leq ||m(a.)||_{L^1(\mu_k)} ||\mathcal{F}_{\ell}(\chi_E f)||_{L^{\infty}(\mu_{\ell})}$$

$$\leq \frac{1}{a^{2\gamma_k+d}} ||m||_{L^1(\mu_k)} ||\chi_E f||_{L^1(\mu_{\ell})}$$

$$\leq \frac{1}{a^{2\gamma_k+d}} ||m||_{L^1(\mu_k)} ||f||_{L^2(\mu_{\ell})} (\mu_{\ell}(E))^{1/2}.$$

Thus,

$$\|\chi_S T_{k,\ell,m}(\chi_E f)\|_{L^2(\Omega_k)} \le \|m\|_{L^1(\mu_k)} \|f\|_{L^2(\mu_\ell)} (\mu_\ell(E))^{1/2} \left(\int \int_S \frac{\mathrm{d}\Omega_k(a,x)}{a^{2(2\gamma_k+d)}} \right)^{1/2}$$

and

$$||T_{k,\ell,m}f||_{L^{2}(\Omega_{k})} \leq ||m||_{L^{1}(\mu_{k})} ||f||_{L^{2}(\mu_{\ell})} (\mu_{\ell}(E))^{1/2} \left(\int \int_{S} \frac{\mathrm{d}\Omega_{k}(a,x)}{a^{2(2\gamma_{k}+d)}} \right)^{1/2} + (\eta + \varepsilon) ||f||_{H^{s}_{\varepsilon}}.$$

By applying Theorem 3.2, we obtain

$$(\mu_{\ell}(E))^{1/2} \Big(\int \int_{S} \frac{\mathrm{d}\Omega_{k}(a,x)}{a^{2(2\gamma_{k}+d)}} \Big)^{1/2} \ge \frac{(1-\eta-\varepsilon)\|f\|_{H_{k}^{s}}}{\|m\|_{L^{1}(\mu_{k})} \|f\|_{L^{2}(\mu_{\ell})}}.$$

Then Lemma 2.3 gives the desired result. \square

Remark 4.3 If $S \subset \{(a,x) \in (0,\infty) \times \mathbb{R}^d : a \geq \delta\}$ for some $\delta > 0$, we suppose that $\alpha = \max\{\frac{1}{a} : (a,x) \in S \text{ for some } x \in \mathbb{R}^d\}$. Then by Theorem 4.2 we deduce that

$$(\mu_{\ell}(E))^{1/2} (\Omega_k(S))^{1/2} \ge \frac{(1 - \eta - \varepsilon)}{\alpha^{2\gamma_k + d} 2^{(\gamma_\ell - \gamma_k)/2} ||m||_{L^1(\mu_k)}} \sqrt{\frac{c_k}{c_\ell}}.$$

5. Extremal functions

In this section, by using the theory of extremal function and reproducing kernel of Hilbert space [10,11,19] we study the extremal function associated to the Dunkl multiplier operators $T_{k,\ell,m}$. This function was studied firstly in [7] (when $k = \ell$), and some properties related to the dual Dunkl-Sonine operator of this function were given in [6].

Let $\lambda > 0$. We denote by $\langle ., . \rangle_{\lambda, H^s_{k\ell}}$ the inner product defined on the space $H^s_{k\ell}$ by

$$\langle f, g \rangle_{\lambda, H_{k\ell}^s} := \lambda \langle f, g \rangle_{H_{k\ell}^s} + \langle \mathcal{F}_{\ell}(f), \mathcal{F}_{\ell}(g) \rangle_{L^2(\mu_k)}, \tag{5.1}$$

and the norm $||f||_{\lambda, H^s_{k\ell}} := \sqrt{\langle f, f \rangle_{\lambda, H^s_{k\ell}}}$.

On $H_{k\ell}^s$ the two norms $\|.\|_{H_{k\ell}^s}$ and $\|.\|_{\lambda,H_{k\ell}^s}$ are equivalent. This $(H_{k\ell}^s,\langle.,.\rangle_{\lambda,H_{k\ell}^s})$ is a Hilbert space with reproducing kernel given by the following theorem.

Lemma 5.1 Let $\lambda > 0$, and let $s > 2\gamma_{\ell} - \gamma_k + d/2$. The space $(H_{k\ell}^s, \langle ., . \rangle_{\lambda, H_{k\ell}^s})$ has the reproducing kernel

$$K_s(x,y) = \frac{c_{\ell}}{c_k} \int_{\mathbb{R}^d} \frac{E_{\ell}(ix,z) E_{\ell}(-iy,z)}{1 + \lambda (1 + |z|^2)^s} w_{\ell-k}(z) d\mu_{\ell}(z), \tag{5.2}$$

that is

- (i) For all $y \in \mathbb{R}^d$, the function $x \to K_s(x,y)$ belongs to $H_{k\ell}^s$.
- (ii) The reproducing property: for all $f \in H_{k\ell}^s$ and $y \in \mathbb{R}^d$,

$$\langle f, K_s(.,y) \rangle_{\lambda, H_{i,s}^s} = f(y).$$

Proof (i) Let $y \in \mathbb{R}^d$ and $s > 2\gamma_{\ell} - \gamma_k + d/2$. From (2.1), the function

$$\Phi_y: z \to \frac{c_\ell}{c_k} \frac{E_\ell(-iy, z)}{1 + \lambda(1 + |z|^2)^s} w_{\ell-k}(z)$$

belongs to $L^1 \cap L^2(\mu_\ell)$. Then, the function K_s is well defined and by Theorem 2.1 (ii), we have

$$K_s(x,y) = \mathcal{F}_{\ell}^{-1}(\Phi_y)(x), \quad x \in \mathbb{R}^d.$$
(5.3)

Then by Theorem 2.1 (iii) and (2.1), we obtain

$$|\mathcal{F}_{\ell}(K_s(.,y))(z)| \le \frac{c_{\ell}}{c_k} \frac{w_{\ell-k}(z)}{\lambda(1+|z|^2)^s},$$

and

$$||K_s(.,y)||_{H^s_{k\ell}} \le \frac{1}{\lambda} C_{k,\ell} < \infty.$$

This proves that for all $y \in \mathbb{R}^d$ the function $K_s(.,y)$ belongs to $H^s_{k\ell}$.

(ii) Let $f \in H_{k\ell}^s$ and $y \in \mathbb{R}^d$. From (5.1) and (5.3), we have

$$\langle f, K_s(.,y) \rangle_{\lambda, H_{k\ell}^s} = \int_{\mathbb{R}^d} E_\ell(iy, z) \mathcal{F}_\ell(f)(z) d\mu_\ell(z),$$

and from Remark 2.5, we obtain the reproducing property:

$$\langle f, K_s(.,y) \rangle_{\lambda, H_{h,\theta}^s} = f(y).$$

This completes the proof of the theorem. \square

The main result of this section can be stated as follows.

Theorem 5.2 Let $s > 2\gamma_{\ell} - \gamma_k + d/2$ and let $m \in L^2(\mu_k)$ satisfy (3.2). For any $g \in L^2(\Omega_k)$ and for any $\lambda > 0$, there exists a unique function $f_{\lambda,g}^*$, such that the infimum

$$\inf_{f \in H^s_{k\ell}} \left\{ \lambda \|f\|_{H^s_{k\ell}}^2 + \|g - T_{k,\ell,m} f\|_{L^2(\Omega_k)}^2 \right\}$$
 (5.4)

is attained. Moreover, the extremal function $f_{\lambda,g}^*$ is given by

$$f_{\lambda,g}^*(y) = \int_{\mathbb{R}^d} \int_0^\infty g(a,x) Q((a,x),y) d\Omega_k(a,x),$$

where

$$Q((a,x),y) = \int_{\mathbb{R}^d} \frac{\overline{m(az)}E_k(-ix,z)E_\ell(iy,z)}{1 + \lambda(1+|z|^2)^s} d\mu_\ell(z).$$

Proof Let $\lambda > 0$. We denote by $\langle .,. \rangle_{\lambda, H^s_{k\ell}}$ the inner product defined on the space $H^s_{k\ell}$ by

$$\langle f, g \rangle_{\lambda, H_{k\ell}^s} := \lambda \langle f, g \rangle_{H_{k\ell}^s} + \langle T_{k,\ell,m} f, T_{k,\ell,m} g \rangle_{L^2(\Omega_k)}.$$

Since $m \in L^2(\mu_k)$ satisfies (3.2), by Theorem 3.2, the inner product $\langle .,. \rangle_{\lambda, H^s_{k\ell}}$ can be written

$$\langle f, g \rangle_{\lambda, H_{L_{\ell}}^s} = \lambda \langle f, g \rangle_{H_{L_{\ell}}^s} + \langle \mathcal{F}_{\ell}(f), \mathcal{F}_{\ell}(g) \rangle_{L^2(\mu_k)}.$$

Then, the existence and unicity of the extremal function $f_{\lambda,g}^*$ satisfying (5.4) is given as in the same of [9,20,21]. Especially, $f_{\lambda,g}^*$ is given by the reproducing kernel of $H_{k\ell}^s$ with $\|.\|_{\lambda,H_{k\ell}^s}$ norm

$$f_{\lambda,g}^*(y) = \langle g, T_{k,\ell,m}(K_s(.,y)) \rangle_{L^2(\Omega_k)}, \tag{5.5}$$

where K_s is the kernel given by (5.2).

But by Theorem 2.1 (ii) and (5.3), we have

$$T_{k,\ell,m}(K_s(.,y))(a,x) = \int_{\mathbb{R}^d} m(az) \mathcal{F}_{\ell}(K_s(.,y))(z) E_k(ix,z) d\mu_k(z)$$
$$= \int_{\mathbb{R}^d} m(az) \frac{E_k(ix,z) E_{\ell}(-iy,z)}{1 + \lambda (1 + |z|^2)^s} d\mu_{\ell}(z).$$

This clearly yields the result. \Box

As application, we give the following examples.

Example 5.3 Let $s > 2\gamma_{\ell} - \gamma_k + d/2$, $\lambda > 0$ and $g \in L^2(\Omega_k)$.

(i) If $m_t(x) := -\sqrt{8} t |x|^2 e^{-t|x|^2}$, then

$$f_{\lambda,g}^*(y) = \int_{\mathbb{R}^d} \int_0^\infty g(a,x) Q((a,x), y) d\Omega_k(a,x),$$

where

$$Q((a,x),y) = -\sqrt{8} t a^2 \int_{\mathbb{R}^d} \frac{|z|^2 e^{-ta^2|z|^2}}{1 + \lambda (1 + |z|^2)^s} E_k(-ix,z) E_\ell(iy,z) d\mu_\ell(z).$$

By (3.4), (5.5) and the fact that $K_s(y,z) = \overline{K_s(z,y)}$ we obtain

$$Q((a,x),y) = \frac{\sqrt{8}t}{a^{2\gamma_k+d}} \int_{\mathbb{R}^d} \frac{\partial}{\partial t} \left[h_{k\ell}(\frac{x}{a}, \frac{z}{a}, t) \right] K_s(y, z) d\mu_{\ell}(z).$$

(ii) If $m_t(x) := -2t|x|e^{-t|x|}$, then

$$f_{\lambda,g}^*(y) = \int_{\mathbb{R}^d} \int_0^\infty g(a,x) Q((a,x),y) d\Omega_k(a,x),$$

where

$$Q((a,x),y) = -2ta \int_{\mathbb{R}^d} \frac{|z|e^{-ta|z|}}{1 + \lambda(1+|z|^2)^s} E_k(-ix,z) E_\ell(iy,z) d\mu_\ell(z).$$

By (3.6) and (5.5) we deduce that

$$Q((a,x),y) = \frac{2t}{a^{2\gamma_k+d}} \int_{\mathbb{R}^d} \frac{\partial}{\partial t} \left[p_{k\ell}(\frac{x}{a}, \frac{z}{a}, t) \right] K_s(y, z) d\mu_{\ell}(z).$$

Theorem 5.4 Let $s > 2\gamma_{\ell} - \gamma_k + d/2$, $\lambda > 0$ and $g \in L^2(\Omega_k)$. The extremal function $f_{\lambda,g}^*$

(i) $|f_{\lambda,g}^*(y)| \leq \frac{C_{k,\ell}}{2\sqrt{\lambda}} ||g||_{L^2(\Omega_k)}$, where $C_{k,\ell}$ is the constant given by (2.3).

(ii) $||f_{\lambda,g}^*||_{L^2(\mu_\ell)}^2 \le \frac{D_{k,\ell}}{\lambda} ||m||_{L^2(\mu_k)}^2 \int_{\mathbb{R}^d} \int_0^\infty |g(a,x)|^2 \frac{e^{(|x|^2 + a^2)/2}}{a^{2\gamma_k + d + 1}} d\Omega_k(a,x),$ where

$$D_{k,\ell} = \sqrt{\pi} \frac{c_k}{c_\ell} 2^{\gamma_\ell - \gamma_k - 5/2}.$$

Proof (i) From (5.5) and Theorem 3.2, we have

$$|f_{\lambda,g}^*(y)| \le ||g||_{L^2(\Omega_k)} ||T_{k,\ell,m}(K_s(.,y))||_{L^2(\Omega_k)} \le ||g||_{L^2(\Omega_k)} ||\mathcal{F}_{\ell}(K_s(.,y))||_{L^2(\mu_k)}.$$

Then, by (5.3) we deduce

$$|f_{\lambda,g}^*(y)| \le ||g||_{L^2(\Omega_k)} \left(\frac{c_\ell}{c_k} \int_{\mathbb{R}^d} \frac{w_{\ell-k}(z) \mathrm{d}\mu_\ell(z)}{[1 + \lambda(1 + |z|^2)^s]^2}\right)^{1/2}.$$

Using the fact that

$$\left[1 + \lambda(1+|z|^2)^s\right]^2 \ge 4\lambda(1+|z|^2)^s,\tag{5.6}$$

we obtain the result.

(ii) We write

$$f_{\lambda,g}^*(y) = \int_{\mathbb{R}^d} \int_0^\infty \sqrt{a} e^{-(|x|^2 + a^2)/4} \frac{e^{(|x|^2 + a^2)/4}}{\sqrt{a}} g(a, x) Q((a, x), y) d\Omega_k(a, x).$$

Applying Hölder's inequality, we obtain

$$|f_{\lambda,g}^*(y)|^2 \leq \sqrt{\frac{\pi}{2}} \int_{\mathbb{R}^d} \int_0^\infty |g(a,x)|^2 \frac{e^{(|x|^2+a^2)/2}}{a} \big|Q((a,x),y)\big|^2 \mathrm{d}\Omega_k(a,x).$$

Thus and from Fubini-Tonnelli's theorem, we get

$$||f_{\lambda,g}^*||_{L^2(\mu_\ell)}^2 \le \sqrt{\frac{\pi}{2}} \int_{\mathbb{R}^d} \int_0^\infty |g(a,x)|^2 \frac{e^{(|x|^2 + a^2)/2}}{a} ||Q((a,x),.)||_{L^2(\mu_\ell)}^2 d\Omega_k(a,x).$$

Let
$$\Psi_x(z)=\overline{\overline{m(az)}E_k(-ix,z)\over 1+\lambda(1+|z|^2)^s}.$$
 Since $\Psi_x\in L^1\cap L^2(\mu_\ell),$ then

$$Q((a,x),y) = \mathcal{F}_{\ell}^{-1}(\Psi_x)(y).$$

Thus, by Theorem 2.1 (iii) we deduce that

$$||Q((a,x),.)||_{L^{2}(\mu_{\ell})}^{2} = \int_{\mathbb{R}^{d}} |\mathcal{F}_{\ell}(Q((a,x),.))(z)|^{2} d\mu_{\ell}(z) \le \int_{\mathbb{R}^{d}} \frac{|m(az)|^{2} d\mu_{\ell}(z)}{[1 + \lambda(1 + |z|^{2})^{s}]^{2}}.$$

Then using the inequality (5.6), we obtain

$$||Q((a,x),.)||_{L^{2}(\mu_{\ell})}^{2} \leq \frac{1}{4\lambda} \frac{c_{k}}{c_{\ell}} \int_{\mathbb{R}^{d}} \frac{|m(az)|^{2} w_{\ell-k}(z)}{(1+|z|^{2})^{s}} d\mu_{k}(z)$$

$$\leq \frac{1}{\lambda} \frac{c_{k}}{c_{\ell}} 2^{\gamma_{\ell}-\gamma_{k}-2} \int_{\mathbb{R}^{d}} \frac{|m(az)|^{2} |z|^{2(\gamma_{\ell}-\gamma_{k})}}{(1+|z|^{2})^{s}} d\mu_{k}(z)$$

$$\leq \frac{1}{\lambda} \frac{c_{k}}{c_{\ell}} 2^{\gamma_{\ell}-\gamma_{k}-2} \int_{\mathbb{R}^{d}} |m(az)|^{2} d\mu_{k}(z).$$

Thus

$$||Q((a,x),.)||_{L^{2}(\mu_{\ell})}^{2} \leq \frac{1}{\lambda} \frac{c_{k}}{c_{\ell}} \frac{2^{\gamma_{\ell} - \gamma_{k} - 2}}{a^{2\gamma_{k} + d}} ||m||_{L^{2}(\mu_{k})}^{2}.$$

From this inequality we deduce the result. \Box

References

- C. F. DUNKL. Hankel Transforms Associated to Finite Reflection Groups. Amer. Math. Soc., Providence, RI, 1992.
- [2] M. RÖSLER. An uncertainty principle for the Dunkl transform. Bull. Austral. Math. Soc., 1999, 59(3): 353-360.
- [3] N. SHIMENO. A note on the uncertainty principle for the Dunkl transform. J. Math. Sci. Univ. Tokyo, 2001, 8(1): 33–42.
- [4] F. SOLTANI. Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkl transform on ℝ^d. Bull. Aust. Math. Soc., 2013, 87(2): 316–325.
- [5] F. SOLTANI. A general form of Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkl transform. Integral Transforms Spec. Funct., 2013, 24(5): 401–409.
- [6] F. SOLTANI. Multiplier operators and extremal functions related to the dual Dunkl-Sonine operator. Acta Math. Sci. Ser. B Engl. Ed., 2013, 33(2): 430–442.

[7] F. SOLTANI. Best approximation formulas for the Dunkl L^2 -multiplier operators on \mathbb{R}^d . Rocky Mountain J. Math., 2012, 42(1): 305–328.

- [8] D. L. DONOHO, P. B. STARK. Uncertainty principles and signal recovery. SIAM J. Appl. Math., 1989, 49(3): 906–931.
- [9] T. MATSUURA, S. SAITOH, D. D. TRONG. Approximate and analytical inversion formulas in heat conduction on multidimensional spaces. J. Inverse Ill-Posed Probl., 2005, 13(3-6): 479–493.
- [10] S. SAITOH. The Weierstrass transform and an isometry in the heat equation. Applicable Anal., 1983, 16(1): 1–6.
- [11] S. SAITOH. Best approximation, Tikhonov regularization and reproducing kernels. Kodai Math. J., 2005, 28(2): 359–367.
- [12] M. YAMADA, T. MATSUURA, S. SAITOH. Representations of inverse functions by the integral transform with the sign kernel. Fract. Calc. Appl. Anal., 2007, 10(2): 161–168.
- [13] C. F. DUNKL. Integral kernels with reflection group invariance. Canad. J. Math., 1991, 43(6): 1213–1227.
- [14] M. F. E. DE JEU. The Dunkl transform. Invent. Math., 1993, 113: 147-162.
- [15] E. M. OPDAM. Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group. Compositio Math., 1993, 85(3): 333–373.
- [16] M. RÖSLER, M. VOIT. Markov processes related with Dunkl operators. Adv. in Appl. Math., 1998, 21(4): 575–643.
- [17] F. SOLTANI. Inversion formulas in the Dunkl-type heat conduction on \mathbb{R}^d . Appl. Anal., 2005, 84(6): 541–553.
- [18] F. SOLTANI. Littlewood-Paley g-function in the Dunkl analysis on \mathbb{R}^d . JIPAM. J. Inequal. Pure Appl. Math., 2005, **6**(3): Article 84, 13 pp.
- [19] S. SAITOH. Hilbert spaces induced by Hilbert space valued functions. Proc. Amer. Math. Soc., 1983, 89(1): 74–78.
- [20] G. S. KIMELDORF, G. WAHBA. Some results on Tchebycheffian spline functions. J. Math. Anal. Appl., 1971, 33: 82–95.
- [21] S. SAITOH. Approximate real inversion formulas of the Gaussian convolution. Appl. Anal., 2004, 83(7): 727–733