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Abstract We study some class of Dunkl multiplier operators; and we establish for them the
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1. Introduction

In this paper, we consider R? with the Euclidean inner product (., .) and norm |y| := +/(y, y).
For o € R9\{0}, let o, be the reflection in the hyperplane H, C R orthogonal to a:

A finite set $® C R4\{0} is called a root system, if RN R.a = {—a,a} and o, = R for
all @« € R. We assume that it is normalized by |a|?> = 2 for all @ € R. For a root system R,
the reflections o, a € R, generate a finite group G. The Coxeter group G is a subgroup of the
orthogonal group O(d). All reflections in G correspond to suitable pairs of roots. For a given
B € RN\ U,cq Ha, we fix the positive subsystem R, := {a € R : (o, 8) > 0}. Then for each
o € R either € N or —a € RN

Let k,¢ : ® — C be two multiplicity functions on R (functions which are constants on the
orbits under the action of G). As an abbreviation, we introduce the index v := > k()
and v, =3 e, l(a).

Throughout this paper, we will assume that k(«),f(a) > 0 for all @ € R, and v, > %.

aeR

Moreover, let wy, denote the weight function wy,(z) := [[ e, [(e, z) |2 for all 2 € R?, which

is G-invariant and homogeneous of degree 2-y.
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Let ¢ be the Mehta-type constant given by
-1
Cp = (/ ef‘zp/zwk(x)dx) . (1.1)
Rd

We denote by py, the measure on R? given by duy(z) := crwy(z)dz; and by LP(uy), 1 < p < oo,

the space of measurable functions f on R%, such that

1/
sy = ([ 1F@Pdm(@) " <o 1< 0 <.

I fll zoo (ug) == e€ss sup |f(x)] < oo.
zER
For f € L'(uy) the Dunkl transform is defined (see [1]) by
Fr(Ny) = » Ep(~iz,y) f(z)dur(z), y € R,
where Fy(—iz,y) denotes the Dunkl kernel (for more details, see the next section).
Many uncertainty principles have already been proved for the Dunkl transform, namely by

Rosler [2] and Shimeno [3] who established the Heisenberg-Pauli-Weyl inequality for the Dunkl
transform, by showing that for every f € L?(us),

2
2
N2y = o =g el 2o [N 15 () 2 ue)- (1.2)

Recently, the author [4,5] proved general forms of the Heisenberg-Pauli-Weyl inequality for the
Dunkl transform.

Let s € R. We consider the Sobolev type space’s H, consisting of all f € S’'(R%) (the space
of tempered distributions) such that F;(f) is a function and (1 + |2|?)*/2F,(f) € L?*(us). The

space Hj, is a Hilbert space when endowed with the inner product

gy, = [ @+ R TG ()

Let m be a function in L?(uy). The Dunkl multiplier operators Tk ¢, are defined for
[ € Hp, by
Tk,@,mf(a,m) = ‘Fk_l(m(a)}-f(f))(x)a (a,x) € (0700) X Rd'

These operators were studied in [6] where the author established some applications (Calderén’s
reproducing formulas, best approximation formulas, extremal functions ...). In particular, when
k = (£ these operators were studied in [7].

For m € L?(uy) verifying the admissibility condition fooo Im(az)[?9% =1, a.e. © € RY, then
the operators T}, ¢,,, satisfy

||Tk,f,meL2(Qk) = Hf”ngv f S Hl(c)fv

where Q is the measure on (0,00) x R? given by dQ(a,z) := 2 duy(z).

a
For the operators T}, ¢, we establish a Heisenberg-Pauli-Weyl uncertainty principle. More

precisely, we will show for f € Hp, that

2
11z, < m” YIFe( 22 2| T e fll 22 (21
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provided m € L?(uy) satisfying [;° [m(az)|?9% =1, a.e. € R
Building on the techniques of Donoho-Stark [8], we show a continuous-time principle for the
L? theory. Let E be a measurable subset of R? and S be a measurable subset of (0,00) x R4

and let f € Hf,. If f is e-concentrated on E and T} ¢, f is n-concentrated on S (see Section 4

1/2 dQx(a, x) 1/2> (1-n—¢) Gk
a2(2wk+d) = 20012 |1 ) Ve’

provided m € L' N L?(py,) satisfying [;° |m(az)[?92 =1, a.e. 2 € R%

for more details), then

Building on the ideas of [9-12], we give an application of the theory of reproducing kernels
to the Tikhonov regularization, which gives the best approximation of the operator T} ¢ ,,, on the
Sobolev-Dunkl spaces Hj,. More precisely, for all A > 0, g € L?(Q), the infimum

Jnt S g, + 19 = T flizca )

Is attained at one function f3 , called the extremal function.

This paper is organized as follows. In Section 2 we define and study the Sobolev-Dunkl
type spaces Hj),. In Section 3 we define and study the Dunkl multiplier operators T} ¢, on
the spaces H},. In Section 4 we establish the Heisenberg-Pauli-Weyl uncertainty principle and
the Donoho-Stark’s uncertainty principle for the operators T} ¢ . In the last section we give an
application of the theory of reproducing kernels to the Tikhonov regularization for the operators

Tk.e,m on the Sobolev-Dunkl spaces H}),.

2. Sobolev-Dunkl type spaces

The Dunkl operators Dj; j = 1,...,d, on R? associated with the finite reflection group G
and multiplicity function k are given, for a function f of class C! on R?, by
0 £() ~ f(oar)
D;f(z) = aTEjf(m)Jr > k(a)ajw~
aeRy
For y € R% the initial problem Dju(.,y)(z) = y;u(z,y), j = 1,...,d, with u(0,y) = 1
admits a unique analytic solution on R, which will be denoted by Ej(z,y) and called Dunkl
kernel [13,14]. This kernel has a unique analytic extension to C?¢ x C¢ (see [15]). In our case
[1,13],
|Ey(£iz,y)| <1, =z,yecR% (2.1)
The Dunkl kernel gives rise to an integral transform, which is called Dunkl transform on
R?, and was introduced by Dunkl in [1], where already many basic properties were established.

Dunk!’s results were completed and extended later by De Jeu [14]. The Dunkl transform of a
function f in L' (), is defined by

Fp) = [ Buie i), yer”
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We notice that Fy agrees with the Fourier transform F that is given by

F(f)(y) == (2m) /2 / @) f(z)dr, o€ RY

Rd

Some of the properties of Dunkl transform Fj, are collected below [1,14].
Theorem 2.1 (i) L' — L*°-boundedness. For all f € L*(u), Fr(f) € L*(u) and
IFk (2o uy < A2 (-
(ii) Inversion theorem. Let f € L'(us), such that Fp(f) € L*(uy). Then
f(x) = Fu(Fr(f)(~x), ae zecRL

(iii) Plancherel theorem. The Dunkl transform Fj extends uniquely to an isometric iso-

morphism of L?(uy) onto itself. In particular,

1w 22 ) = 122 -

(iv) The Dunkl transform Fj, is a topological isomorphism from S(R?) onto itself, and from
S'(R?) onto itself.

Let s € R. We define the Sobolev-Dunkl type space of order s, that will be denoted Hj,,
as the set of all f € S’(R?) such that F(f) is a function and (1 + |z|?)*/2F,(f) € L*(uz). The

space H}, is endowed with the inner product

s, = [ FiDEFDEs o),
and the norm
) 1/2
£, = ([ PGP )
where i, s is the measure on R9 given by
dpg,s(2) == (1 + 23 dpk(2).
The space Hj), satisfies the following properties.

Lemma 2.2 Let s € R. The space Hj, is a Hilbert space.

Proof Let (fn)nen be a Cauchy sequence of Hy,. From the definition of the norm ||.|| g, , it is
easy to see that (F¢(fn))nen is a Cauchy sequence of L?(uy, ). Since L?(p ) is complete, there
exists a function g € L?(uy s) such that

Jim (| Fe(fn) = 9ll 2 (i) = O- (2.2)

Then g € S'(RY) and from Theorem 2.1 (iv), we obtain f = (F;)"1(g) € S'(RY). So, Fu(f) =
g € L?(uy,s), which proves that f € Hf,. Furthermore, using the relation (2.2), we obtain

T fo — fllag, = T [ Folfa) = allz2u,.) =0

Hence, Hj}, is complete. [
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Lemma 2.3 Let s > v, — ;. The space Hj, is continuously contained in L () and
o~y Cy
11122y < 20677/ allfllH;e-
Proof Let s > v, — vy, and let f € H/,. Then
¢
1F1Z2 00 = */ [ Fe(£)(2)Pwe—r(2)dp ().
Ck JRd

By using the fact that wy_(2) < 277 7%|2[20¢=7%)  we obtain

2
2 ye—i L |~7:Z(f)(z)| ve—i €€ 2
11720 <2 o /Rd a+ |Z‘2)s—(w—w)duk’s(z) <2 Cr 1 W7z,

This completes the proof.
Lemma 2.4 Let s > 2y, — v, +d/2. If f € Hf,, then F;(f) € L*(u) and
IFe(H Nzt ey < Crell Fll,

where

o 1/2
Cre= (& / wek()dpe,5(2)) (2.3)
Ck JRd
Proof Let s > 2y, — v, +d/2 and let f € H;,. Then

I ey = o [ I ().

Then by Holder’s inequality we obtain

Il < ([ (wrta)) dnee(2)) sl
< (2 [ wer@ane-.) g,

Ck
< Crell fllmg,s

which yields the desired result. [

Remark 2.5 Let s > 2y, — vy, +d/2. If f € H},, then by Lemmas 2.3 and 2.4 the function
Fo(f) belongs to L' N L?(uy), and therefore

flz) = g Ey(iz, 2)Fo(f)(2)dpe(2), ae. € R

3. Dunkl type multiplier operators

Let m be a function in Lz(uk). The Dunkl multiplier operators T} ¢, are defined for
[ € Hg, by
Tyt f(a,x) == F ' (m(a) Fe(f)) (x), (a,) € (0,00) x RY, (3.1)

The operators T}, ¢, satisfy the following integral representation.
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Lemma 3.1 Ifm € L' N L*(uy) and f € L*(ue) N HE,, then

1 Ty d
Ty em f(a, ) = W/}Rd Wké(a E,m)f(y)d,ug(y), (a,x) € (0,00) x R,
where
Wielasgom) = [ (o) Bulis, 2)Br(—i, ) ).
R
Proof From (3.1) and Theorem 2.1 (ii), we have

Tremf(a,x) = » m(az)Fe(f)(2) Ex(iz, 2)dpr(2)

= / m(az) f(y)Ex(iz, z) Ee(—iy, 2)dpe(y)dpr(2).
R(i Rd

The result follows from Fubini-Tonnelli’s theorem. OJ
We denote by €, the measure on (0,00) x R? given by dQ(a,z) := %d,uk(x); and by
L?(€,), the space of measurable functions F on (0,0) x R¢, such that

1/2
IFl L2(0p) = / / (a,z)*dQu(a, :v)) < 00,

In the following, we give Plancherel formula for the operators Tk ¢ .
Theorem 3.2 Let m be a function in L?(juy) satisfying the admissibility condition
e d
/ |m(aa:)|2—a =1, ae xR (3.2)
O a
Then, for f € ng, we have
1Tk, em fllL2p) = I1f o, - (3.3)

Proof From Fubini-Tonnelli’s theorem, Theorem 2.1 (iii) and (3.2) we obtain

L) menteatanen = [ [ merenoran

= [1EO0P( [ il dusto)
= [ FDwPdint) = 11,

This gives the result. O

As applications, we give the following examples.
Example 3.3 Let the function my, t > 0, be defined by
my(z) = —\/§t|$|2€_t|$|2, z eRY,

Then
(a) my belongs to L' N L2(uy), and by (1.1), we have

> B, 2(2 d
mell 1 (o) = \/ét/d 1z 2e= 11 dpuy () = _ﬁt&(/ V22 + d)
R

e—t\xlzduk(x)) = (\/2>t)27k+d s
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and

ot 02 otlal?
el =86 [ lal'e i) =20 5 ([ e o)
_ Cut+dr+d/2+1)
(2\/i)27k+d )

(b) my satisfies the admissibility condition (3.2), that is

= 2da 24 [ 3 —otjaf2a?
/ |my(ax)|*— = 8t°|z / ade 2t qq = 1.
0 a 0

Then the associated operators T}, ¢, satisfy the formula (3.3).
We use Lemma 3.1, then for f € L'(u,) N Hy,, we have

T 00) = oty [ 2 et Lol iG)nty), = <R (3.4)

where
T, y,t) = / e By iz, 2) By (—iy, 2)dun(2).
]Rd

If k = ¢, then hyy is the Dunkl-type heat kernel [16,17] and this kernel is given by

e (elP+u/atg (L Yy

hkk((E,yﬂf) = \/7 \/7

1
(2t)7k+d/2
Example 3.4 Let the function my, ¢t > 0, be defined by

my(z) = —2t|zle 1l 2 e R

Then
(a) my belongs to L' N L?(u), and

—t|z 9 —t|x
I || £ () :275/ |x|e d ‘duk(x) = —2ta(/ et ‘d,uk(x))
Rd Rd

Since,

—tlz| _

—e iz lef? s, .
== et (3:5)

by Fubini-Tonnelli’s theorem and (1.1), we deduce that

/ =17l dpup () / / e %lwﬁduk(:ﬂ))ds:i/ c (7‘/%)2”’“”015
Rd f 0

Nz A
(’Yk —+ d+1) (\/i)Q’YIde
B NS t '
Thus,
||m || 1 — 2(2,)% + d)F<7k + %) (@)QVR:*i’d
tI L (pek) \/77_ t :

On the other hand,

32
2 442 2 —2t|z| _ v —2t|z|
el sy =46 [ lofPe 2 ehdntn) = ([ e (o)

0%, T+ 4
- ﬁ(ﬁ(ﬁt)hﬁd)'
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Thus,
L2 (r) — JT(V2 )22
(b) my satisfies the admissibility condition (3.2), that is

oo d oo
/ |mt(ax)|2—a = 4t2|z|2/ ae~27lagq = 1.
0 a 0

Then the associated operators T}, ¢, satisfy the formula (3.3).
We use Lemma 3.1, then for f € L'(us) N Hy,, we have

X

0
Tt f@) = 2oz [ g e L0] F)die(), (36)

where
Pre(,y,t) = /d e By (iz, 2) By (—iy, 2)dpr(2).
R

If k = ¢, then pyy is the Dunkl-type Poisson kernel [18], and from (3.5) this kernel is given by
2

1 s t
ek (2, y,t) = ﬁ/() %hkk(%y,zs)d&

4. Uncertainty principles

We can obtain the following inequality from the Heisenberg-Pauli-Weyl uncertainty princi-
ple.

Theorem 4.1 Let m be a function in L?(uy) satisfying the admissibility condition (3.2). Then,
for f € Hy,, we have
2
2
1[I0, < m” Y Fe (O o) 2| T em Sl 2020 -
Proof Let f € Hj,, s> v, — . Assume that || |y|F(f)[/z2(u,) < oo and || |./E‘Tk’[,mf||%2(gk) <
oo. The inequality (1.2) leads to

2
[ Tt fea) () <

2y, +d
([ P17 om0 D0 Pia)

(/Rd |x‘2|Tk’e’mf(a’$)|2dﬂk(:c))1/2X

Integrating with respect to d;“ gives

2 o0 1/2
T, m 7 <o——; ( 2T m 2d )
e oo <=z [ ([ 1P M b )P (@)
1/2dq

([ P17 Tt D Pain)
R4 a

From Theorem 3.2 and the Schwarz’s inequality, we get

2

0 da\1/2
2 < 2 2
1/ 220, St d +d(/0 /Rd || Tk e.m f (@, @) |"dpx () a) x

(/ooo /Rd 1| Fe(Trem f (a, '))(y)|2dﬂk(y)%)l/2.
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But by (3.1), Fubini-Tonnelli’s theorem and (32) we have

| LAt @@ Panm T = [ [ iPmePiEsm P

_ / P )P ()

This yields the result and completes the proof of the theorem. [
Let E be a measurable subset of R?. We say that a function f € H s is e-concentrated on
E, if

)

If = xeflug, <ellfllag, (4.1)

where xg is the indicator function of the set E.
Let S be a measurable subset of (0,00) x R? and let f € Hj,. We say that Ty ¢ f is

n-concentrated on .S, if
1Tk,e.mf — XsTh,em fll 2 ) < 7l Them £l L2 (0)- (4.2)
Similarly as Theorem 4.1, we can obtain an inequality from the classical Donoho-Stark’s

uncertainty principle.

Theorem 4.2 Let f € Hi,, s > v, — v and let m € L' N L?(uy,) satisfying (3.2). If f is
e-concentrated on E and Ty, ¢ f is n-concentrated on S, then

1/2 dQx(a, ) 1/2> (I1-n—¢) Ck
a2(2’7k+d = 20092 1y V e

Proof Let f € Hi, s > v — Y and let m € L' N L?(uy). Assume that pu(E) < oo and
s jf} fv(: 22 < 0o, From (4.1), (4.2) and Theorem 3.2 it follows that

| Tr,e;m f — X5Thk,e;m(XES) | L2020
<Nk emf = XsTh,e.mfllL2(u) + 1IXsThem (f = XE)| L2(01)
<l Tke.mfllz i) + 1 Tkem(f — x2F) 20
<llFe(Fll2qun) + I1f = xefllmg, < 0+l fllmg,-

Then the triangle inequality shows that

| Tk,e,m fllL2n) < IXSThem(XE)IL2(00) + [ Them f — X5Tk,e.m (XES) | £2(0)
< |IxsTke.m(XE)L2(00) + (1 + )| fll 15, -

1/2
IxXsThk,e.m(XES) | L2(00) = (//S ITk,e,m(fo)(m:v)IQko(mw)) :
Since f € Hf,, by Lemma 2.3, the function f belongs to L?(p), and we have
|Te,e.m (XEf)(@,2)| < [Im(a.) Fe(Xe () < Ima)llp oo [Fe(Xe ) Lo (u)

1
= W”mnll(uw||XEf||L1(M)

1 1/2
< W||m||L1(M)||f||L2(w)(W(E)) -
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Thus,
1/2 dQ(a, x)\1/2
STt D0y < Il ()2 ([ [ G

and

1/2 dQ(a, z)\1/2
HTkme”Lz(Qk) <||mHL1(mc)Hf”LZ’(/u)(:uZ // a2(2v,+d) )

(n+ el fllag,-
By applying Theorem 3.2, we obtain

1/2 //dﬂka:c 1/2> (1_77_5)”.][”1{,:4
a?(Zye+d) ~mllzr o 1122 ey

Then Lemma 2.3 gives the desired result. [

Remark 4.3 If S C {(a,z) € (0,00) xR? : a > §} for some § > 0, we suppose that v = max{?1 :
(a,7) € S for some z € R?}. Then by Theorem 4.2 we deduce that

1/2 1/2 (1-n—c¢) Ck
(e (W) 2 e =l V e

5. Extremal functions

In this section, by using the theory of extremal function and reproducing kernel of Hilbert
space [10,11,19] we study the extremal function associated to the Dunkl multiplier operators
Ty 0.m- This function was studied firstly in [7] (when k = ¢), and some properties related to the
dual Dunkl-Sonine operator of this function were given in [6].

Let A > 0. We denote by (.,.)x m;, the inner product defined on the space Hj, by

(franmg, = Mg my, + (Fe(f)s Fe(9)) L2 (i) » (5.1)

and the norm || f|[x mz, :== \/(f, Fam
On Hj, the two norms |||z, and || |[x,zg, are equivalent. This (Hy,, (.,.)x mg,) is a Hilbert

space with reproducing kernel given by the following theorem.

Lemma 5.1 Let A\ > 0, and let s > 2y, — vy + d/2. The space (Hj},,(.,.)xnu;,) has the
reproducing kernel

e E(iz, z)Ee(—iy, 2)
ek Jra 1T+ A1+[2[2)0

Ky(z,y) = we—k(2)dpe(2), (5.2)

that is
(i) For all y € R%, the function x — K(x,y) belongs to Hf,.
(ii) The reproducing property: for all f € Hi, and y € RY,

(F KsCowamg, = fy)-
Proof (i) Let y € R? and s > 27, — 7% + d/2. From (2.1), the function

Eo(—i
[Pt Cl f( Zy?Z)Q)st—k(Z)

P, :
y cn 1+ AL+ 2|
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belongs to L' N L?(p1¢). Then, the function K is well defined and by Theorem 2.1 (ii), we have

Ky(z,y) = F, 1 (®,)(2), =eR% (5.3)
Then by Theorem 2.1 (iii) and (2.1), we obtain

Cy wg_k(z)

|Fe(Ks(,9))(2)| < e ML+ 2P

and

1
1K Co)llag, < XCW < c0.

This proves that for all y € R? the function K,(.,y) belongs to Hj,.
(ii) Let f € Hf, and y € R% From (5.1) and (5.3), we have

Koy, = | Balin ) Fi D) ),
and from Remark 2.5, we obtain the reproducing property:

(f; Ks(y)amg, = fy)-

This completes the proof of the theorem. [J

The main result of this section can be stated as follows.

Theorem 5.2 Let s > 2y, — v, + d/2 and let m € L?*(u;) satisfy (3.2). For any g € L?(€)

and for any \ > 0, there exists a unique function f/’\")g, such that the infimum

. 2 2
fgg& {MfIWre, + g = Trem fll72 () § (5.4)

is attained. Moreover, the extremal function fy g 1s given by

f)tg(y) = /]Rd /OOO g(a,x)Q((a,x),y)ko(a,m),

where

m(az)Ex(—ix, z)Ee(iy, z
Qo)) = [ HETEEER D ),

Proof Let A > 0. We denote by (.,.)x u;, the inner product defined on the space Hy, by
(raamg, = M9z, + Teemf, Teem9) £2(00)-

Since m € L*(u) satisfies (3.2), by Theorem 3.2, the inner product (.,.)x s, can be written

(fsgdame, = MNf 9 me, + (Fo(f)s Fe(9)) L2 () -

Then, the existence and unicity of the extremal function f / satisfying (5.4) is given as in the
same of [9,20,21]. Especially, fx,, is given by the reproducing kernel of Hy, with [[-l[x,mz, norm

f;\k,g(y) = <gvTk,£7m(K8('7y))>L2(Qk)’ (5.5)

where K is the kernel given by (5.2).
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But by Theorem 2.1 (ii) and (5.3), we have
Tio.m(Ks(,y))(a,z) = y m(az)Fo(Ks(.,y))(2) B (ix, 2)dug(2)

B Ey(iz, z)E(—iy, 2)
- /Rdm(az) T AT o) ()

This clearly yields the result. O

As application, we give the following examples.

Example 5.3 Let s > 2y, — v, +d/2, A > 0 and g € L?(2).
(i) If my(x) := —v/Bt|x|2e~ 71" then

fro®) /Rd/ (a,2)Q((a,z),y)dQ%(a, z),

|26715¢12|z\2

where

Q((a,x),y) = —\/gtaQ/R |2 Ey(—ix, 2)Ee(iy, 2)dpe(2).

a T+ A1+ |2]2)®
v (3.4), (5.5) and the fact that K,(y, z) = Ks(z,y) we obtain
NEY 0 z
Q(@a)) = ot [ g e 2 O] Kol 2)n(o)

(ii) If my(2) := —2t|x|e ! then

o) /]Rd/ (a,2)Q((a,z),y)d(a, z),

|Z|e—ta\z|

Q((a,x),y) = —2ta /Rd WE;C(—M,Z)Eg(iy,z)dw(z).

y (3.6) and (5.5) we deduce that

Q((a,2),y) = a;%/w %[pke(g» §7t)]Ks(y7Z)due(2)-

Theorem 5.4 Let s > 2y, — v, +d/2, A > 0 and g € L?(Qy). The extremal function W

satisfies:

N c
(i) 13w < 555190200,
where Cy, ¢ is the constant given by (2.3).

.. D
(i) 1561720y < 57200 Jra Jo~ L
where

where

(o1 +a?)/2
x)[*e ok FaFT dQ(a, z),

Dy = \/}Cizve*%%/?.
; o
Proof (i) From (5.5) and Theorem 3.2, we have
X = N9z @0 [ Th,e.m (K (s 9D 22 @) < 91l @i 1Fe (B () 22 -

Then, by (5.3) we deduce

|f;’g( = ”g”LQ(Qk)(CZ /d [111—}:_)\16((12-)5-(1(:]2;2]2)1/2'
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Using the fact that
[T+ A1+ |21%)°]° > 401 + |2?)*, (5.6)

we obtain the result.
(ii) We write

olal*+a?)/4
fre) /Rd/ Vae~ (121* +a )/4?9((1 z)Q((a,z),y)dQu(a, ).

a

Applying Hoélder’s inequality, we obtain

o0 (Jo[2+a2)/2
P <3 [ [ e 0P 0,0 Pasuta o)

Thus and from Fubini-Tonnelli’s theorem, we get

o p o0 ellel+a®)/2 ,
ol <[5 [ lota P10 ), g A9l

Let W, (2) = M2 BuCin2) gince W, € L' N L2(j), then

1+A(1+]2]%)®
Q(a,),y) = F; ' (¥a)(y)-
Thus, by Theorem 2.1 (iii) we deduce that

mlaz 2 z
Qe gy = [ | 1Fi@U ) NPd(z) < [ e

Then using the inequality (5.6), we obtain

1 ¢ Im(az)Pwe—r(2)
12 < —= —_— - d
1Q((a,z), )HL?(M) = Ce/ 1+ [2]2)° . (2)
1 cp 72/ Im(az)[?|2|*0e )
< ZEove—k d
=3 FETEIEU I

1 Ck 2/ 2
< — 2"// Yk — d
>N e Im(az)|*dp(2).

Thus 10 2
Ck
Q((a,z), )||L2(,M) <3 N o 7(12%% ||m||%2(uk)~

From this inequality we deduce the result. [

References
[1] C. F. DUNKL. Hankel Transforms Associated to Finite Reflection Groups. Amer. Math. Soc., Providence,
RI, 1992.
[2] M. ROSLER. An uncertainty principle for the Dunkl transform. Bull. Austral. Math. Soc., 1999, 59(3):
353-360.

[3] N. SHIMENO. A note on the uncertainty principle for the Dunkl transform. J. Math. Sci. Univ. Tokyo,
2001, 8(1): 33-42.

[4] F. SOLTANI. Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkl transform on R?. Bull. Aust.
Math. Soc., 2013, 87(2): 316-325.

[5] F. SOLTANI. A general form of Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkl transform.
Integral Transforms Spec. Funct., 2013, 24(5): 401-409.

[6] F. SOLTANI. Multiplier operators and extremal functions related to the dual Dunkl-Sonine operator. Acta
Math. Sci. Ser. B Engl. Ed., 2013, 33(2): 430-442.



702
7]
(8]
(9]

[10]

(11]

(12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

[20]

21]

Fethi SOLTANI

F. SOLTANI. Best approximation formulas for the Dunkl L?-multiplier operators on R%. Rocky Mountain
J. Math., 2012, 42(1): 305-328.

D. L. DONOHO, P. B. STARK. Uncertainty principles and signal recovery. SIAM J. Appl. Math., 1989,
49(3): 906-931.

T. MATSUURA, S. SAITOH, D. D. TRONG. Approximate and analytical inversion formulas in heat con-
duction on multidimensional spaces. J. Inverse Ill-Posed Probl., 2005, 13(3-6): 479-493.

S. SAITOH. The Weierstrass transform and an isometry in the heat equation. Applicable Anal., 1983, 16(1):
1-6.

S. SAITOH. Best approximation, Tikhonov regularization and reproducing kernels. Kodai Math. J., 2005,
28(2): 359-367.

M. YAMADA, T. MATSUURA, S. SAITOH. Representations of inverse functions by the integral transform
with the sign kernel. Fract. Calc. Appl. Anal., 2007, 10(2): 161-168.

C. F. DUNKL. Integral kernels with reflection group invariance. Canad. J. Math., 1991, 43(6): 1213-1227.
M. F. E. DE JEU. The Dunkl transform. Invent. Math., 1993, 113: 147-162.

E. M. OPDAM. Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group. Compositio
Math., 1993, 85(3): 333-373.

M. ROSLER, M. VOIT. Markov processes related with Dunkl operators. Adv. in Appl. Math., 1998, 21(4):
575-643.

F. SOLTANI. Inversion formulas in the Dunkl-type heat conduction on R®. Appl. Anal., 2005, 84(6):
541-553.

F. SOLTANI. Littlewood-Paley g-function in the Dunkl analysis on R%. JIPAM. J. Inequal. Pure Appl.
Math., 2005, 6(3): Article 84, 13 pp.

S. SAITOH. Hilbert spaces induced by Hilbert space valued functions. Proc. Amer. Math. Soc., 1983,
89(1): 74-78.

G. S. KIMELDORF, G. WAHBA. Some results on Tchebycheffian spline functions. J. Math. Anal. Appl.,
1971, 33: 82-95.

S. SAITOH. Approximate real inversion formulas of the Gaussian convolution. Appl. Anal., 2004, 83(7):
727-733.



