Journal of Mathematical Research with Applications Nov., 2016, Vol. 36, No. 6, pp. 703–710 DOI:10.3770/j.issn:2095-2651.2016.06.009 Http://jmre.dlut.edu.cn

Algebraic Properties of Dual Toeplitz Operators on Harmonic Hardy Space over Polydisc

Yufeng LU, Fatemeh AZARI KEY, Hewei YANG, Liu LIU*

School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract In this paper, we introduce the harmonic Hardy space on \mathbb{T}^n and study some algebraic properties of dual Toeplitz operator on the harmonic Hardy space on \mathbb{T}^n .

Keywords Hardy space; Toeplitz operator; spectrum; semi-commutative

MR(2010) Subject Classification 47B35

1. Introduction

Let \mathbb{T} be the unit circle on the complex plane \mathbb{C} . For a fixed positive integer $n \geq 1$, the \mathbb{C}^n and \mathbb{T}^n are the cartesian products of n copies of \mathbb{C} and \mathbb{T} , respectively. Denote by $z = (z_1, \ldots, z_n)$ the coordinates on \mathbb{C}^n . Let $d\sigma$ be the normalized Haar measure on \mathbb{T}^n and $L^2(\mathbb{T}^n)$ be the square integral functions with respect to $d\sigma$. The Hardy space $H^2(\mathbb{T}^n)$ is the closure of analytic polynomials in $L^2(\mathbb{T}^n)$, that is

 $H^2(\mathbb{T}^n) = \operatorname{clos}\{p(z_1,\ldots,z_n): p \text{ is anlytic polynomials}\}.$

In the setting of classical Hardy space on \mathbb{T} , it is well known that $H^2(\mathbb{T}) + \overline{H^2(\mathbb{T})} = L^2(\mathbb{T})$, where $\overline{(\cdot)}$ is the complex conjugate. However, in the higher dimension $(n \ge 2)$, the situation is completely different, indeed, $H^2(\mathbb{T}^n) + \overline{H^2(\mathbb{T}^n)}$ is much smaller than $L^2(\mathbb{T}^n)$. Denote

$$h^2(\mathbb{T}^n) = H^2(\mathbb{T}^n) + \overline{H^2(\mathbb{T}^n)}$$

and call it the harmonic Hardy space on \mathbb{T}^n . The reader may not confuse that $h^2(\mathbb{T}^n)$ does not contain all harmonic functions. In the whole paper, P denotes the orthogonal projection from $L^2(\mathbb{T}^n)$ onto $h^2(\mathbb{T}^n)$ and Q = 1 - P.

Let $L^{\infty}(\mathbb{T}^n)$ be the set of essentially bounded measurable functions on \mathbb{T}^n . For $\varphi \in L^{\infty}(\mathbb{T}^n)$, the Toeplitz operator T_{φ} on $h^2(\mathbb{T}^n)$ is defined by

$$T_{\varphi} f = P(\varphi f), \quad f \in h^2(\mathbb{T}^n).$$

The Toeplitz operators on analytic and harmonic function spaces have been widely studied [1].

* Corresponding author

Received September 19, 2016; Accepted October 12, 2016

Supported by the National Natural Science Foundation of China (Grant Nos. 11671065; 11301047).

E-mail address: lyfdlut@dlut.edu.cn (Yufeng LU); fa.azari@mail.dlut.edu.cn (Fatemeh AZARI KEY); beth.liu@ dlut.edu.cn (Liu LIU)

The Hankel operator and dual Toeplitz operator can also be defined as follows:

$$\begin{aligned} H_{\varphi}: \ h^{2}(\mathbb{T}^{n}) &\longrightarrow (h^{2}(\mathbb{T}^{n}))^{\perp} \\ H_{\varphi}f &= Q(\varphi f), \ f \in h^{2}(\mathbb{T}^{n}). \end{aligned}$$
$$\begin{aligned} S_{\varphi}: \ (h^{2}(\mathbb{T}^{n}))^{\perp} &\longrightarrow (h^{2}(\mathbb{T}^{n}))^{\perp} \\ S_{\varphi}f &= Q(\varphi f), \ f \in h^{2}(\mathbb{T}^{n})^{\perp}. \end{aligned}$$

One can check that $H^*_{\overline{\varphi}}f = P(\varphi f), f \in h^2(\mathbb{T}^n)^{\perp}$, and

$$||S_{\varphi}(f)||_{2} = ||Q(\varphi f)||_{2} \le ||\varphi f||_{2} \le ||\varphi||_{\infty} ||f||_{2},$$

where $\|\cdot\|_{\infty}$ is the essential sup norm and $\|\cdot\|_2$ is the norm of $L^2(\mathbb{T}^n)$. The following algebraic properties of dual Toeplitz operators are also easy to check. For $\varphi, \psi \in L^{\infty}(\mathbb{T}^n), \alpha, \beta \in \mathbb{C}$, we have

$$S_{\varphi}^* = S_{\overline{\varphi}}, \ S_{\alpha\varphi+\beta\psi} = \alpha S_{\varphi} + \beta S_{\psi}.$$

For dual Toeplitz operator, Stroethoff and Zheng [2] studied algebraic and spectral properties of dual Toeplitz operators with general symbols on the Bergman space of the unit disk. Lu [3] characterized commuting dual Toeplitz operators on the Bergman space of the unit ball with pluriharmonic symbols. Lu and Shang [4] studied commutativity, essential commutativity and essential semi-commutativity of dual Toeplitz operators with general symbols on the polydisk. Lu and Yang [5] studied the properties of dual Toeplitz operators with general symbols on the weighted Bergman space of the unit ball. In the several-variable situation, the study of dual Toeplitz is much more complicated [6–8].

The Toeplitz operator, Hankel operator and dual Toeplitz operator have close relationships through the multiplication operators on $L^2(\mathbb{T}^n)$. Under the decomposition

$$L^2(\mathbb{T}^n) = h^2(\mathbb{T}^n) \oplus (h^2(\mathbb{T}^n))^{\perp},$$

the multiplication operator $M_{\varphi}, \varphi \in L^{\infty}(\mathbb{T}^n)$ can be represented as follows

$$M_{\varphi} = \left(\begin{array}{cc} T_{\varphi} & H_{\overline{\varphi}}^* \\ H_{\varphi} & S_{\varphi} \end{array} \right).$$

For $\varphi, \psi \in L^{\infty}(\mathbb{T}^n)$, the identity $M_{\varphi}M_{\psi} = M_{\varphi\psi} = M_{\psi}M_{\varphi}$ implies that

$$S_{\varphi\psi} = S_{\varphi}S_{\psi} + H_{\varphi}H_{\overline{\psi}}^* = S_{\psi}S_{\varphi} + H_{\psi}H_{\overline{\varphi}}^*.$$
(1)

Equation (1) will be used frequently.

2. Properties of spectrum

Characterizations of spectrum is one of important properties for bounded linear operators. For $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{Z}_+^n$, we denote $z^{\alpha} = z_1^{\alpha_1} z_2^{\alpha_2} \cdots z_n^{\alpha_n}$.

Lemma 2.1 Let $\psi \in C(\mathbb{T}^n)$, where $C(\mathbb{T}^n)$ is the set of continuous functions on \mathbb{T}^n . Then for

704

Algebraic properties of Dual Toeplitz operators on harmonic Hardy space over polydisc

any $z \in \mathbb{T}^n$, we have

$$\frac{1}{\lambda_m} \int_{\mathbb{T}^n} \psi(\zeta) \left| z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1} \right|^2 \left| 1 + z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1} \right|^{2m} \mathrm{d}\sigma(\zeta) \longrightarrow \psi(z), \quad \text{as } m \to \infty,$$

where $\lambda_m = \int_{\mathbb{T}^n} |z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1}|^2 |1 + z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1}|^{2m} \mathrm{d}\sigma(\zeta), \ \alpha = (2, 0, 0, \dots, 0).$

Proof Firstly, let us show that

$$\frac{1}{\lambda_m} \int_{\mathbb{T}^n \setminus V_z(\varepsilon)} \left| z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1} \right|^2 \left| 1 + z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1} \right|^{2m} \mathrm{d}\sigma(\zeta) \longrightarrow 0, \quad \text{as } m \to \infty, \tag{2}$$

for any neighborhood of z with following form,

$$V_z(\varepsilon) = \left\{ \zeta \in \mathbb{T}^n : \left| 1 - z^\alpha \frac{\langle \zeta, z \rangle}{n+1} \right| < \varepsilon \right\}.$$

On $\mathbb{T}^n \setminus V_z(\varepsilon)$,

$$\left|z^{\alpha}\frac{\langle\zeta,z\rangle}{n+1}\left(1+z^{\alpha}\frac{\langle\zeta,z\rangle}{n+1}\right)\right| \leq \sup_{\zeta\in\mathbb{T}^n\setminus V_z(\varepsilon)}\left|1+z^{\alpha}\frac{\langle\zeta,z\rangle}{n+1}\right| = \rho < 2,\tag{3}$$

whence

$$\int_{\mathbb{T}^n \setminus V_z(\varepsilon)} \left| z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1} \right|^2 \left| 1 + z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1} \right|^{2m} \mathrm{d}\sigma(\zeta) \le \rho^{2m} \sigma(\mathbb{T}^n \setminus V_z).$$
(4)

If $0 < \delta < 2 - \rho < 1$, considering another neighborhood $V_z(\delta)$ of z, we can get

$$\lambda_m \ge \int_{V_z(\delta)} \left| z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1} \right|^2 \left| 1 + z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1} \right|^{2m} \mathrm{d}\sigma(\zeta) \ge (1-\delta)^2 (2-\delta)^{2m} \sigma(V_{\delta}).$$
(5)

From inequalities (3)–(5), we see that, as $m \to \infty$,

$$\frac{1}{\lambda_m} \int_{\mathbb{T}^n \setminus V_z(\varepsilon)} \left| z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1} \right|^2 \left| 1 + z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1} \right|^{2m} \mathrm{d}\sigma(\zeta) \le c \left(\frac{\rho}{2-\delta}\right)^{2m} \longrightarrow 0.$$

Therefore,

$$\frac{1}{\lambda_m} \int_{V_z(\varepsilon)} \left| z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1} \right|^2 \left| 1 + z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1} \right|^{2m} \mathrm{d}\sigma(\zeta) \longrightarrow 1, \text{ as } m \to \infty.$$
(6)

Since λ_m is independent of z in \mathbb{T}^n , we have

The continuity of ψ with conclusion (2) and (6) yields the desired result. \Box

Lemma 2.2 Let $\varphi \in L^{\infty}(\mathbb{T}^n)$. If S_{φ} is invertible in $(h^2(\mathbb{T}^n))^{\perp}$, then φ is invertible in $L^{\infty}(\mathbb{T}^n)$.

Proof The assumption that S_{φ} is invertible implies that there is a constant k > 0 satisfying $\|S_{\varphi}f\| \geq k\|f\|, f \in (h^2(\mathbb{T}^n))^{\perp}$. Considering the projection has norm 1, we can see

$$\|\varphi f\| \ge k \|f\|, \ f \in (h^2(\mathbb{T}^n))^{\perp}.$$
 (7)

705

Particularly, for

$$f(z) = z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1} \left(1 + z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1} \right)^m, \quad \zeta \in \mathbb{T}^n, \ m \ge 1, \ \alpha = (2, 0, 0, \dots, 0),$$

which is clearly an element of $(h^2(\mathbb{T}^n))^{\perp}$, the inequality (7) yields

$$\int_{\mathbb{T}^n} |\varphi(z)|^2 \left| z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1} \right|^2 \left| 1 + z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1} \right|^{2m} \mathrm{d}\sigma(z) \ge k^2 \lambda_m.$$

It follows that for any nonnegative $\psi \in C(\mathbb{T}^n)$, one has

$$\frac{1}{\lambda_m} \int_{\mathbb{T}^n} \int_{\mathbb{T}^n} |\varphi(z)|^2 \psi(\zeta) \left| z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1} \right|^2 \left| 1 + z^{\alpha} \frac{\langle \zeta, z \rangle}{n+1} \right|^{2m} \mathrm{d}\sigma(z) \mathrm{d}\sigma(\zeta)$$
$$\geq k^2 \int_{\mathbb{T}^n} \psi(\zeta) \mathrm{d}\sigma(\zeta) = k^2 \int_{\mathbb{T}^n} \psi(z) \mathrm{d}\sigma(z).$$

Hence, invoking Lemma 2.1, we obtain

$$\int_{\mathbb{T}^n} (|\varphi(z)|^2 - k^2) \psi(z) \mathrm{d}\sigma(z) \ge 0,$$

which implies that $|\varphi(z)| \ge k > 0$ a.e., in \mathbb{T}^n , hence $\varphi(z)$ is invertible in $L^{\infty}(\mathbb{T}^n)$. \Box

An immediate consequence is the following spectral inclusion theorem. But firstly, let us denote by R(f) the essential range of the essentially bounded function f, and by $\sigma(T)$, r(T) respectively the spectrum and the spectral radius of an operator T.

Theorem 2.3 If φ is in $L^{\infty}(\mathbb{T}^n)$, then $R(\varphi) \subseteq \sigma(S_{\varphi})$.

3. Semi-commuting dual Toeplitz operator

When will the product of two dual Toeplitz operators be semi-commutative? This question has been solved well in Hardy space and harmonic Bergman space [2–5]. But the crucial question is what are the conditions we need if the product of two dual Toeplitz operators with the special form we have discussed is a dual Toeplitz operator in harmonic Hardy space. The following several theorems have been observed.

Equation (1) suggests that S_{φ} and S_{ψ} commute if φ or ψ is constant, that is $H^*_{\overline{\varphi}} = 0$ or $H^*_{\overline{\psi}} = 0$. If a non-trivial linear combination of φ and ψ is constant, they do commute as well.

Lemma 3.1 If $\varphi \in H^{\infty}(\mathbb{D}^n)$, then $H^*_{\overline{\varphi}}((h^2)^{\perp}) \subseteq H^2$, $H^*_{\varphi}((h^2)^{\perp}) \subseteq \overline{H^2}$.

Proof Let $f = \sum_{k=1}^{\infty} \sum_{|\alpha|,|\beta|=k} a_{\alpha,\beta} z^{\alpha} \overline{z}^{\beta}$, the parameters $\alpha, \beta \in \mathbb{Z}_{+}^{n}$. To satisfy the condition $f \in (h^{2})^{\perp}$, for any positive integer k, there exist i and j such that $\alpha_{i} > \beta_{i}, \alpha_{j} < \beta_{j}$. Let $H_{\overline{\varphi}}^{*}(f) = g + h, g$ be analytic, and h be co-analytic, then we can get h is constant (If not, then $\alpha_{i} + c \leq \beta_{i}, c \geq 0$, this is a contradiction), which yields the first desired result. Similarly, the second result can be proved. \Box

Combining this lemma with Eq. (1), we get the following proposition.

Proposition 3.2 If the symbols φ and ψ are both analytic or co-analytic, then the dual Toeplitz operators S_{φ} and S_{ψ} are commutative, i.e., $S_{\varphi}S_{\psi} = S_{\psi}S_{\varphi}$.

706

Proof If φ and ψ are both analytic, by Lemma 3.1, for all $f \in (h^2(\mathbb{T}^n))^{\perp}$, there exists $g \in H^2$ such that $H_{\varphi}H_{\overline{\psi}}^*(f) = H_{\varphi}(g)$. Since the product of two analytic functions is still analytic, $H_{\varphi}(g) = Q(\varphi g) \equiv 0$, namely, $H_{\psi}H_{\overline{\varphi}}^* \equiv 0$, which is equivalent to the fact that $S_{\varphi\psi} = S_{\varphi}S_{\psi} = S_{\psi}S_{\varphi}$. The same result also can be proved when φ and ψ are both co-analytic through a similar method. \Box

Theorem 3.3 Suppose that $\varphi = f + \overline{z}^{m_1} \overline{w}^{n_1}$, $\psi = g + \overline{z}^{m_2} \overline{w}^{n_2}$, where $f, g \in H^{\infty}(\mathbb{D}^2)$, and the parameters m_1, m_2, n_1, n_2 are non-zero positive integers. Then $S_{\varphi}S_{\psi} = S_{\varphi\psi}$ if and only if both f and g are constants.

Proof By the definition of dual Toeplitz operator, we can get that

$$S_{\varphi}S_{\psi} = S_f S_g + S_f S_{\overline{z}^{m_2}\overline{w}^{n_2}} + S_{\overline{z}^{m_1}\overline{w}^{n_1}} S_g + S_{\overline{z}^{m_1}\overline{w}^{n_1}} S_{\overline{z}^{m_2}\overline{w}^{n_2}}$$
$$= S_{\varphi\psi} = S_{fg+f\cdot\overline{z}^{m_2}\overline{w}^{n_2}+\overline{z}^{m_1}\overline{w}^{n_1}\cdot g+\overline{z}^{m_1}\overline{w}^{n_1}\cdot\overline{z}^{m_2}\overline{w}^{n_2}}.$$
(8)

Equation (1) and Proposition 3.2 can reduce Eq. (8) to the following formula:

$$S_{f \cdot \overline{z}^{m_2} \overline{w}^{n_2}} - H_f H_{z^{m_2} w^{n_2}}^* + S_{\overline{z}^{m_1} \overline{w}^{n_1} \cdot g} - H_{\overline{z}^{m_1} \overline{w}^{n_1}} H_{\overline{g}}^*$$

$$= S_{f \cdot \overline{z}^{m_2} \overline{w}^{n_2}} + S_{\overline{z}^{m_1} \overline{w}^{n_1} \cdot g}$$
(9)

which is equivalent to

$$H_f H_{z^{m_2} w^{n_2}}^* + H_{\overline{z}^{m_1} \overline{w}^{n_1}} H_{\overline{a}}^* = 0.$$
⁽¹⁰⁾

For the reason of the Eqs. (8)–(10), S_{φ} and S_{ψ} are semi-commutative if and only if Eq. (10) is set up on $(h^2(\mathbb{T}^2))^{\perp}$. Let

$$f = \sum_{i \ge 0, j \ge 0} a_{ij} z^i w^j, \ g = \sum_{k \ge 0, l \ge 0} b_{kl} z^k w^l, \ (z, w) \in \mathbb{T}^2.$$

Firstly, assume that f and g are both constants. It is clear that $H_f = H_{\overline{g}} = H_{\overline{g}}^* = 0$, so the Eq. (10) is set up, whence $S_{\varphi}S_{\psi}=S_{\varphi\psi}$. Now we assume that $S_{\varphi}S_{\psi}=S_{\varphi\psi}$. A little more computation gives that

$$H_{f}H_{z^{m_{2}}w^{n_{2}}}^{*}(z^{\alpha}\overline{w}^{\beta}) = \begin{cases} 0, \ \alpha > m_{2}, \\ \sum_{\substack{i>m_{2}-\alpha\\0\leq j<\beta+n_{2}}} a_{ij}z^{\alpha-m_{2}+i}\overline{w}^{\beta+n_{2}-j} + \sum_{\substack{0\leq i\beta+n_{2}}} a_{ij}\overline{z}^{m_{2}-\alpha-i}w^{j-\beta-n_{2}}, \alpha \leq m_{2}, \end{cases}$$
(11)

$$H_{\overline{z}^{m_1}\overline{w}^{n_1}}H_{\overline{g}}^*(z^{\alpha}\overline{w}^{\beta}) = \begin{cases} \sum_{\substack{k \ge 0\\\beta \le l < \beta + n_1\\\beta \le l < \beta + n_1}} b_{kl}z^{\alpha - m_1 + k}\overline{w}^{\beta + n_1 - l}, & \alpha > m_1, \\ \sum_{\substack{k > m_1 - \alpha\\\beta \le l < \beta + n_1}} b_{kl}z^{\alpha - m_1 + k}\overline{w}^{\beta + n_1 - l} + \sum_{\substack{0 \le k < m_1 - \alpha\\l > \beta + n_1}} b_{kl}\overline{z}^{m_1 - \alpha - k}w^{l - \beta - n_1}, \alpha \le m_1, \end{cases}$$

$$(12)$$

$$H_{f}H_{z^{m_{2}}w^{n_{2}}}^{*}(\overline{z}^{\alpha}w^{\beta}) = \begin{cases} 0, \quad \beta > n_{2}, \\ \sum_{\substack{i > m_{2} + \alpha \\ 0 \le j < n_{2} - \beta}} a_{ij}z^{i-\alpha-m_{2}}\overline{w}^{n_{2}-\beta-j} + \sum_{\substack{0 \le i < m_{2} + \alpha \\ j > n_{2} - \beta}} a_{ij}\overline{z}^{m_{2}+\alpha-i}w^{\beta-n_{2}+j}, \beta \le n_{2}, \end{cases}$$
(13)

Yufeng LU, Fatemeh AZARI KEY, Hewei YANG and et al.

$$H_{\overline{z}^{m_1}\overline{w}^{n_1}}H_{\overline{g}}^*(\overline{z}^{\alpha}w^{\beta}) = \begin{cases} \sum_{\substack{\alpha \le k < \alpha + m_1 \\ l \ge 0}} b_{kl}\overline{z}^{\alpha + m_1 - k}w^{\beta - n_1 + l}, & \beta > n_1, \\ \sum_{\substack{k > m_1 + \alpha \\ 0 \le l < n_1 - \beta}} b_{kl}z^{k - \alpha - m_1}\overline{w}^{n_1 - \beta - l} + \sum_{\substack{\alpha \le k < \alpha + m_1 \\ l > n_1 - \beta}} b_{kl}\overline{z}^{\alpha + m_1 - k}w^{\beta - n_1 + l}, & \beta \le n_1. \end{cases}$$

$$(14)$$

We distinguish several cases.

Case 1 $m_1 = m_2 = m \ge 1, n_1 = n_2 = n \ge 1$. For $\beta > n$, since (13) + (14) = 0, we can get

$$0 + \sum_{\substack{\alpha \le k \le \alpha + m \\ l \ge 0}} b_{kl} \overline{z}^{\alpha + m - k} w^{\beta - n + l} = 0.$$

By the linear independence and the arbitrariness of α , it follows

$$b_{kl} = 0, \quad k > 0, \ l \ge 0,$$
 (15)

which means that g is only about w. For $\beta = n$, (13) + (14) = 0 implies

$$\sum_{0 \le i < m+\alpha \atop j > 0} a_{ij} \overline{z}^{m+\alpha-i} w^j = 0,$$

hence

708

$$a_{ij} = 0, \quad i \ge 0, \quad j > 0,$$
 (16)

which means that f is only about z.

If $\alpha = m$ in the case (11) + (12) = 0, together with the conclusion (16),

$$\sum_{\substack{i>0\\j=0}} a_{i0} z^i \overline{w}^{\beta+n} = 0,$$

hence

$$a_{i0} = 0, \quad i \ge 1.$$
 (17)

If $\alpha > m$ in the case (11) + (12) = 0, together with the conclusion (16), then by the same way, we can get

$$0 + \sum_{\substack{k=0\\\beta \le l < \beta + n}} b_{0l} z^{\alpha - m} \overline{w}^{\beta + n - l} = 0,$$

$$b_{0l} = 0, \quad l > 0.$$
(18)

 \mathbf{so}

Considering the conclusions (15)–(18), both f and g are constants.

Case 2 $m_1 = m_2 = m \ge 1, n_2 \ne n_1$. Without loss of generality, we can assume $n_2 > n_1 \ge 1$. For $\beta > n_2 > n_1$, it follows from (13) + (14) = 0 that

$$0 + \sum_{\substack{\alpha \le k < \alpha + m \\ l \ge 0}} b_{kl} \overline{z}^{\alpha + m - k} w^{\beta - n_1 + l} = 0,$$

$$b_{kl} = 0, \quad k > 0, \ l \ge 0.$$
 (19)

 \mathbf{SO}

Algebraic properties of Dual Toeplitz operators on harmonic Hardy space over polydisc

For $\beta = n_2 > n_1$,

$$\sum_{\substack{0 \le i < m+\alpha \\ j > 0}} a_{ij} \overline{z}^{m+\alpha-i} w^j + \sum_{\substack{\alpha \le k < \alpha+m \\ l \ge 0}} b_{kl} \overline{z}^{\alpha+m-k} w^{\beta-n_1+l} = \sum_{\substack{0 \le i < m+\alpha \\ j > 0}} a_{ij} \overline{z}^{m+\alpha-i} w^j = 0,$$

which means that

$$a_{ij} = 0, \quad i \ge 0, \quad j > 0.$$
 (20)

We also need to consider the condition (11) + (12) = 0.

For $\alpha = m$, together with (19) and (20), the equation can be reduced to

$$\sum_{\substack{i>0\\j=0}} a_{i0} z^i \overline{w}^{\beta+n_2} + 0 = 0,$$

hence

$$a_{i0} = 0, \quad i > 0.$$
 (21)

For $\alpha > m \ge 1$,

$$b_{0l} = 0, \quad l > 0. \tag{22}$$

By the conclusions (19)–(22), the result that f and g are both constants can be observed immediately.

Case 3 $m_1 \neq m_2, n_1 = n_2 = n \ge 1$. It is easy to complete the proof by the similar way used in Case 2.

Case 4 $m_1 \neq m_2, n_1 \neq n_2$. Without loss of generality, we can assume that $m_2 > m_1 \ge 1, n_1 > n_2 \ge 1$. For $\alpha > m_2 > m_1$,

$$0 + \sum_{\substack{k \ge 0\\\beta \le l < \beta + n_1}} b_{kl} z^{\alpha - m_1 + k} \overline{w}^{\beta + n_1 - l} = 0,$$

which means that

$$b_{kl} = 0, \quad k \ge 0, \quad l > 0.$$
 (23)

For $\alpha = m_2 > m_1$, together with (23), the following equation is checked easily:

$$0 + \sum_{\substack{i>0\\0 \le j < \beta + n_2}} a_{ij} z^i \overline{w}^{\beta + n_2 - j} = 0,$$

which implies that

$$a_{ij} = 0, \quad i > 0, \quad j \ge 0.$$
 (24)

Through a similar discussion of β , we can get

$$a_{0j} = 0, \ j > 0; \ b_{k0} = 0, \ k > 0.$$
 (25)

Therefore, the proof can be completed together with the conclusions (23)–(25). \Box

In Theorem 3.3, each parameter should be non-zero positive integer. Next theorem considers the case of $m_1 = m_2 = 0$.

Theorem 3.4 Suppose that $\varphi = f + \overline{w}^{n_1}$, $\psi = g + \overline{w}^{n_2}$, where $f, g \in H^{\infty}(\mathbb{D}^2)$, and the parameters n_1, n_2 are non-zero positive integers. Then the following conclusions can be established:

- (i) If $n_1 = n_2$, $S_{\varphi}S_{\psi} = S_{\varphi\psi}$ if and only if f and g are both only about z, and f + g = a + bz;
- (ii) If $n_1 \neq n_2$, $S_{\varphi}S_{\psi} = S_{\varphi\psi}$ if and only if $f = a_0 + a_1 z$, $g = b_0 + b_1 z$.

Proof Let $m_1 = m_2 = 0$ in the equation that (11) + (12) = (13) + (14) = 0. Then the theorem can be proved by a discussion of α and β as we have done before in this paper. \Box

References

- A. BROWN, P. R. HALMOS. Algebraic properties of toeplitz operators. J. Reine Angew. Math., 1964, 213(1): 89–102.
- K. STROETHOFF, Dechao ZHENG. Algebraic and spectral properties of dual Toeplitz operators. Trans. Amer. Math. Soc., 2002, 354(6): 2495–2520.
- [3] Yufeng LU. Commuting dual Toeplitz operators with pluriharmonic symbols. J. Math. Anal. Appl., 2005, 302(1): 738–749.
- [4] Yufeng LU, Shuxia SHANG. Commuting dual Toeplitz operators on the polydisk. Acta Math. Sin. (Engl. Ser.), 2007, 23(5): 857–868.
- Jingyu YANG, Yufeng LU. Commuting dual Toeplitz operators on the harmonic Bergman space. Sci. China Math., 2015, 58(7): 1461–1472.
- [6] Tao YU, Shiyue WU. Algebraic properties of dual Toeplitz operators on the orthogonal complement of the Dirichlet space. Acta Math. Sin. (Engl. Ser.), 2008, 24(11): 1843–1852.
- [7] Y. J. LEE. Commuting dual Toeplitz operators on the polydisk. J. Math. Anal. Appl., 2008, 341(1): 738-749.
- [8] G. HOCINE. Dual Toeplitz operators on the sphere. Acta Math. Sin. (Engl. Ser.), 2013, 29(9): 1791–1808.