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Abstract In this paper, we obtain that b ∈ BMO(Rn) if and only if the commutator [b, Iα] is

bounded from the Morrey spaces Lp1,λ1(Rn)× Lp2,λ2(Rn) to Lq,λ(Rn), for some appropriate

indices p, q, λ, µ. Also we show that b ∈ Lipβ(R
n) if and only if the commutator [b, Iα] is

bounded from the Morrey spaces Lp1,λ1(Rn)× Lp2,λ2(Rn) to Lq,λ(Rn), for some appropriate

indices p, q, λ, µ.
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1. Introduction

Let Iα, 0 < α < n, be the fractional integral operator of order α, defined by

Iα :=

∫
Rn

f(y)

|x− y|n−α
dy.

For a locally integrable function b, the commutator [b, Iα] is defined by Chanillo [1] as

follows,

[b, Iα]f(x) := b(x)Iα − Iα(bf)(x).

Meanwhile, Komori [2] obtained [b, Iα] is a bounded map of Lp(Rn) to Lq(Rn) for 1/q = 1/p−α/n

and 0 < α < n, if and only if b ∈ BMO(R) and operator norm ∥[b, Iα]∥Lp→Lq ≈ ∥b∥∗, this is

equivalent Characterizations of BMO Spaces. Then, Paluszyński [3] obtained that b ∈ Lipβ(Rn)

if and only if the commutator [b, Iα] is bounded from Lp(Rn) to Lq(Rn), where 1 < p < q <

∞, 0 < β < 1 with 1/q = 1/p− (β + α)/n, and 1/p− (α+ β) > 0. In addition, Lipβ spaces also

could be characterized by the boundedness of the commutators.

Later, Di Fazio and Ragusa [4] certificated that if b ∈ BMO(Rn), then the commutator

[b, Iα] is bounded from the Morrey space Lp,λ(Rn) to Lq,λ(Rn). Moreover for some appropriate

indices p, q, λ, µ and α, if the commutator [b, Iα] is bounded from Lp,λ(Rn) to Lq,λ(Rn), then

b ∈ BMO(Rn). In addition, Shirai [5] showed that b ∈ Lipβ(Rn) if and only if the commutator

[b, Iα] is bounded from the Morrey space Lp,λ(Rn) to Lq,λ(Rn), where α and β satisfy some

approximate conditions.
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The multilinear fractional integral operators were first considered by Kenig and Stein [6],

who obtained the boundedness of it on Lebesgue spaces with suitable indexes. Mo and Zhang [7]

showed the boundedness of the commutators generated by it and Lipschitz functions on Lebesgue

spaces. Afterwards, Chaffee [8] showed the boundedness of commutators of bilinear fractional

integral operators on Lebesgue spaces. Jiang, Pan and Wang [9] proved that necessary and

sufficient conditions for boundedness of commutators multilinear fractional integral operators on

Lebesgue spaces.

Because Morrey space is a generalization of Lebesgue spaces, a natural problem is whether

the BMO spaces, and Lipβ spaces could be characterized by the boundedness of the bilinear

fractional integral commutators on Morrey spaces. In this paper, We affirmatively answer it.

The aim of this paper is to prove that b ∈ BMO(Rn) if the commutator [b, Iα] generated by

bilinear fractional integral operators Iα and the symbols b is bounded from the classical Morrey

spaces Lp1,λ1(Rn) × Lp2,λ2(Rn) to Lq,λ(Rn), for some appropriate indices p, q, λ, µ. Also we

show that b ∈ Lipβ(R
n) if and only if the commutators [b, Iα] generated by bilinear fractional

integral operators Iα and the symbols b is bounded from the classical Morrey spaces Lp1,λ1(Rn)×
Lp2,λ2(Rn) to Lq,λ(Rn), for some appropriate indices p, q, λ, µ.

Throughout this paper, the letter C always denotes a constant which is independent of main

variables and may change from one occurrence to another. All cubes are assumed to have their

sides parallel to the coordinate axes. We use Q = Q(x0, r) to denote a cube centered at x0 with

side length r. Given a Lebesgue measurable set E, χE will denote the characteristic function of

E and |E| denotes the Lebesgue measure of E.

2. Some definitions and lemmas

Let us first recall several definitions and lemmas.

Definition 2.1 (Bilinear Fractional Integral Operator) For 0 < α < 2n, the bilinear fractional

integral operator Iα is defined by

Iα(f, g)(x) =

∫
Rn

∫
Rn

f(y)g(z)

(|x− y|+ |x− z|)2n−α
dydz.

Definition 2.2 (Commutator) Let b ∈ BMO(Rn) or b ∈ Lipβ(Rn). The commutators [b, Iα]i (i =

1, 2) generated by the symbol b and the bilinear fractional integral operator Iα are defined by

[b, Iα]1(f, g)(x) =

∫
Rn

∫
Rn

b(y)− b(x)

(|x− y|+ |x− z|)2n−α
f(y)g(z)dydz,

and

[b, Iα]2(f, g)(x) =

∫
Rn

∫
Rn

b(z)− b(x)

(|x− y|+ |x− z|)2n−α
f(y)g(z)dydz.

Now, we recall the definitions of the Morrey spaces, BMO space and Lipschitz spaces.

Definition 2.3 (Morrey space) Let 1 ≤ p < ∞, λ ≥ 0. We define the classical Morrey space by

Lp,λ(Rn) := {f ∈ Lp
loc(R

n) : ∥f∥Lp,λ < ∞},
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where

∥f∥Lp,λ := sup
x0∈Rn
t>0

( 1

tλ

∫
Q(x0,t)

|f(x)|pdx
)1/p

.

For classical Morrey space Lp,λ(Rn), the next results are well-known:

Suppose that 1 ≤ p < ∞, then we have Lp,0(Rn) = Lp(Rn) and Lp,n(Rn) = Lp,∞(Rn) when

λ = n, and if n < λ, then we get Lp,λ(Rn) = {0}. Hence we consider the case only 0 < λ < n.

Definition 2.4 (BMO space) A locally integrable function f is said to belong to BMO space if

there exists a constant C > 0 such that for any cube Q ∈ Rn,

∥f∥∗ := sup
Q

1

|Q|

∫
Q

|f(x)− fQ|dx,

where fQ := 1
|Q|

∫
Q
f(y)dy and the supremum is taken over all cubes Q in (Rn).

Definition 2.5 (Lipschitz space) We define the (homogeneous) Lipschitz space of order of β,

0 < β < 1, by

Lipβ(Rn) := {f : |f(x)− f(y)| ≤ C|x− y|β}

and the smallest constant C > 0 is the Lipschitz norm ∥ · ∥Lipβ
.

Remark 2.6 This remark can be found in [3]. For 0 < β < 1 and 1 < q ≤ ∞, we get

Lipβ(Rn) ≈ sup
Q

1

|Q|1+ β
n

∫
Q

|f(x)− fQ|dx ≈ sup
Q

1

|Q| βn

(∫
Q

|f(x)− fQ|qdx
) 1

q

,

where the supremum is taken over all cubes Q in Rn.

The blocks and the spaces generated by blocks were introduced by Long [10].

Definition 2.7 (blocks) Suppose that 1 ≤ q < r ≤ ∞, a function g(x) on Rn is called a

(q, r)-block, if there exists a cube Q(x0, t) such that

(i) supp(g) ⊂ Q(x0, t);

(ii) ∥g∥Lr ≤ tn(
1
r−

1
q ).

Definition 2.8 (blocks spaces) Let 1 ≤ q < r ≤ ∞. We define the space generated by blocks

by

hq,r(Rn) :=
{
f =

∞∑
j=1

mjgj : gj are (q, r)-blocks, ∥f∥hq,r = inf
∑∞

j=1
|mj | < ∞

}
,

where the infimum extends over all representations f =
∑∞

j=1mjgj .

We observe that each (q, r)-blocks gj ∈ Lq(Rn) and ∥gj∥q ≤ 1. So the series of blocks∑
j mjgj converges in Lq(Rn) and absolutely almost everywhere if

∑
j |mj | < ∞, therefore each

space hq,r(Rn) is a Banach space.

Lemma 2.9 ([11]) Let 1 ≤ p < ∞, 0 < λ < n and 1 ≤ q < r ≤ ∞. Then we obtain

(i) ∥χQ(x0,t)∥Lp,λ ≤ Cnt
(n−λ)/p;

(ii) ∥χQ(x0,t)∥hq,r ≤ Cnt
n/q,

where Cn is a positive constant depending only on n.
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Lemma 2.10 ([10,11]) Let 1 ≤ q < p′ ≤ ∞, q = np/(np− n+ λ) and 1/p+1/p′ = 1. Then the

Banach space dual of hq,p′(Rn) is isomorphic to Lp,λ(Rn).

3. Main results

The following statements are our main results.

Theorem 3.1 For 0 < α < 2n, 0 < λ, λ1, λ2 < n and 1 < p, p1, p2 < ∞ with 1
p = 1

p1
+ 1

p2
. Let

1 < q < ∞ with λ
p = λ1

p1
+ λ2

p2
and 1

q = 1
p − α

n−λ . The following statements are equivalent:

(i) b ∈ BMO(Rn);

(ii) [b, Iα]i(f, g)(x) is bounded from Lp1,λ1(Rn)× Lp2,λ2(Rn) to Lq,λ(Rn).

Theorem 3.2 For 0 < α < 2n, 0 < β < 1, 0 < α+ β < 2n( 1p − 1
q ) < 2n, and 1

p = 1
p1

+ 1
p2
. Let

1 < p < q < ∞ with λ
p = λ1

p1
+ λ2

p2
and 1

q = 1
p − α+β

n−λ . The following statements are equivalent:

(i) b ∈ Lipβ(Rn);

(ii) [b, Iα]i(f, g)(x) is bounded from Lp1,λ1(Rn)× Lp2,λ2(Rn) to Lq,λ(Rn).

Proof of Theorem 3.1 (i)=⇒ (ii). This result was proved by Ding and Mei [12].

(ii)=⇒ (i). We use the same argument as Janson [13]. Choose 0 ̸= z0 ∈ (Rn) such that

0 ̸∈ Q(z0, 2). Then for x ∈ Q(z0, 2), |x|n−α ∈ C∞(Q(z0, 2)). Therefore, considering a cut

function on the cube Q(z0, 2 + δ) for sufficiently small δ > 0, |x|n−α can be written as the

absolutely convergent Fourier series

|x|n−α =
∑

m∈Zn

amei⟨vm,x⟩

with
∑

m |am| < ∞, where the exact form of the vectors vm is unrelated. We do not care about

the specific vectors vm ∈ R2n, but we will at times express them as vm = (v1m, v2m) ∈ Rn × Rn.

For any x0 ∈ Rn and r > 0, let Q = Q(x0, r) and Qz0 = Q(x0 + z0r, r). Let σ(x) =

sgn(b(x)− bQz0
). We then have the following,∫

Q

|b(x)− bQz0
|dx

=

∫
Q

(b(x)− bQz0
)σ(x)dx =

1

|Qz0 |2

∫
Q

∫
Qz0

∫
Qz0

(b(x)− bQz0
)σ(x)dzdydx

=
1

|Qz0 |2

∫
Q

∫
Qz0

∫
Qz0

(b(x)− b(y))r2n−α

(|x− y|+ |x− z|)2n−α

( |x− y|+ |x− z|
r

)2n−α
σ(x)dzdydx

= r−α

∫
Q

∫
Qz0

∫
Qz0

(b(x)− b(y))

(|x− y|+ |x− z|)2n−α

( |x− y|+ |x− z|
r

)2n−α
σ(x)dzdydx

= r−α

∫
Q

∫
Qz0

∫
Qz0

(b(x)− b(y))

(|x− y|+ |x− z|)2n−α

∑
m∈Zn

amei⟨vm,
|x−y|+|x−z|

r ⟩σ(x)dzdydx

= r−α

∫
Rn

∫
Rn

∫
Rn

(b(x)− b(y))

(|x− y|+ |x− z|)2n−α
×∑

m∈Zn

amei⟨vm,
|x−y|+|x−z|

r ⟩σ(x)χQ(x)χQz0
(y)χQz0

(z)dzdydx
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Let

fm(y) = e−iv1
m·yχQz0

(y), gm(z) = e−iv2
m·zχQz0

(z)

and

hm(x) = eivm<x,x>σ(x)χQ(x).

Note that each of the above function has an Lq norm of |Q|1/q for any q > 1. Because Q,Qz0

all have side length r, we will have that Q ∩ Qz0 = ∅. Continuing with our above calculation,

we get ∫
Q

|b(x)− bQz0
|dx

= r−α
∑

m∈Zn

am

∫
Rn

hm(x)

∫
Rn

∫
Rn

(b(x)− b(y))

(|x− y|+ |x− z|)2n−α
fm(y)gm(z)dzdydx

= r−α
∑

m∈Zn

am

∫
Rn

hm(x)[b, Iα](fm, gm)(x)dx.

≤ r−α
∑

m∈Zn

|am|
∫
Rn

|hm(x)||[b, Iα](fm, gm)(x)|dx.

Applying the Hölder inequality, we obtain∫
Q

|b(x)− bQz0
|dx

≤ r−α
∑

m∈Zn

am

(∫
Rn

|hm(x)|q
′
) 1

q′
(∫

Rn

|[b, Iα](fm, gm)(x)|qdx
) 1

q

= r−α
∑

m∈Zn

am

(∫
Rn

|hm(x)|q
′
) 1

q′
r

λ
q

(∫
Rn

1

rλ
|[b, Iα](fm, gm)(x)|qdx

) 1
q

=
∑

m∈Zn

am|Q|
−α
n ∥hm∥Lq′ |Q|

λ
qn ∥[b, Iα]∥Lp1,λ1×Lp2,λ2−→Lp,λ∥fm∥Lp1,λ1∥fm∥Lp2,λ2

= ∥[b, Iα]∥Lp1,λ1×Lp2,λ2−→Lp,λ

∑
m∈Zn

am|Q|
−α
n |Q|

1
q′ |Q|

λ
qn |Q|

1
p1 |Q|

λ1
p1n |Q|

1
p2 |Q|

λ2
p2n

= ∥[b, Iα]∥Lp1,λ1×Lp2,λ2−→Lp,λ

∑
m∈Zn

am|Q|
−α
n + 1

q′+
λ
qn+ 1

p1
+ 1

p2
+

λ1
p1n+

λ1
p2n

≤ C∥[b, Iα]∥Lp1,λ1×Lp2,λ2−→Lp,λ |Q|.

Therefore we have

1

|Q|

∫
Q

|b(x)− bQ|dx ≤ 2

|Q|

∫
Q

|b(x)− bQz0
|dx ≤ C∥[b, Iα]∥Lp1,λ1×Lp2,λ2−→Lp,λ .

This implies that b ∈ BMO(Rn), thus we complete the proof of Theorem 3.1. �

Proof of Theorem 3.2 (i)=⇒(ii). Let b ∈ Lipβ(Rn). Then we have

|[b, Iα]1(f, g)(x)| =
∣∣∣ ∫

Rn

∫
Rn

b(y)− b(x)

(|x− y|+ |x− z|)2n−α
f(y)g(z)dydz

∣∣∣
≤

∫
Rn

∫
Rn

|b(y)− b(x)|
||x− y|+ |x− z||2n−α

|f(y)||g(z)|dydz



716 Suixin HE and Jiang ZHOU

≤ C∥b∥Lipβ

∫
Rn

∫
Rn

|f(y)||g(z)|
||x− y|+ |x− z||2n−(α+β)

dydz

= C∥b∥Lipβ
Iα+β(|f |, |g|)(x).

For any x ∈ Rn, by [14] we get

∥[b, Iα]1(f, g)∥Lq,λ ≤ C ′∥b∥Lipβ
∥Iα+β(|f |, |g|)∥Lq,λ ≤ C∥b∥Lipβ

∥f∥Lp1,λ1 × ∥g∥Lp2,λ2 .

(ii)=⇒(i). We can prove by using an argument similar to the proof of Theorem 3.1. Below

we give a completeness proof. Suppose that Q and Qz0 are the same cubes as in the proof

(ii)=⇒(i) in Theorem 3.1. Then we have∫
Q

|b(x)− bQz0
|dx

= r−α
∑

m∈Zn

am

∫
Rn

hm(x)

∫
Rn

∫
Rn

(b(x)− b(y))

(|x− y|+ |x− z|)2n−α
fm(y)gm(z)dzdydx

= r−α
∑

m∈Zn

am

∫
Rn

hm(x)[b, Iα](fm, gm)(x)dx

≤ r−α
∑

m∈Zn

|am
∣∣∣ ∫

Rn

|hm(x)||[b, Iα](fm, gm)(x)
∣∣∣dx.

It follows from Lemmas 2.9 and 2.10 that∫
Q

|b(x)− bQz0
|dx

≤ r−α
∑

m∈Zn

|am|∥[b, Iα](fm, gm)∥Lq,λ∥hm∥hnq/(nq−n+λ),q′

≤ r−α
∑

m∈Zn

|am∥[b, Iα]∥Lp1,λ1×Lp2,λ2−→Lq,λ∥fm∥Lp1,λ1∥gm∥Lp2,λ2 ∥hm∥hnq/(nq−n+λ),q′

≤ r−α
∑

m∈Zn

|am∥[b, Iα]∥Lp1,λ1×Lp2,λ2−→Lq,λC ′
nr

n−λ1
p1 C ′′

nr
n−λ2

p2 Cnr
nq−n+λ

q

≤ C∥[b, Iα]∥Lp1,λ1×Lp2,λ2 |Q|1+
β
n .

Therefore we obtain

1

|Q|1+ β
n

∫
Q

|b(x)− bQ|dx ≤ 2

|Q|

∫
Q

|b(x)− bQz0
|dx ≤ C∥[b, Iα]∥Lp1,λ1×Lp2,λ2−→Lp,λ ,

which implies that b ∈ Lipβ(Rn). This completes the proof of Theorem 3.2. �
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