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Abstract We study complete noncompact 1-minimal stable hypersurfaces in a 4-dimensional
sphere S*. We show that there is no complete noncompact 1-minimal stable hypersurfaces
in S* with polynomial volume growth and the restriction of the mean curvature and Gauss-
Kronecker curvature. These results are partial answers to the conjecture of Alencar, do Carmo
and Elbert when the ambient space is a 4-dimensional sphere.
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1. Introduction

Cheng and Yau [1] proved that any complete noncompact hypersurface in the Euclidean
space with constant scalar curvature and nonnegative sectional curvature must be a generalized
cylinder. It is natural to study the global properties of hypersurfaces in space forms with constant
scalar curvature. Alencar, do Carmo and Elbert posed the following question: Is there any
complete 1-minimal stable hypersurfaces in R* with nonzero Gauss-Kronecker curvature? In [2],
it was proved that there is no complete noncompact 1-minimal stable hypersurface M in R*
with nonzero Gauss-Kronecker curvature and finite total curvature. Silva Neto [3] showed that
there is no complete 1-minimal stable hypersurface in R* with zero scalar curvature, polynomial
volume growth and the restriction of the mean curvature and the Gauss-Kronecker curvature.

Motivatived by our recent work of hypersurfaces in spheres in [4,5], we study the global
properties of complete noncompact 1-minimal stable hypersurfaces in a 4-dimensional sphere
S* in this paper. A Riemannian manifold M? has polynomial volume growth, if there exists
v € (0,3] such that lim, volBr(p) +o00, for all p € M, where B,(p) is the geodesic ball of

rY

radius r in M. We show two non-existence results as follows:

Theorem 1.1 There is no stable complete noncompact 1-minimal hypersurface M?> in S* with

polynomial volume growth and such that the mean curvature H satisfying

1
H| < 01, [Vig)] < 02
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for any positive constants d1 and 6s.

Theorem 1.2 There is no stable complete noncompact 1-minimal hypersurface M? in S* with
polynomial volume growth and such that

-K 1

— > 01, |V(=)| < 6o,

H3 — 1 | (H)| = ©2
for any positive constants 61 and d2, where H and K are the mean curvature and the Gauss-

Kronecker curvature, respectively.

2. Preliminaries

Let M3 be a complete Riemannian manifold and let = : M? — S* be an isometric immersion
into the sphere S* with constant scalar curvature. We choose a unit normal field N to M and
define the shape operator A associated with the second fundamental form of M, i.e., for any
peM

A: T,M - T,M
satisfies (A(X),Y) = —(VxN,Y), where V is the Riemannian connection in S*. Let A1, A2, A3
denote the eigenvalues of A. The r-th symmetric function of A1, A2, A3, denoted by S,., is defined
by
S1=A + A2+ Az,
So = AMAa + A1 A3 + A2 Ag,
Sg = )\1 )\2)\3.

With the above notations, we call H, = g; the r-mean curvature of the immersion. Obviously,
H, = H is the mean curvature and K = Hj is the Gauss-Kronecker curvature. Hs is, modulo a
constant 1, the scalar curvature of M. The hypersurface M is called r-minimal if H,;1 = 0.

It is well known that hypersurfaces with constant scalar curvature in space forms are critical

point for a geometric variational problem, namely, that associated to the functional

Ay (M) = / s
M
under compactly supported variations that preserves the volume. Let
P=51d-A:T,M —T,M.

Obviously,
trace(Py) = 25;.

We obtain the second variational formula for hypersurfaces in S* with constant 2-mean curvature
[6]:

2
Glimo= [ RENTN - [ (515380 + 2501

for each f € C°(M). Tt is known that M3 is stable if and only if

/ (S1 — 35 +251)f2 < / (PL(Vf), V), (2.1)
M M
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for each f € C(M).

3. Proof of main results
In this section, we will give the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1 Suppose by contradiction there exists a complete noncompact stable
hypersurface satisfying the condition of Theorem 1.1. By assumption, S; = 3H is nonzero. We
can choose an orientation such that S; = 3H > 0. There is a fact that 25,53 < S7 which
implies that S3 < 0. The operator P; is positive definite since H is positive [7]. Stability and
1-minimality of the hypersurface M imply that there is the following inequality:

[ esi-3s0r < [ (Puvi). V) (31)
M M
for each f € C°(M). Choose f = S1% for a positive constant ¢ to be determined and ¢ €
C°(M). Since

Vf=q5""oVS + 57V,

we get that
(PL(VF), V) =(gS1 7 Py (VS1) + S19P1(V), (1 + ¢)S17 ' oVS) + S19V )
=252 2p%(P1(VS)), VS)) +2¢5129 1 o(P(VS1), Vo) +
S12(P1(Ve), V). (3.2)
Since P is positive definite, we obtain that
251*7 1 p(P1(VS1), V) = 51217 %(P(¢VS1), S1 V)
=2¢5*1*(\/P1(¢VS1), VPi(S1V))
<SP (VP eV S + [V PI(S1Ve)?)
= ¢S81%72p2 (P (VS1,VS1)) + ¢S1%(P(V), V). (3.3)

By (3.1)—(3.3) and the fact (P;(X), X) < 251|X|?, we get the following inequality:

/ (251 — 383)51%%* <(¢* + Q)/
M

S1217 20} (P1(V51),V81) + / (1+ @) *1(P1(Ve), Vi)
M

M

<2¢> +q) / S22V, 2 4 2(1 + q) / 5,20+ 72, (3.4)
M M

We choose ¢ = (;S# and get that

(3+2¢)?

2 _
[Ve|® = 1

¢V (3.5)
Combining (3.4) with (3.5), we obtain that

/ (251 — 353)512q¢3+2q SQ((]2 + Q)/ 512Q*1¢3+2q|VSl|2+
M M

(1+Q)(3+QQ)2/ S, 1420414207 g 2. (3.6)
2 M
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Using Young’s inequality, we have

Ve|?

Sll+2q¢1+2q|v¢|2 _ (bsll+2q¢1+2(I) . ( - )
o 142, 2z §3+20 g2 2 e V32,

34+ 2q 3+ 2q

for a positive constant b to be determined. Combining with (3.6), we have

/ (251 o 353)512q¢3+2q _ 2(q2 + q)/ 512Q*1¢3+2q|vsl‘2
M M

M
That is,
/M AS;THG < B /M VI,
where si2g
2 =353 2 1o (1+q)(3+2¢)(1+2¢)br+
—_ —_—— - _ 2 — p—
A= g+ g5 =2 T IV () ,
and
B=(1+q)B3+2¢)b = >0.
Since )
>~ 01, 77 /)| = 92,
|H| <6 |V(H)| <6
we have
1S4 < 361, [V()] < 2
1] > 1 Sl =3 )
which imply that
As 2, 738 2+ (1+a)B+20)(0+2)b
o2t o 9 2 '

Choosing ¢ and b sufficiently small such that

2 2 3429
2 2" +q)0;  (1+qg)(B+2g)(1+2g)bTi

967 9 2

> 0.

Combining (3.10) with the fact that 7253 >0, we get
1

A > 0.

Let ¢ be a function depending on the distance r with respect to a fixed point p,

1, on B(R),
oa) =4 =T on BOR)\B(R)
0, on M\ B(2R).

Combining with (3.9), we obtain that

342 1 vol(B(2R))
AS PP < B <B—rs

B(R) BeR\B(R) B¥T2 ~

< Graie q)f = / ((1+ 2q)bT73E S7F2097 20 4 9= 557 |y +21),

721

(3.10)

(3.11)
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Noting that M has polynomial volume growth and taking R — +o0o, we obtain that S; = 0.
This contradicts S; # 0. O

Proof of Theorem 1.2 Suppose by contradiction there exists a complete noncompact sta-
ble hypersurface satisfying the condition of Theorem 1.2. Following the same step as proof of
Theorem 1.1, we still obtain the inequality (3.9). Since

2V <6
e set Sy 8 1 5
— 3 1 2
Thus,
Ao 2 0 APt a0l (a+q)(3+20)(1+ 2T
S 9 3 2a '

Choosing ¢ and b sufficiently small such that

51 2¢*taq)dy  (a+q)(3+2q)(1+2q)bT

0.
9 3 2a =
Thus A > 0. Let ¢ be a function depending on the distance r with respect to a fixed point p,
1, on B(R),
2R —
o(z) = =%, on BRR)\B(R).
0, on M\ B(2R).
Combining with (3.9), we obtain that
1 vol(B(2R))
AS P21 < B <B 3.12
B BR\B(R) 1772 R+ (342

Noting that M has polynomial volume growth and taking R — 400, we obtain that S; = 0.
This contradicts S1 # 0. O
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