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1. Introduction and main results

Let ϕ ∈ L2(R) be an MRA scaling function satisfying

ϕ(x) =

∞∑
k=−∞

pkϕ(2x− k), (1.1)

i.e., ϕ is of a two-scale refinable property. By taking a Fourier transformation on both sides of

(1.1) and denoting the Fourier transformation of ϕ by ϕ̂(ξ) :=
∫∞
−∞ ϕ(x)e−iξxdx, we have

ϕ̂(ξ) = P (z)ϕ̂(
ξ

2
), (1.2)

where

P (z) =
1

2

∞∑
k=−∞

pkz
k and z = e−iξ/2. (1.3)

Here, P (z) is called the mask of the scaling function. Now, regarding the property that {ϕ(x−k)}
must be an orthonormal basis, we have the following characterization theorem (see, for example,

Chs. 2, 5 and 7 of Chui [1] and Ch. 3 of Hernándes and Weiss [2]).

Theorem 1.1 Suppose the function ϕ satisfies the refinement relation ϕ(x) =
∑∞

−∞ pkϕ(2x−k).

Then (i) {ϕ(x− k) : k ∈ Z} forms an orthonormal basis only if |P (z)|2 + |P (−z)|2 = 1 for z ∈ C
with |z| = 1. (ii) Suppose P (z) satisfies
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(a) P (z) ∈ C1 and is 2π-periodic;

(b) |P (z)|2 + |P (−z)|2 = 1;

(c) P (1) = 1;

(d) P (z) ̸= 0 for all ξ ∈ [−π, π].

Then {ϕ(x− k) : k ∈ Z} forms an orthonormal basis.

Denote the cardinal B-splines with integer knots in N0 by Bn(x). It is well-known that

Bn(x) satisfy refinement relation (see for example, Wang [3])

Bn(x) =

n∑
j=0

1

2n−1

(
n

j

)
Bn(2x− j) (1.4)

and have masks Pn(z) such that B̂n(ξ) = Pn(z)B̂n(ξ/2), where z = e−iξ/2 and

Pn(z) =
1

2

n∑
j=0

1

2n−1

(
n

j

)
zj =

(1 + z)n

2n
=

(1 + z

2

)n
. (1.5)

It is clear that

|Pn(z)|2 + |Pn(−z)|2 =
∣∣1 + z

2

∣∣2n +
∣∣1− z

2

∣∣2n
= cos2n(ξ/4) + sin2n(ξ/4) ≤ cos2(ξ/4) + sin2(ξ/4) = 1.

The equality happens only when n = 1. Therefore, except for the case of order one (i.e.,

n = 1), Bn(x) are generally not orthogonal (indeed they are Riesz basis). To induce orthogonal-

ity, Daubechies [4,5] introduced a class of polynomial function factors S(z). Hence, instead of

Bn(x), a scaling function ϕn(x), called spline type Daubechies scaling functions, with the mask

Pn(z)Sn(z) is considered so that

ϕn(ξ) = Pn(z)Sn(z)ϕn(ξ/2), (1.6)

where Pn(z) are defined as (1.5). We need to construct Sn(z) such that the shift set of the

new scaling function form an orthogonal basis. In other words, we need that Sn(z) satisfy the

following condition

|Pn(z)Sn(z)|2 + |Pn(−z)Sn(−z)|2 = 1. (1.7)

Now we consider Sn(z) of the following type: Sn(z) = a1z+a2z
2+ · · ·+anz

n, n ∈ N and ai ∈ R,
i = 1, . . . , n. When z = 1, from equation (1.7) we have

1 = |Pn(1)Sn(1)|2 + |Pn(−1)Sn(−1)|2

= |Pn(1)|2|Sn(1)|2 + |Pn(−1)|2|Sn(−1)|2

= |Sn(1)|2 + 0 = |Sn(1)|2.

Thus Sn(1) =
∑n

i=1 ai = ±1. From Theorem 1.1 (ii), we further impose a restriction that∑n
i=1 ai = 1 in order to ensure the orthogonality of the scaling function.

Next, we set out to find the expressions and constructions of Sn. We have the following

Lemma and leave the proof for next section.
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Lemma 1.2 Let Sn(z) be defined as above. Then

|Sn(z)|2 =

n∑
i=1

a2i + 2

n−1∑
i=1

aiai+1 cos(ξ/2) + 2

n−2∑
i=1

aiai+2 cos(2ξ/2) + · · ·+

2a1an cos((n− 1)ξ/2).

From Lemma 1.2, if we write each cos(kξ/2) as a polynomial of cos(ξ/2), then |Sn(z)|2 =

Qn(x) where x = cos(ξ/2). Obviously, Qn(x) has the degree of n− 1. It is also easy to observe

that |Sn(−z)|2 = Qn(−x). Now equation (2.5) becomes

1 = |Pn(z)Sn(z)|2 + |Pn(−z)Sn(−z)|2 = cos2n(ξ/4)Qn(x) + sin2n(ξ/4)Qn(−x)

=
(1 + cos(ξ/2)

2

)n
Qn(x) +

(1− cos(ξ/2)

2

)n
Qn(−x)

=
(1 + x

2

)n
Qn(x) +

(1− x

2

)n
Qn(−x).

So finally we get (1 + x

2

)n
Qn(x) +

(1− x

2

)n
Qn(−x) = 1. (1.8)

As a side note, (1.8) is equivalent to (6.1.7) of [4] or (4.9) of [5], but is of quite different form so

that we may obtain a complete different solution of the equation shown below in (1.9) by using

Lorentz polynomials, which yields an efficient proof of sufficiency for the orthogonality and a

mechanical and elementary way to construct scaling functions ϕn.

Next, to show the existence of Q(x) in the above equation, we make use of the polynomial

extended Euclidean algorithm shown in Cormen et al. [6].

Lemma 1.3 (Polynomial extended Euclidean algorithm) If a and b are two nonzero polynomials,

then the extended Euclidean algorithm produces the unique pair of polynomials (s, t) such that

as+ bt = gcd(a, b), where deg(s) < deg(b)− deg(gcd(a, b)) and deg(t) < deg(a)− deg(gcd(a, b)).

We notice that gcd(( 1+x
2 )n, ( 1−x

2 )n) = 1, so by Lemma 1.3, there exists uniquely Q(x) and

R(x) with degrees less than n such that ( 1+x
2 )nQ(x) + ( 1−x

2 )nR(x) = 1. If we replace x by −x

in the previous equation, we have ( 1−x
2 )nQ(−x) + ( 1+x

2 )nR(−x) = 1. Due to the uniqueness of

the algorithm, we conclude that R(x) = Q(−x). So we have showed the existence of a unique

Q(x) = Qn(x) satisfying equation (1.8).

To construct Qn(x) explicitly, we use the Lorentz polynomials shown in Erdélyi and Szaba-

dos [7], Lorentz [8] and the following technique.

1 =
(1 + x

2
+

1− x

2

)2n−1
=

2n−1∑
i=0

(
2n− 1

i

)(1 + x

2

)2n−1−i(1− x

2

)i
=
(1 + x

2

)n[ n−1∑
i=0

(
2n− 1

i

)(1 + x

2

)n−1−i(1− x

2

)i]
+

(1− x

2

)n[ n−1∑
i=0

(
2n− 1

i

)(1− x

2

)n−1−i(1 + x

2

)i]
,

where the polynomials presenting in the brackets are the Lorentz polynomials. We notice that
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the degrees of the two polynomials in the brackets are n − 1, and because Qn(x) in equation

(1.8) is unique, we can conclude that

Qn(x) =
n−1∑
i=0

(
2n− 1

i

)(1 + x

2

)n−1−i(1− x

2

)i
. (1.9)

With the construction ofQn(x), we take a step further by showing the existence of
∑

a2i ,
∑

aiai+1,

. . . in Lemma 1.2.

It is well-known that the set {1, cos(t), cos(2t), . . . , cos((n − 1)t)} is linearly independent.

As a result, {1, cos(ξ/2), cos(2ξ/2), . . . , cos((n − 1)ξ/2)} forms a basis of the space Pn−1(x) =

{P (x) : x = cos(ξ/2) and P is a polynomial of degree less than n. Based on this fact and the

existence of Qn(x) in equation (1.8), it is obvious that the coefficients
∑

a2i ,
∑

aiai+1, . . . in

Lemma 1.2 must exist uniquely.

We now survey our results in the following theorem and give its proof in next section.

Theorem 1.4 Let Pn(z) and Sn(z) be defined as above. Then for n = 1, 2, . . . , the spline type

function ϕn(x) with the mask P (z) = Pn(z)Sn(z), where Sn(z) = a1z + a2z
2 + · · · + anz

n, is a

Daubechies scaling function that generates an orthogonal basis of V0 in its MRA.

Although we cannot give the explicit expression of ϕn(x), we may use the recursive method

presented in Theorem 5.23 of [9] by Boggess and Narcowich to find an approximation of ϕn(x)

with any accuracy. It is easy to see that all three conditions required by Theorem 5.23 are satisfied

by Pn(z): (i) Pn(1) = 1, (ii) |Pn(z)|2+ |Pn(−z)|2 = 1 (|z| = 1), and (iii) Pn(z)| > 0 (ξ ∈ [−π, π]).

The examples for the cases n = 3 and 4 will be provided in Section 3 to demonstrate this

procedure, while all proofs are given in next section.

In the next section, we give proofs of Lemma 1.2 and Theorem 1.4. The examples of the

Daubechies scaling functions (the spline type scaling functions) for the cases of n = 3 and 4 are

presented in Section 3.

2. Proofs

We now give the proof of Lemma 1.2.

Proof of Lemma 1.2 We have

|Sn(z)|2 =|a1(cos(ξ/2)− i sin(ξ/2)) + · · ·+ an(cos(nξ/2)− i sin(nξ/2))|2

=|(a1 cos(ξ/2) + · · ·+ an cos(nξ/2))− i(a1 sin(ξ/2) + · · ·+ an sin(nξ/2))|2

=(a1 cos(ξ/2) + · · ·+ an cos(nξ/2))
2 + (a1 sin(ξ/2) + · · ·+ an sin(nξ/2))

2

=a1(cos
2(ξ/2) + sin2(ξ/2)) + · · ·+ an(cos

2(nξ/2) + sin2(nξ/2))+∑
i<j

2aiaj(cos(iξ/2) cos(jξ/2) + sin(iξ/2) sin(jξ/2))

=

n∑
i=1

a2i +
∑
i<j

2aiaj cos((i− j)ξ/2)
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=
n∑

i=1

a2i + 2
n−1∑
i=1

aiai+1 cos(ξ/2) + 2
n−2∑
i=1

aiai+2 cos(2ξ/2) + · · ·+

2a1an cos((n− 1)ξ/2).

A similar procedure can be applied to find |Sn(−z)|2

|Sn(−z)|2 =
n∑

i=1

a2i − 2
n−1∑
i=1

aiai+1 cos(ξ/2) + 2
n−2∑
i=1

aiai+2 cos(2ξ/2) + · · ·+

(−1)n2a1an cos((n− 1)ξ/2).

We now prove Theorem 1.4 using our new mask expression (1.9).

Proof of Theorem 1.4 From Theorem 1.1 (ii), the sufficient conditions for the orthogonality

of the scaling function are

(a) P (z) ∈ C1 and is 2π-periodic;

(b) |P (z)|2 + |P (−z)|2 = 1;

(c) P (1) = 1;

(d) P (z) ̸= 0 for all ξ ∈ [−π, π].

From the construction of our P (z) = Pn(z)Sn(z), the first two conditions are automatically sat-

isfied. The third condition is also obvious: P (1) = Pn(1)Sn(1) = ( 1+1
2 )n

∑n
i=1 ai = 1 according

to the construction of Sn(z). Now we will prove that the final condition is fulfilled as well.

Indeed, if ξ ∈ [−π, π], then firstly we have

|Pn(z)| =|Pn(e
−iξ/2)| =

∣∣1 + e−iξ/2

2

∣∣n =
∣∣1 + cos(ξ/2)− i sin(ξ/2)

2

∣∣n
=| cos2(ξ/4)− i sin(ξ/4) cos(ξ/4)|n =

√
cos4(ξ/4) + cos2(ξ/4) sin2(ξ/4)

n

=| cos(ξ/4)|n ≥ | cos(π/4)|n > 0 for ξ ∈ [−π, π].

Secondly, from equation (1.9) we have

|Sn(z)|2 = Qn(x) =
n−1∑
i=0

(
2n− 1

i

)(1 + x

2

)n−1−i(1− x

2

)i
≥

n−1∑
i=0

(
n− 1

i

)(1 + x

2

)n−1−i(1− x

2

)i
=

(1 + x

2
+

1− x

2

)n−1
= 1.

Thus |Sn(z)| ≥ 1 and |P (z)| = |Pn(z)||Sn(z)| ≥ | cos(π/4)|n > 0.

The remaining thing is to show that the newly constructed scaling function ϕn(x) with mask

Pn(z)Sn(z) is in L2(Z), where Sn(z) =
∑n

j=1 ajz
j and n ∈ N. From He [10,11], we know that

ϕn ∈ L2(R) if

n

n∑
j=1

a2j < 22n−1. (2.1)
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Recall from Lemma 1.2 that

Qn(x) = Qn(cos(ξ/2)) =

n∑
i=1

a2i + 2

n−1∑
i=1

aiai+1 cos(ξ/2) + · · ·+ 2a1an cos((n− 1)ξ/2).

Taking the integration from 0 to 2π of both sides, we have∫ 2π

0

Qn(x)dξ =

∫ 2π

0

( n∑
i=1

a2i + 2
n−1∑
i=1

aiai+1 cos(ξ/2) + · · ·+ 2a1an cos((n− 1)ξ/2)
)
dξ

= 2π

n∑
i=1

a2i .

On the other hand, from the expression of Qn(x) in (1.9) we have∫ 2π

0

Qn(x)dξ =

∫ 2π

0

n−1∑
i=0

(
2n− 1

i

)(1 + x

2

)n−1−i(1− x

2

)i
dξ

=

∫ 2π

0

n−1∑
i=0

(
2n− 1

i

)(1 + cos(ξ/2)

2

)n−1−i(1− cos(ξ/2)

2

)i
dξ.

Combining the two equations above, we have

n∑
i=1

a2i =
1

2π

∫ 2π

0

n−1∑
i=0

(
2n− 1

i

)(1 + cos(ξ/2)

2

)n−1−i(1− cos(ξ/2)

2

)i
dξ. (2.2)

Now we need to show that the expression on the right hand side of (2.2) is smaller than 22n−1

n .

First of all, it is easy to see that for 0 ≤ i ≤ n− 1(
2n− 1

i

)
<

(
2n− 1

n− 1

)
=

1

2

(
2n

n

)
.

Applying this inequality into (2.2) yields

1

2π

n−1∑
i=0

(
2n− 1

i

)∫ 2π

0

(1 + cos(ξ/2)

2

)n−1−i(1− cos(ξ/2)

2

)i
dξ

<
1

4π

(
2n

n

) n−1∑
i=0

∫ 2π

0

(
cos

ξ

4

)2(n−1−i)(
sin

ξ

4

)2i
dξ

=
1

π

(
2n

n

) n−1∑
i=0

∫ π/2

0

(cosx)2(n−1−i)(sinx)2idx (2.3)

for x = ξ/4. Now let

A =

n−1∑
i=0

∫ π/2

0

(cosx)2(n−1−i)(sinx)2idx.

We can express A as the sumation of two terms A = A1 +A2, where

A1 =

[n−1
2 ]∑

i=0

∫ π/2

0

(cosx)2(n−1−i)(sinx)2idx,

A2 =
n−1∑

i=[n−1
2 ]+1

∫ π/2

0

(cosx)2(n−1−i)(sinx)2idx.
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For 0 ≤ i ≤ [n−1
2 ], 2(n− 1− i) > 2i, the term A1 becomes

A1 =

[n−1
2 ]∑

i=0

∫ π/2

0

(cosx)2(n−1−2i)(sinx cosx)2idx

=

[n−1
2 ]∑

i=0

1

4i

∫ π/2

0

(cosx)2(n−1−2i)(sin 2x)2idx

≤
[n−1

2 ]∑
i=0

1

4i

∫ π/2

0

(cosx)2(n−1−2i)dx.

For [n−1
2 ] + 1 ≤ i ≤ n− 1, 2(n− 1− i) < 2i, the term A2 becomes

A2 =

n−1∑
i=[n−1

2 ]+1

∫ π/2

0

(sinx cosx)2(n−1−i)(sinx)2(2i−n+1)dx

=
n−1∑

i=[n−1
2 ]+1

1

4n−1−i

∫ π/2

0

(sinx)2(2i−n+1)(sin 2x)2(n−1−i)dx

≤
n−1∑

i=[n−1
2 ]+1

1

4n−1−i

∫ π/2

0

(sinx)2(2i−n+1)dx

≤
[n−1

2 ]∑
i=0

1

4i

∫ π/2

0

(sinx)2(n−1−2i)dx.

Next, we make use of the following well-known result∫ π/2

0

(sinx)2ndx =

∫ π/2

0

(cosx)2ndx =
(2n− 1)!!

(2n)!!

π

2

=
(2n)!

[(2n)!!]2
π

2
=

π

2

(2n)!

4n(n!)2
=

π

2

1

4n

(
2n

n

)
.

Next, we try to find the upper bound for
(
2n
n

)
. Based on Stirling estimation, we have the following

inequalities (
2n

n

)
≤ 4n√

3n+ 1
(2.4)

and (
2n

n

)
≤ 4n√

πn

(
1 +

1

12n− 1

)
. (2.5)

Using (2.4) on A1 and A2 yields

A = A1 +A2 ≤ 2

[n−1
2 ]∑

i=0

1

4i
1√

3(n− 1− 2i) + 1

π

2

= π

[n−1
2 ]∑

i=0

1

3i
1

( 43 )
i
√
3(n− 1− 2i) + 1

.
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We consider the denominator of the fraction, and let

f(x) = (
4

3
)2x[3(n− 1− 2x) + 1], x ∈ [0,

n− 1

2
].

Surveying the function, we have f(x) attains minimum at 0, or

f(x) = (
4

3
)2x[3(n− 1− 2x) + 1] > f(0) = 3(n− 1) + 1.

Thus, we have

A ≤ π

[n−1
2 ]∑

i=0

1

3i
1√

3(n− 1) + 1
≤ π√

3n− 2

∞∑
i=0

1

3i
=

3π

2
√
3n− 2

. (2.6)

Finally, combining (2.2)–(2.6), we have

n∑
i=1

a2i ≤ 1

π

(
2n

n

)
A ≤ 1

π

4n√
πn

(
1 +

1

12n− 1

) 3π

2
√
3n− 2

.

For n ≥ 17, we can easily verify that the right hand side is less than 22n−1

n . Using Mathematica

for direct calculation of the case n ≤ 16, we find that the inequality in Theorem 3.1 holds. Thus,

it holds for every integer n, and we have shown that ϕ ∈ L2(R) and the proof is completed. �

3. Examples

It is easy to find that S1(z) = z and ϕn(x) is the Haar function. For n = 2,

S2(z) =
1 +

√
3

2
z +

1−
√
3

2
z2

and the corresponding ϕ2(x) is the Daubechies D2 scaling function.

As examples, we consider the efficiency of the computation in using mask expression (1.9) to

construct Daubechies scaling functions (the spline type scaling functions) for the cases of n = 3

and 4. According to the previous sections, we will construct the Daubechies D3 scaling function

ϕ3(x) from the third order B-spline function B3(x) using our expression (1.9).

In order to construct the function ϕ3(x), we start with its mask P3(z)S3(z), where P3(z) =

( 1+z
2 )3 is the mask of the third order B-spline. Let S3(z) = a1z + a2z

2 + a3z
3. Then by Lemma

1.2, we have

Q3(x) = |S3(z)|2 = (a21 + a22 + a23) + 2(a1a2 + a2a3) cos(ξ/2) + 2a1a3 cos(ξ)

= (a21 + a22 + a23) + 2(a1a2 + a2a3) cos(ξ/2) + 2a1a3(2 cos
2(ξ/2)− 1)

= (a21 + a22 + a23 − 2a1a3) + 2(a1a2 + a2a3) cos(ξ/2) + 4a1a3 cos
2(ξ/2)

= (a21 + a22 + a23 − 2a1a3) + 2(a1a2 + a2a3)x+ 4a1a3x
2

where x = cos(ξ/2) and z = e−iξ/2.

On the other hand, by equation (1.9) we have

Q3(x) =
2∑

i=0

(
5

i

)(1 + x

2

)2−i(1− x

2

)i
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=
(1 + x

2

)2
+ 5

(1 + x

2

)(1− x

2

)
+ 10

(1− x

2

)2
=

3

2
x2 − 9

2
x+ 4.

Thus, from the above equations, we have the following system of equations
a21 + a22 + a23 − 2a1a3 = 4,

2(a1a2 + a2a3) = −9

2
,

4a1a3 =
3

2
.

(3.1)

Simplifying (3.1), we get 
a21 + a22 + a23 =

19

4
,

a1a2 + a2a3 = −9

4
,

a1a3 =
3

8
.

(3.2)

From this system, we have (a1 + a2 + a3)
2 = a21 + a22 + a23 + 2(a1a2 + a2a3 + a1a3) = 1. Without

loss of generality, consider the case a1 + a2 + a3 = 1. Combining this with a1a2 + a2a3 = − 9
4

and a1a3 = 3
8 , we have the following solution

a1 =
1

4
(1 +

√
10−

√
5 + 2

√
10),

a2 =
1

2
(1−

√
10),

a3 =
1

4
(1 +

√
10 +

√
5 + 2

√
10).

(3.3)

We verify the condition for ϕ3 to be in L2(R)

a21 + a22 + a23 =
19

4
<

32

3
=

22·3−1

3
.

Thus ϕ3 is indeed in L2(R). Now we will attempt to construct ϕ3 explicitly. It has the mask

P3(z)S3(z) =
(1 + z

2

)3
(a1z + a2z

2 + a3z
3)

= 0.0249x− 0.0604x2 − 0.095x3 + 0.325x4 + 0.571x5 + 0.2352x6.

Hence, we have the refinement equation

ϕ3(x) =0.0498ϕ3(2x− 1)− 0.121ϕ3(2x− 2)− 0.191ϕ3(2x− 3)+

0.650ϕ3(2x− 4) + 1.141ϕ3(2x− 5) + 0.4705ϕ3(2x− 6). (3.4)

Again, we construct the Daubechies D4 orthogonal scaling function ϕ4(x) from the forth

order B-spine B4(x) with the mask P4(z) = ( 1+z
2 )4. Now we examine the mask P4(z)S4(z) of

ϕ4(x) where we define S4(z) = a1z + a2z
2 + a3z

3 + a4z
4. By Lemma 1.2, we have

Q4(x) =|S4(z)|2 = (a21 + a22 + a23 + a24) + 2(a1a2 + a2a3 + a3a4) cos(ξ/2)+

2(a1a3 + a2a4) cos(ξ) + 2a1a4 cos(3ξ/2)

=(a21 + a22 + a23 + a24) + 2(a1a2 + a2a3 + a3a4) cos(ξ/2)+
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2(a1a3 + a2a4)(2 cos
2(ξ/2)− 1) + 2a1a4(4 cos

3(ξ/2)− 3 cos(ξ/2))

=(a21 + a22 + a23 + a24 − 2a1a3 − 2a2a4)+

(2a1a2 + 2a2a3 + 2a3a4 − 6a1a4) cos(ξ/2)+

(4a1a3 + 4a2a4) cos
2(ξ/2) + 8a1a4 cos

3(ξ/2)

=(a21 + a22 + a23 + a24 − 2a1a3 − 2a2a4)+

(2a1a2 + 2a2a3 + 2a3a4 − 6a1a4)x+

(4a1a3 + 4a2a4)x
2 + 8a1a4x

3

where x = cos(ξ/2) and z = e−iξ/2.

Using equation (1.9), we get another expression for Q4(x)

Q4(x) =

3∑
i=0

(
7

i

)(1 + x

2

)3−i(1− x

2

)i
=

(1 + x

2

)3
+ 7

(1 + x

2

)2(1− x

2

)
+ 21

(1 + x

2

)(1− x

2

)2
+ 35

(1− x

2

)3
= 8− 29

2
x+ 10x2 − 5

2
x3.

Thus, from the above equations, we have the following system of equations

a21 + a22 + a23 + a24 − 2a1a3 − 2a2a4 = 8,

2a1a2 + 2a2a3 + 2a3a4 − 6a1a4 = −29

2
,

4a1a3 + 4a2a4 = 10,

8a1a4 = −5

2
.

(3.5)

Simplifying (3.5), we have the following system

a21 + a22 + a23 + a24 = 13,

a1a2 + a2a3 + a3a4 = −131

16
,

a1a3 + a2a4 =
5

2
,

a1a4 = − 5

16
.

(3.6)

Solving for this system of equations yields 8 solutions. One of the numerical solutions is
a1 = 2.6064,

a2 = −2.3381,

a3 = 0.8516,

a4 = −0.1199.

(3.7)

We verify the condition for ϕ4 to be in L2(R)

a21 + a22 + a23 + a24 = 13 < 32 =
22·4−1

4
.

Thus ϕ4 is indeed in L2(R). Now we will attempt to construct ϕ4 explicitly. It has the mask

P4(z)S4(z) =
(1 + z

2

)4
(a1z + a2z

2 + a3z
3 + a4z

4)
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=0.1629z + 0.5055z2 + 0.4461z3 − 0.0198z4 − 0.1323z5 + 0.0218z6+

0.0233z7 − 0.0075z8.

Hence, we have the refinement equation

ϕ4(x) =0.3258ϕ4(2x− 1) + 1.011ϕ4(2x− 2) + 0.8922ϕ4(2x− 3)− 0.0396ϕ4(2x− 4)−

0.2646ϕ4(2x− 5) + 0.0436ϕ4(2x− 6) + 0.0466ϕ4(2x− 7)− 0.015ϕ4(2x− 8). (3.8)

The above examples demonstrate the efficiency of the computation of the Daubechies scaling

functions by using expression (1.9).
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