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Abstract Phase retrieval is to recover the signals from phaseless measurements which is

raised in many areas. A fundamental problem in phase retrieval is to determine the mini-

mal measurement number m so that one can recover d-dimensional signals from m phaseless

measurements. This problem attracts much attention of experts from different areas. In this

paper, we review the recent development on the minimal measurement number and also raise

many interesting open questions.
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1. Introduction

Suppose that A = (a1, . . . ,am)T ⊂ Fm×d and x0 ∈ Fd where F is either R or C. We consider

the linear equations Ax = Ax0 where x ∈ Fd is the unknown vector. One aim of linear algebra

is to present the condition for A under which the solution to Ax = Ax0 is x0. It is well known

that the solution to the linear equations Ax = Ax0 is x0 if and only if rank(A) = d. Today, the

nonlinear equation |Ax| = |Ax0| is raised in many areas where

|Ax| = (|⟨a1,x⟩|, . . . , |⟨am,x⟩|)T ∈ Fm.

Naturally, one is also interested in presenting the condition for A under which the solution to

|Ax| = |Ax0| is unique. To find the solution to the nonlinear equations is called phase retrieval

problem, which is raised in many practical areas, such as in X-ray imaging, crystallography,

electron microscopy and coherence theory. Beyond that, phase retrieval has some fantastic

connection with many pure mathematic topics, such as the dimension of algebraic variety, the

nonsingular bilinear form and the embedding problem in topology [1]. Note that for any c ∈ F
with |c| = 1 we have

|Acx0| = |Ax0|.

Received November 28, 2016; Accepted December 19, 2016

Supported by the National Natural Science Foundation of China (Grant Nos. 11422113; 11331012; 91630203) and

by National Basic Research Program of China (973 Program 2015CB856000).

E-mail address: xuzq@lsec.cc.ac.cn



The minimal measurement number problem in phase retrieval: a review of recent developments 41

We say the vector set {a1, . . . ,am} ⊂ Rd or the matrix A is phase retrievable if

{x ∈ Fd : |Ax| = |Ax0|} = x̃0 := {cx0 : c ∈ F, |c| = 1}.

In the context of phase retrieval, a fundamental problem is to present the minimal measurement

number m so that there exists A ∈ Rm×d which is phase retrievable. To state conveniently, we

set

mF(d) := min{m : there exists A = (a1, . . . ,am)T ∈ Fm×d which is phase retrievable in Fd}.

The aim of this paper is to review the recent developments about mF(d) and also raise many

open questions. The rest of the paper is organized as follows. In Section 2, we introduce the

results of mF(d) for F = R and C, respectively. We consider the case where x0 is s-sparse in

Section 3. Finally, the results about generalized phase retrieval are introduced in Section 4.

2. Phase retrieval for general signals

2.1. Real case

The minimal measurement number problem with F = R was investigated in [2] with pre-

senting a condition for A under which A is phase retrievable. To this end, we set

span(A) := span({a1, . . . ,am}) and AS := (aj : j ∈ S)T

where S ⊂ {1, . . . ,m}. Then we have

Theorem 2.1 ([2]) Let A = (a1,a2, . . . ,am)T ∈ Rm×d. The following properties are equivalent:

(A) A is phase retrievable on Rd;

(B) For every subset S ⊂ {1, . . . ,m}, either span(AS) = Rd or span(ASc) = Rd.

If m ≤ 2d − 2, then there exists S0 ⊂ {1, . . . ,m} satisfying #S0 ≤ d − 1 and #Sc
0 ≤

d − 1. Hence, span(AS0) ̸= Rd and span(ASc
0
) ̸= Rd. According to Theorem 2.1, if A is phase

retrievable on Rd, then we must have m ≥ 2d − 1. We next show that 2d − 1 is the minimal

measurement number which means that there exists A ∈ R(2d−1)×d satisfying (B) in Theorem

2.1. We set

A0 =


1 x1 x2

1 · · · xd−1
1

1 x2 x2
2 · · · xd−1

2

...
...

...
...

...

1 x2d−1 x2
2d−1 · · · xd−1

2d−1

 ∈ R(2d−1)×d

where x1, . . . , x2d−1 ∈ R are distinct from each other. A simple observation is that A0 has the

property (B) in Theorem 2.1 which implies that mR(d) = 2d− 1.

2.2. Complex case

For the case where F = C, the minimal measurement number problem remains open. In

[2], it was shown that A = (a1, . . . ,am)T ∈ Cm×d is phase retrievable provided m ≥ 4d− 2 and

a1, . . . ,am are m generic vectors in Cd. In [3], a matrix A ∈ C(4d−4)×d was constructed and
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the authors also show the matrix A is phase retrievable. The result presents an upper bound

of the minimal measurement number on Cd, i.e., mC(d) ≤ 4d − 4. In [4], one investigated the

minimal measurement number with employing the results from algebraic geometry. Note that

|⟨aj ,x0⟩|2 = Tr(aja
∗
jx0x

∗
0) where aja

∗
j ,x0x

∗
0 ∈ Cd×d. Hence, one can recast the phase retrieval

problem as a low rank matrix recovery problem:

find X ∈ Cd×d s.t. T r(aja
∗
jX) = Tr(aja

∗
jx0x

∗
0), rank(X) ≤ 1, X∗ = X.

Suppose that there exists y0 ∈ Cd with y0 /∈ {cx0 : c ∈ F, |c| = 1} satisfying

|⟨aj ,y0⟩| = |⟨aj ,x0⟩|, j = 1, . . . ,m.

Then we have Tr(aja
∗
jQ) = 0, j = 1, . . . ,m, where Q := x0x

∗
0 − y0y

∗
0. Motivated by the obser-

vation, the following conclusion was obtained in [4]:

Proposition 2.2 ([3]) Suppose that A = (a1, . . . ,am)T ∈ Cm×d. Then A is not phase retriev-

able if and only if there exists a Hermitian matrix Q ∈ Cd×d satisfying

rank(Q) ≤ 2, T r(aja
∗
jQ) = 0, j = 1, . . . ,m.

Based on Proposition 2.2, [5], Conca, Edidin, Hering, and Vinzant applied the results about

determinant variety to obtain the following theorem with showing 4d− 4 generic measurements

are phase retrievable:

Theorem 2.3 ([5]) Suppose that A = (a1, . . . ,am)T ∈ Cm×d.

(1) If m ≥ 4d− 4 and a1, . . . ,am are m generic vectors in Cd, then A is phase retrievable.

(2) If d = 2k + 1, k ∈ Z+ and m < 4d− 4, then A is not phase retrievable.

Theorem 2.3 also shows mC(d) = 4d − 4 provided d is in the form of 2k + 1. In [5], it

was conjectured mC(d) = 4d − 4 for any d ∈ Z+. According to Theorem 2.3, the conjecture

holds when d = 2, 3, 5, 9, . . . . In [6], Vinzant considered the case where d = 4 with constructing

11 < 12 = 4 × 4 − 4 vectors a1, . . . ,a11. Employing the method from computational algebraic

geometry, she verifies the matrix A = (a1, . . . ,a11) is phase retrievable by maple code and hence

disprove the 4d− 4 conjecture for the case d = 4. We state her result as a proposition:

Proposition 2.4 There exists a matrix A ∈ C11×4 which is phase retrievable. Hence mC(4) ≤
11.

On the other direction, one also considers the lower bound of the minimal measurement

number. Usually, the lower bound is obtained by the results from the embedding of the complex

projective space PCd in Rm. The first lower bound mC(d) ≥ 3d− 2 was presented in [10] and an

alternative lower bound mC(d) ≥ 4d− 3− 2α was presented in [8], where α denotes the number

of 1’s in the binary expansion of d− 1. The result was improved in [1]:

Theorem 2.5 ([1]) Let d > 4. Then mC(d) ≥ 4d− 2− 2α+ ϵα, where α = α(d− 1) denotes the
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number of 1’s in the binary expansion of d− 1,

ϵα =


2 d odd, α ≡ 3 (mod 4)

1 d odd, α ≡ 2 (mod 4)

0 otherwise.

We list the minimal measurement number mC(d) for d ∈ [2, 9]∩Z in Table 1 which presents

the exact value of mC(d) or an interval the mC(d) lies in. The results for d = 2, 3 in Table 1 were

firstly obtained in [4]. For the case where d = 4, the lower bound was obtained by the result

mC(d) ≥ 3d − 2 (see [7]) while the upper bound mC(4) ≤ 11 follows from the example in [6].

When d ≥ 5, the upper bound is obtained by mC(d) ≤ 4d− 4 while the lower bound follows from

Theorem 2.5. Note that α(d− 1) = 1 and ϵα = 0 provided d is in the form of 2k + 1. Theorem

2.5 implies the lower bound mC(d) ≥ 4d− 4 provided d = 2k + 1. Combining it with the upper

bound mC(d) ≤ 4d − 4, we recover mC(d) = 4d − 4 provided d = 2k + 1, k ≥ 2. According to

Table 1, the first d for which mC(d) is unknown is 4. This leads us to consider the following open

question:

Open question 2.6 Does there exist 10 vectors a1, . . . ,a10 so that A = (a1, . . . ,a10)
T ∈ C10×4

is phase retrievable on C4?

According to the results mentioned before, we know mC(d) ≤ 4d − 4. We already know

mC(d) ̸= 4d− 4 for some d. Hence, we are interested in the distance between 4d− 4 and mC(d).

According to the lower bound presented in Theorem 2.5, 4d − 4 − mC(d) ≤ O(log2(d)). We are

interested in whether the bound O(log2 d) is tight. Particularly, we would like to know whether

4d− 4−mC(d) is bound. We state the question as follows:

Open question 2.7 Is lim supd→∞(4d−mC(d)) finite?

Remark 2.8 The generalized phase retrieval is to recover x ∈ Fd from the measurement

{x∗Ajx}mj=1 where Aj ∈ Fd×d and A∗
j = Aj which includes the phase retrieval by projection as

a special case where each Aj satisfies A2
j = Aj (see [9–11]). Here, we assume that A∗

j = Aj .

The generalized phase retrieval was investigated in [1] with showing the connection among phase

retrieval, nonsingular bilinear form and topology embedding (see [1] for detail).

The dimension d 2 3 4 5 6 7 8 9

mC(d) 4 8 [10, 11] 16 [19, 20] [23, 24] [26, 28] 32

Table 1 The minimal measurement number mC(d)

3. Phase retrieval for sparse signals

In practical applications, it is possible that some prior knowledge about x0 is known. For

example, in many applications, we know that the aim signal x0 is sparse. We set

Fd
s := {x ∈ Fd : ∥x∥0 ≤ s},
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where F = R or C and ∥x∥0 denotes the number of the nonzero entries of x. In this section, we

assume that x0 ∈ Fd
s . The A ∈ Fm×d is said to be k-sparse phase retrievable if

{x ∈ Fd : |Ax| = |Ax0|} ∩ Fd
s = {cx0 : c ∈ F, |c| = 1}.

In fact, A is k-sparse phase retrievable if and only if the solution set to

min
x

∥x∥0 s.t. |Ax| = |Ax0| (3.1)

is x̃0. In [12], Wang and Xu presented the condition for A under which A is s-sparse phase

retrievable.

Theorem 3.1 ([12]) Suppose that A = (a1, . . . ,am)T ∈ Rm×d. Assume that A is s-sparse

phase retrievable on Rd. Then m ≥ min {2s, 2d − 1}. Furthermore, the A which contains

m ≥ min {2s, 2d− 1} generically chosen vectors in Rd is s-sparse phase retrievable.

For the complex case, the following result is obtained by Wang and Xu:

Theorem 3.2 ([12]) Suppose that {a1, . . . ,a4s−2} ⊂ Cd are m = 4s− 2 generic vectors in Cd.

Then A is s-sparse phase retrievable on Cd.

We consider the convex relaxation of (3.1):

min
x

∥x∥1 s.t. |Ax| = |Ax0|. (3.2)

Though the constraint condition in (3.2) is non-convex, one still develops many efficient algo-

rithms to solve it [13,14]. Hence, it is interesting to present the condition for A under which

the solution to (3.2) is x̃0 for any x0 ∈ Fd
s . Motivated by the restricted isometry property in

compressed sensing [15], the strong restricted isometry property was defined in [16]:

Definition 3.3 ([16]) We say the matrix A ∈ Rm×d satisfies the Strong Restricted Isometry

Property (SRIP) of order s and levels θ−, θ+ ∈ (0, 2) if

θ−∥x∥22 ≤ min
S⊆{1,...,m},#S≥m/2

∥ASx∥22 ≤ max
S⊆{1,...,m},#S≥m/2

∥ASx∥22 ≤ θ+∥x∥22

holds for all s-sparse signals x ∈ Rd. Here AS := [aj : j ∈ S]T denotes the sub-matrix of A

where only rows with indices in S are kept.

The following theorem shows that the solution to (3.2) is ±x0 provided A satisfies SRIP:

Theorem 3.4 ([16]) Assume that A ∈ Rm×d satisfies the Strong RIP of order t · s and levels

θ−, θ+ with t ≥ max{ 1
2θ−−θ2

−
, 1
2θ+−θ2

+
}. Then for any s-sparse signal x0 ∈ Rd we have

argmin
x∈Rd

{∥x∥1 : |Ax| = |Ax0|} = {±x0}, (3.3)

where |Ax| := [|⟨aj ,x⟩| : j ∈ [m]] and [m] := {1, . . . ,m}.
According to Theorem 3.4, it is useful to construct a matrix A which satisfies SRIP. It

was shown in the following theorem that the Gaussian random matrix A ∈ Rm×d with m =

O(s log(ed/s)) satisfies SRIP with high probability:

Theorem 3.5 ([16]) Suppose that t > 1 and s ∈ Z satisfy tk ≤ n. Suppose that A ∈ Rm×d is
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a random Gaussian matrix whose entries ajk are independent realizations of Gaussian random

variables ajk ∼ N (0, 1/m) and that m ≥ C · ts log(ed/ts)). Then there exist constants θ−, θ+

with 0 < θ− < θ+ < 2, independent of t, such that A satisfies SRIP of order t ·s and levels θ−, θ+

with probability 1− exp(−cm/2), where C, c > 0 are absolute constants.

Combining Theorems 3.4 and 3.5, we obtain (3.3) holds with high probability provided

A ∈ Rm×d with m = O(s log(ed/s)) being a Gaussian random matrix. The results in [16] are

extended to the case with the noise in [17]. It is interesting to extend the results in [16] and [17]

to the complex case:

Open question 3.6 Does there exist a matrix A ∈ Cm×d with m = O(s log(ed/s)) so that

argmin
x∈Cd

{∥x∥1 : |Ax| = |Ax0|} = x̃0,

holds for any x0 ∈ Cs
d?

Remark 3.7 One is interested in whether it is possible to recover x0 ∈ Rd
s from O(s log(ed/s))

measurements in polynomial time. According to results above, a possible way to answer this

question is to design the polynomial time algorithm to solve (3.2).

4. Conclusion

We review some of the recent developments on the minimal measurement number problem

in phase retrieval. To obtain these results, one employs some results and methods from algebraic

geometry and topology. As said before, phase retrieval can be considered as a special case of

matrix recovery [18]. Hence, a generalized problem is to determine the minimal measurement

number m so that one can recover the matrix Q ∈ Fd×d with rank(Q) ≤ r from m measurements.

For the case F = C, the generalized problem was solved in [18] while it remains open for the case

F = R. We believe the methods developed in phase retrieval are helpful to make some progress

for the case F = R.
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