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Abstract Pythagorean-hodograph (PH) curves offer computational advantages in Computer

Aided Geometric Design, Computer Aided Design, Computer Graphics, Computer Numerical

Control machining and similar applications. In this paper, three methods are utilized to

construct the identifications of planar regular sextic PH curves. The first exhibits purely the

control polygon legs’ constraints in the complex form. Such reconstruction of a PH sextic

can be elaborated by C1 Hermite data and another one condition. The second uses polar

representation in two cases. One of them can produce a family of convex sextic PH curves

related with a quintic PH curve, and the other one may naturally degenerate a sextic PH curve

to a quintic PH curve. In the third identification, we use some odd PH curves to construct a

family of sextic PH curves with convexity-preserving property.

Keywords Pythagorean-hodograph sextic curves; control polygon; degree elevation; geo-

metric characteristic
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1. Introduction

The researches on Pythagorean-hodograph (PH) curves can track back to the work of Farou-

ki and Sakkalis [1]. With the advantages that the arc-length function is polynomial with curve

parameter and the offsets are rational polynomial curves, PH curves are widely applied in Com-

puter Aided Geometric Design (CAGD), Computer Aided Design (CAD), Computer Graphics,

Computer Numerical Control (CNC) machining and so on.

There are a mount of researches on PH curves of odd degrees. Farouki et al. [1–4] studied

intensively on PH curves, among which there are much more identification methods of cubic and

quintic PH curves. PH curves of a little higher odd degrees were also studied, such as Yang and

Wang [5] presented a method for the identification of septic PH curves in three cases, and Zheng

et al. [6] presented the necessary and sufficient geometric constraints for the PH septic. Even
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Hermite interpolations by the PH curves of degree seven and nine were also discussed [7–11]. We

refer to [12–18] for other researches on the interpolation by PH curves.

Although some even PH curves may have singularities, the study on PH curves of even

degrees is still interesting for us. Identification of PH quartic refers to [1,19,20]. Farouki and

Sakkalis [1] deduced an obscure condition between cusp and control polygon legs of quartic PH

curves. Wang and Fang [19] provided the geometric properties on control polygon of quartic PH

curves in two cases comprised of cusp or not. Li et al. [20] constructed a family of quartic PH

curves from the cubic PH curves with adding extra points.

Besides quartic PH curves mentioned above, other PH curves of even degree were not studied

intensively as the odd ones. For the mathematics, it is interesting to study on the theory and

the geometric properties of PH curves of even degrees. For applications, PH curves of even

degrees are suitable for Hermite interpolation. For example, Fang and Wang [21] presented the

C1 Hermite interpolation method by sextic PH curves and Wang et al. [22] solved the G2 Hermite

interpolation problem by sextic PH curve.

We aim to propose the identification of the PH sextic. In this paper, we present three

methods to construct the identifications of planar regular sextic PH curves. Compared with

methods by cubic, quartic and quintic PH curves [3,19,20], our method is more complicated

to give the identification. We analyze the algebraic constraints by control-polygon legs, frame

properties and construction of the pre-image polynomials, and we find that sextic PH curves

preserve the good shape flexibility and characteristics.

2. Preliminaries

A planar parameter curve r(t) = (x(t), y(t)) of degree n can be represented in the complex

form r(t) = x(t) + i y(t). Its Bézier form is

r(t) =

n∑
j=0

PjB
n
j (t), (2.1)

and hodograph is

r′(t) = n

n−1∑
j=0

∆PjB
n−1
j (t), t ∈ [0, 1], (2.2)

where Bn
j (t) = n!

j!(n−j)! (1 − t)n−jtj (j = 0, . . . , n) are Bernstein basis functions, Pj ∈ R2 (j =

0, . . . , n) are control points, and ∆Pj (j = 0, . . . , n−1) are the first forward differences of control

points.

Definition 2.1 ([1]) A planar curve r(t) = x(t) + i y(t) of degree n is a PH curve if there exists

a polynomial σ(t) such that x′2(t) + y′2(t) = σ2(t), that is

|r′(t)|2 = σ2(t), σ(t) = n
n−1∑
k=0

σkB
n−1
k (t), t ∈ [0, 1]. (2.3)
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In fact σ0, . . . , σn−1 satisfy the following equation [4]

min(n−1,k)∑
j=max(0,k−n+1)

(
n−1
j

)(
n−1
k−j

)
(∆Pj ·∆Pk−j − σjσk−j)(

2n−2
k

) = 0, k = 0, . . . , 2n− 2, (2.4)

and the arc length is Length = σ1+σ2+σ3+σ4+σ5

6 .

Theorem 2.2 ([1]) A planar curve r(t) = x(t) + i y(t) is a PH curve if and only if r′(t) =

x′(t) + i y′(t) = W (t)Q2(t), where x′(t) = W (t)[u2(t)− v2(t)], y′(t) = 2W (t)u(t)v(t) and Q(t) =

u(t) + i v(t) for some real polynomials W (t), u(t), v(t), t ∈ [0, 1].

Due to above analysis, the hodograph of a planar PH curve r(t) of degree 6 can be repre-

sented as

r′(t) = 5

5∑
j=0

∆PjB
5
j (t) = W (t)Q2(t), t ∈ [0, 1]. (2.5)

3. Identification by control polygons

For a sextic PH curve r(t) with seven control points Pi (i = 0, . . . , 6), we denote the control

polygon legs Lj = Pj+1 −Pj and lj = |Lj | (j = 0, . . . , 5). From (2.3) and (2.4), we have

Theorem 3.1 A planar sextic Bézier curve with control polygon legs Lj (j = 0, . . . , 5) is a PH

curve if and only if it satisfies

5 l50 L
2
45 + 25 l35 l01 L

2
01 = 4 l40 l

2
5 (l5 L0 − l0 L5)L3 + 20 l20 l

3
5 L01 L02,

5 l55 L
2
01 + 25 l30 l45 L

2
45 = 4l45l

2
0 (l0 L5 − l5 L0)L2 + 20 l25 l

3
0 L35 L45,

5
(
4 l02 l

2
0 + 5L2

01

)2
l35 = 80 l60l

3
5

(
l22 + l13

)
+ 8 l60l

2
5 (l04 l5 − l0l45)− 20 l01 l

5
0

(
4 l35 l

2
5 + 5L2

45

)
,(3.1)

5
(
4 l35 l

2
5 + 5L2

45

)2
l30 = 80 l30l

6
5

(
l23 + l24

)
− 8 l20l

6
5 (l01 l5 − l15 l0)− 20 l45 l

5
5

(
4 l02 l

2
0 + 5L2

01

)
,

25
(
4 l02 l

2
0 + 5L2

01

) (
4 l35 l

2
5 + 5L2

45

)
= 4 l30l

3
5 (l05 + 25 l14 + 100 l23)− 4 l20l

2
5

(
l20l

2
5 + 25 l01 l45

)
,

where lij = Li · Lj , Lij = Li × Lj (i, j = 0, . . . , 5, i ̸= j).

Proof From (2.4), for n = 6, k = 0, . . . , 10, we can deduce eleven equations as follows

l20 = σ2
0 , l01 = σ0σ1,

4 l02 + 5 l21 = 4σ0σ2 + 5σ2
1 ,

l03 + 5 l12 = σ0σ3 + 5σ1σ2,

l04 + 10 l13 + 10 l22 = σ0σ4 + 10σ1σ3 + 10σ2
2 ,

l05 + 25 l14 + 100 l23 = σ0σ5 + 25σ1σ4 + 100σ2σ3,

l15 + 10 l24 + 10 l23 = σ1σ5 + 10σ2σ4 + 10σ2
3 ,

l25 + 5 l34 = σ2σ5 + 5σ3σ4,

4 l35 + 5 l24 = 4σ3σ5 + 5σ2
4 ,

l45 = σ4σ5, l25 = σ2
5 ,
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where σ0, σ5 > 0 for a regular curve [4]. By the first and the last three equations of those eleven

equations, we obtain

σ0 = l0, σ1 =
l01
l0

, σ2 =
l02
l0

+
5 |L01|2

4 l30
,

σ5 = l5, σ4 =
l45
l5

, σ3 =
l35
l5

+
5 |L45|2

4 l35
.

By substituting σ0, σ1, σ2, σ3, σ4, σ5 into the middle five of those eleven equations, we get (3.1).

Theorem 3.1 gives us the identification of sextic PH curves, which is a little more complicated

than the methods by cubic and quintic [4]. This identification can help us to solve the C1 Hermite

interpolation of sextic PH curves.

The C1 Hermite interpolation of a sextic PH curve is to find a sextic PH curve r(t) =∑6
j=0 PjB

6
j (t), t ∈ [0, 1], satisfying r(0) = P0, r(1) = P6, r

′(0) = 6∆P0, r
′(1) = 6∆P5.

Generally, there are three selection criteria of PH Hermite interpolation [3]: arc-length

S =
∫
ds =

∫ 1

0

√
x′2(t) + y′2(t)dt, bending energy E =

∫
k2ds =

∫ 1

0
k2|r′(t)|dt and absolute

rotation number Rabs =
1
2π

∫
|k|ds = 1

2π

∫
k2|r′(t)|dt, where k is curvature.

Example 3.2 Let the end control points be in complex form as P0 = 1 + i, P1 = 2.5 − 0.5 i,

P5 = 2.5 + 4.5 i, P6 = 4 + 3 i ([4]). There are six unknowns for the sextic PH curve. Since

Theorem 3.1 has five equations, an additional condition is needed. We set the real part of P2

to be 3.25 in this example. By (3.1), the remaining points can be solved by HOM4PS-2.0 (see

[23]). One feasible solution is

P2 = 3.25 + 2.64656776861715 i,

P3 = 0.952268110575585 + 1.30508325492550 i,

P4 = 0.997313616609088 + 4.02170326476971 i,

with tolerance 10−13. The resulting sextic PH curve, variation of the parametric speed σ(t) and

its curvature are shown in Figure 1. We choose 105 as the subdivision unit to carry out the

numerical integration about the arc-length S, bending energy E and absolute rotation number

R. In this example, we have S = 6.336845417, E = 0.1621214283 and R = 0.02593188064.

(a) Sextic PH curve (b) σ(t) (c) Curvature

Figure 1 Sextic PH curve, the parametric speed and curvature
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This identification scheme of sextic PH curves presented above is a general method, which

can deal with any shape of sextic PH curves, no matter whether it is convex or nonconvex. But

for most cases, convex curves are more convenient for applications. So in the next part, we

not only give an another general identification but also study on the geometric characteristic of

convex sextic PH curves.

4. Identification by geometric characteristic

Without loss of generality, we assume P0 is the origin and P1 is on the positive x-axis, such

that r′(0) is along the x axis direction, then L0 = l0 = 1. Let Lj be in polar form. That is

Lj = lj e
i θj and L5 = l5 e

i 2 θ5 , where θj ∈ (0, π) with j = 1, . . . , 5 are the rotary angles from

positive x-axis direction to Lj , j = 1, . . . , 5.

For a sextic PH curve r(t) based on equation (2.5) and the degree relationship [1] between

W (t) andQ(t), r′(t) = W (t)Q2(t) can be classified into two cases: deg(W (t)) = 3, deg(Q(t)) = 1,

and deg(W (t)) = 1, deg(Q(t)) = 2. These two types of PH sextics will be discussed respectively

as follows.

4.1. (deg(W (t)), deg(Q(t))) = (3, 1)

In this case, suppose the hodograph of the sextic PH curve r(t), t ∈ [0, 1], is

r′(t) = [w0B
3
0(t) + w1B

3
1(t) + w2B

3
2(t) +B3

3(t)][u0B
1
0(t) + u1B

1
1(t)]

2, (4.1)

where wi (i = 0, 1, 2) and uj (j = 0, 1) are uncertain real and complex coefficients, respectively.

From (2.5), the relationships between control points and coefficients are

6(P1 −P0) = 6L0 = w0u
2
0, (4.2 a)

30(P2 −P1) = 30L1 = 3u2
0w1 + 2u0u1w0, (4.2 b)

60(P3 −P2) = 60L2 = 3u2
0w2 + 6u0u1w1 + u2

1w0, (4.2 c)

60(P4 −P3) = 60L3 = 6u0u1w2 + 3u2
1w1 + u2

0, (4.2 d)

30(P5 −P4) = 30L4 = 3u2
1w2 + 2u0u1, (4.2 e)

6(P6 −P5) = 6L5 = u2
1. (4.2 f)

Set w0 > 0, w1 > 0, w2 > 0, which avoids the existence of singular points of sextic

PH curve. Similarly to the analysis of quartic PH curves [19], from (4.2 a), (4.2 b), (4.2 e),

(4.2 f), we can easily get u0 = u0 = 2l0A sin θ5
5l1 sin θ1

= 15l4 sin(2θ5−θ4)
A sin θ5

, u1 = A(cos θ5 + i sin θ5), w0 =

6l0w1 sin θ5
10l1 sin(θ5−θ1)

=
25l21 sin2 θ1
4l0l5 sin2 θ5

, w1 =
125l31 sin(θ5−θ1) sin

2 θ1
12l20l5 sin3 θ5

and w2 = 5l4 sin(θ4−θ5)
3l5 sin θ5

, where A = ±
√
6l5

and θ5 − θ1, θ4 − θ5, 2θ5 − θ4 ∈ (0, π). Then we get an important equation

4l0l5 sin
2 θ5 = 25l1l4 sin(2θ5 − θ4) sin θ1. (4.3)

Substituting the coefficients above into the real and imaginary parts of (4.2 c) and (4.2 d),
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some equations are derived as

8l0l2l
2
5 sin

3 θ5 cos θ2 =5l21l
2
5 sin

2 θ1 cos(2θ5) sin θ5 + 20l21l
2
5 sin(θ5 − θ1) sin θ1 sin θ5 cos θ5+

25l0l
3
4 sin

2(2θ5 − θ4) sin(θ4 − θ5), (4.4 a)

8l0l2l
2
5 sin

3 θ5 sin θ2 = 5l21l
2
5 sin

2 θ1 sin(2θ5) sin θ5 + 20l21l
2
5 sin(θ5 − θ1) sin θ1 sin

2 θ5+

25l0l
3
4 sin

2(2θ5 − θ4) sin(θ4 − θ5), (4.4 b)

8l20l3l5 sin
3 θ5 cos θ3 = 5l20l

2
4 sin

2(2θ5 − θ4) sin θ5 + 20l20l
2
4 sin(θ4 − θ5) sin(2θ5 − θ4) sin θ5 cos θ5+

25l5l
3
1 sin

2 θ1 sin(θ5 − θ1) cos(2θ5), (4.4 c)

8l20l3l5 sin
3 θ5 sin θ3 = 5l20l

2
4 sin

2(2θ5 − θ4) sin θ5 + 20l20l
2
4 sin(θ4 − θ5) sin(2θ5 − θ4) sin

2 θ5+

25l5l
3
1 sin

2 θ1 sin(θ5 − θ1) sin(2θ5). (4.4 d)

Since (4.3), (4.4 a), (4.4 b), (4.4 c), (4.4 d) are equivalent to (4.2 a)–(4.2 f), we have following

result.

Theorem 4.1 A planar sextic Bézier curve r(t) is a PH curve, whose hodograph can be

represented as (4.1), if and only if (4.3), (4.4 a), (4.4 b), (4.4 c), (4.4 d) are satisfied.

4.1.1. Convex sextic PH curves

From above analysis, θ5 − θ1, θ4 − θ5, 2θ5 − θ4 ∈ (0, π). If we let θ4 > θ3 > θ5 > θ2 > θ1,

there must exist a line passing through P3, which intersects x-axis and line P6P5 at Q1 and

Q2, such that ∠P1Q1P3 = ∠P3Q2P5. Figure 2 shows the control polygon of a sextic Bézier

curve. Suppose line P1P2 and P5P4 intersect line Q1Q2 at Q3 and Q4, respectively. We

set R0 = |P1Q1|, R1 = |Q1Q3|, R2 = |Q3P3|, R3 = |P3Q4|, R4 = |Q4Q2|, R5 = |Q2P5|,
S1 = |P2Q3|, S2 = |Q4P4|, and T1 = |P1Q3|, T2 = |P5Q4|, T3 = |Q3Q4|.

Figure 2 The control polygon of a sextic Bézier curve

In △P1Q1Q3, △P5Q2Q4, △P2P3Q3, △P3P4Q4, we can deduce the relationships between
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edges and corners by the law of sines

R0

sin(θ5 − θ1)
=

T1

sin θ5
=

R1

sin θ1
,

R5

sin(θ4 − θ5)
=

T2

sin θ5
=

R4

sin(2θ5 − θ4)
,

S1

sin(θ5 − θ2)
=

R2

sin(θ2 − θ1)
=

l2
sin(θ5 − θ1)

,
S2

sin(θ3 − θ5)
=

R3

sin(θ4 − θ3)
=

l3
sin(θ4 − θ5)

.

Further more, (4.3) becomes

4l0l5T1T2 = 25l1l4R1R4, (4.5)

and we obtain
S2R5

l3T2
=

B

C
sin θ3 − cos θ3,

S1R0

l2T1
= cos θ2 −

B

C
sin θ2, (4.6)

where B = T 2
1 − R2

0 − R2
1, C =

√
2R2

0R
2
1 + 2T 2

1R
2
0 + 2T 2

1R
2
1 −R4

0 −R4
1 − T 4

1 and cos θ5 =
B

2R0R1
, sin θ5 = C

2R0R1
by the law of cosine.

By the equations (4.4 a), (4.4 b), (4.4 c), (4.4 d), (4.5), and (4.6), we have

Lemma 4.2 A planar sextic Bézier curve r(t) is a PH curve, whose hodograph can be represented

as (4.1) and control polygon is shown in Figure 2, if and only if

5R2
1T2l

2
1 (25R0R5l1l4 − T1T2l0l5) = 8R0T

2
1 T

2
2 l

2
0l5 (T1 − l1) + 40R2

5T
3
1 l

2
0l4 (T2 − l4) . (4.7)

Let R0 = λ1 l0, R5 = µ1 l5, l1 = λ2 T1, l4 = µ2 T2, where λ1, µ1 > 0 and λ2, µ2 ∈ (0, 1).

Then (4.5) leads to

4R0R5 = 25λ1λ2µ1µ2R1R4. (4.8)

Theorem 4.3 A planar sextic Bézier curve r(t) is a PH curve, whose hodograph can be

represented as (4.1) and control polygon shown in Figure 2, if and only if

5R2
1λ

2
2(25λ1 λ2 µ1 µ2 − 1) = 8 l20λ1 (1− λ2) + 40 l0l5µ

2
1µ2 (1− µ2) . (4.9)

4.1.2. Convex PH sextics degenerate to convex PH quintics

According to the geometric characteristic of the quintic PH curves in [3], the curve

r̂(t) =

5∑
i=0

P′
iB

5
i (t), t ∈ [0, 1]

where (P′
0,P

′
1,P

′
2,P

′
3,P

′
4,P

′
5) = (P0,P1,Q3,Q4,P5,P6), is a PH curve if and only if the fol-

lowing four conditions hold

T1

T2
=

√
l0
l5
, (4.10 a)

θ1 + θ5 = θ4, (4.10 b)

3 l0 T1 T3 cos θ5 = l20 T2 cos(2θ5) + 2T 3
1 cos θ1, (4.10 c)

3 l0 T1 T3 sin θ5 = l20 T2 sin(2θ5) + 2T 3
1 sin θ1. (4.10 d)

Thus we have the following results.
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Lemma 4.4 r̂(t) is a quintic PH curve if and only if

l1
l0

=
K λ2

2λ1
, (4.11)

where K =
5
√
10
√

λ1(1−λ2)λ1λ2µ2

2
√

3λ2
2+8µ2

2−8µ2

.

Proof By (4.10 b), △Q4Q2P5 ∼ △P1Q1Q3, which means R5

R1
= R4

R0
= T2

T1
. Then (4.8) becomes

25λ1λ2µ1µ2 = 4. If we let T2

T1
= K > 0, after substituting it and (4.10 a) into (4.9), we have

K =
2
√
10
√

λ1(1−λ2)

5
√

25λ1λ2
3µ1µ2−λ2

2+8µ2
2−8µ2 µ1

, that is K =
5
√
10
√

λ1(1−λ2)λ1λ2µ2

2
√

3λ2
2+8µ2

2−8µ2

. The equations (4.10 c)

and (4.10 d) lead to two different representations of T3, which implies 2λ1T1 = l0K. Then we

have (4.11), if T1 is substituted by l1
λ2
.

Theorem 4.5 The sextic PH curve r(t) degenerates to a quintic PH curve r̂(t) if and only if

3 l25
(
3λ2

2 + 8µ2
2 − 8µ2

)
µ2
1 = 500 l0l5λ

3
1 (1− λ2)µ

2
1µ

3
2 (1− µ2) + 100 l20λ

4
1 (1− λ2)

2
µ2
2. (4.12)

Proof From Equations (4.5) and (4.11), we get R1 = 4 l5
25Kλ1λ2µ2

. If R1 and 25λ1λ2µ1µ2 = 4

are substituted into (4.9), we have

6 l25 = 625K2l0l5λ
2
1µ

2
1µ

3
2 (1− µ2) + 125K2l20λ

3
1µ

2
2 (1− λ2) . (4.13)

Obviously, (4.13) is equivalent to (4.12) from K =
5
√
10
√

λ1(1−λ2)λ1λ2µ2

2
√

3λ2
2+8µ2

2−8µ2

.

Since (4.7) is independent on L2 and L3, the sextic PH curve r(t) is independent of P3.

That implies the following result.

Corollary 4.6 For a quintic PH curve with control points P0, P1, Q3, Q4, P5, P6 as shown

in Figure 2, where P6 − P5 = L5 = l5 e
2 θ5 i and the polar angle of Q4 − Q3 is θ5. Then

P0, P1, P2, P3, P4, P5, P6 form the control polygon for a sextic PH curve if (4.12) is satisfied,

where P2, P4 are chosen based on λ2, µ2, and P3 is an arbitrary point on the segment Q3Q4.

Example 4.7 Set l0 = 1, λ1 = 1
2 , and we need estimate the possible range of λ2, µ2 before

choosing them. From K > 0, we find the geometric feature of △P1Q1Q3, △P5Q2Q4 are T1 >

R0, T1 > R1, R0 + R1 > T1, R0 + T1 > R1, R1 + T1 > R0, T2 > R4, T2 > R5, R4 + R5 >

T2, R4 + T2 > R5, R5 + T2 > R4. We can get possible values of λ2 and µ2 in the shadow part

of Figure 3 (a) We choose λ2 = 9
10 , µ2 = 6

10 , and substitute them into Equations (4.9), (4.11)

and (4.12). We can get all concrete values shown in the Figure 2. As we know, Corollary 4.6

shows the sextic PH curves are independent of P3. If we set ρ to be the proportion of |P3 −Q3|
in |Q4 − Q3|, then different ρ results in different sextic PH curves. For ρ = 0.2, 0.5, 0.8, the

resulting curves are colored by red, green, blue in Figure 3 (b).
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(a) Possible values of λ2 and µ2 (b) Three different sextic PH curves while

ρ = 0.2, 0.5, 0.8.

Figure 3 The ranges of λ2 and µ2 and three first kinds of PH sextics

4.2. (deg(W (t)), deg(Q(t))) = (1, 2)

Similarly, for t ∈ [0, 1], the hodograph of the sextic PH curve r(t) is

r′(t) = [w0B
1
0(t) +B1

1(t)][u0B
2
0(t) + u1B

2
1(t) + u2B

2
2(t)]

2, (4.14)

where w0 and ui (i = 0, 1, 2) are uncertain real coefficient and complex coefficients, respectively.

The relationships between control points and coefficients are

6(P1 −P0) = 6L0 = w0u
2
0, (4.15 a)

30(P2 −P1) = 30L1 = u2
0 + 4u0u1w0, (4.15 b)

30(P3 −P2) = 30L2 = 2u0u1 + u0u2w0 + 2u2
1w0, (4.15 c)

30(P4 −P3) = 30L3 = 2u1u2w0 + u0u2 + 2u2
1, (4.15 d)

30(P5 −P4) = 30L4 = u2
2w0 + 4u1u2, (4.15 e)

6(P6 −P5) = 6L5 = u2
2. (4.15 f)

Note w0 > 0 makes the sextic PH curve r(t) regular. Suppose the control polygon is the same

as in Figure 2, and u0 = u0.

From (4.15 a) and (4.15 f), we have u2
0 = 6l0

w0
, and u2

2 = 6L5. By substituting them to

(4.15 b) and (4.15 e), we get u0u1 = 15w0L1−3l0
2w2

0
, u1u2 = 15L4−3w0L5

2 . Then u0u2 = u0u1

u1u2
u2
2 =

30w0L1L5−6l0L5

5w2
0L4−w3

0L5
. By (4.15 c) and (4.15 d), we get the following result

Theorem 4.8 A planar sextic Bézier curve r(t) is a PH curve, whose hodograph can be repre-

sented as (4.14), if and only if

A0 +A1w0 + 5A2w
2
0 − 5A3w

3
0 − 10A4w

4
0 +A5w

5
0 = 0, (4.16)

where A0 = 5L0 ·L4 + 2L0 ·L5, A1 = 3L0 ·L5 + 25L1 ·L4 + 10L1 ·L5, A2 = 3L1 ·L5 + 10L2 ·
L4 − 10L3 · L4, A3 = 2L2 · L5 − 2L3 · L5 − 5L4

2, A4 = −10L4 · L5, and A5 = L5
2.

When w0 = 1, the sextic PH curve r(t) degenerates to a quintic PH curve r̃′(t) = [u0B
2
0(t)+

u1B
2
1(t)+u2B

2
2(t)]

2, t ∈ [0, 1], with the control pointsQi, i = 0, . . . , 5. According to the geometric
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characteristic of quintic PH curves [3], we can get that

Q0 = P0,

Q1 =
6

5
P1 −

1

5
P0,

Q2 =
3

2
P2 −

3

5
P1 +

1

10
P0,

Q3 = 2P3 −
3

2
P2 +

3

5
P1 −

1

10
P0 =

3

2
P4 −

3

5
P5 +

1

10
P6,

Q4 =
6

5
P5 −

1

5
P6,

Q5 = P6.

For instance, Figure 4 shows the degenerated quintic PH curve.

Figure 4 Degenerated PH quintic for the second kind of PH sextic

5. Identification by PH cubics and quintics

5.1. Identification by PH cubics

For the first kind of sextic PH curve r(t), whose hodograph is represented as (4.1), let

r′1(t) = G2(t) = [u0B
1
0(t) + u1B

1
1(t)]

2, t ∈ [0, 1].

This means that r1(t) is a cubic PH curve with control points Q0, Q1, Q2, Q3 and control legs

∆Q0 = L̂0 = 1
3 u

2
0, ∆Q1 = L̂1 = 1

3 u0 u1 and ∆Q2 = L̂2 = 1
3 u

2
1. Similarly to the construction of

quartic PH curve [20], we add extra eight points E, F, H, G, K, J, M, N satisfying (see Figure

5)

L0 =
w0

2
L̂0 =

−−−→
P0P1,

L1 =
3w1

10
L̂0 +

w0

5
L̂1 =

−−→
P1E+

−−→
EP2,

L2 =
3w2

20
L̂0 +

3w1

10
L̂1 +

w0

20
L̂2 =

−−→
P2F+

−−→
FH+

−−−→
HP3,

L3 =
1

20
L̂0 +

3w2

10
L̂1 +

3w1

20
L̂2 =

−−−→
P3G+

−−→
GK+

−−−→
KP4,

L4 =
1

5
L̂1 +

3w2

10
L̂2 =

−−→
P4J+

−−→
JP5,

L5 =
1

2
L̂2 =

−−−→
P5P6,
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and

−−−→
P0P1 = a

−−−→
P0M,

−−→
EP2 = b

−−→
MN,

−−−→
HP3 = c

−−−→
NP6,

−−−→
KP4 = d

−−−→
NP6,

−−→
JP5 = e

−−−→
NP6, (5.1)

where a = 10w0

9w0+6w1+3w2
, b = 2w0

2w0+3w1+3w2+2+w0 cos θ5+cos θ5
, c = w0

3w1+9+6w2
, c : d : e = w0 :

3w1 : 6w2. Note conditions 3w1 > w0 > 0, 3w2 > 1 make 0 < a, b, c, d, e, f < 1, and

π − ∠N = θ5, |
−−→
MN|2 =

8 ac

5 b2
|
−−−→
P0M| · |

−−−→
NP6|. (5.2)

It is easy to get following results.

Figure 5 The first kind of control polygon of PH sextic by PH cubic

(a) Symmetric (b) Symmetric (c) Symmetric

(d) Asymmetric (e) Asymmetric

Figure 6 PH cubics and the resulting PH sextics

Proposition 5.1 A planar sextic Bézier curve r(t) with control points Pi (i = 0, . . . , 6) is a

PH curve, whose hodograph is defined in (4.1) with 3w1 > w0 > 0 and 3w2 > 1, if and only if

relations (5.1) and (5.2) are satisfied.



70 Hui WANG, Chungang ZHU and Caiyun LI

As we know, PH cubics have no real inflection points and they must be convex [1]. Then

another identification of convex PH sextics for the first kind is

Corollary 5.2 A planar sextic Bézier curve r(t), which is constructed by a PH cubic r1(t) and

satisfies (5.1) and (5.2), is a strictly convex PH curve if 3w1 > w0 > 0 and 3w2 > 1.

Example 5.3 We choose five PH cubics with symmetric and asymmetric Bézier control polygons

from [1], and relevant constructed PH sixtics are shown in Figure 6.

5.2. Identification by PH quintic

For the second kind of sextic PH curve r(t), whose hodograph is represented as (4.14), let

r′2(t) = G2(t) = [u0B
2
0(t) + u1B

2
1(t) + u2B

2
2(t)]

2, t ∈ [0, 1],

which means that r2(t) is a quintic PH curve with control points Q0, Q1, Q2, Q3, Q4, Q5 and

control legs ∆Q0 = L̂0 = 1
5 u

2
0, ∆Q1 = L̂1 = 1

5 u0 u1, ∆Q2 = L̂2 = 1
15 (u0 u2 + 2u2

1), ∆Q3 =

L̂3 = 1
5 u1 u2, ∆Q4 = L̂4 = 1

5 u
2
2. Similarly, we add extra four points E, F, G, K satisfying (see

Figure 7)

L0 =
5w0

6
L̂0 =

−−−→
P0P1,

L1 =
1

6
L̂0 +

2w0

3
L̂1 =

−−→
P1E+

−−→
EP2,

L2 =
1

3
L̂1 +

w0

2
L̂2 =

−−→
P2F+

−−→
FP3,

L3 =
1

2
L̂2 +

w0

3
L̂3 =

−−−→
P3G+

−−−→
GP4,

L4 =
2

3
L̂3 +

w0

6
L̂4 =

−−−→
P4K+

−−−→
KP5,

L5 =
5

6
L̂4 =

−−−→
P5P6,

such that

Figure 7 The second kind of control polygon of PH sextic by PH quintic

−−−→
P0P1 = a

−−→
P0E,

−−→
EP2 = b

−→
EF,

−−→
FP3 = c

−−→
FG,

−−−→
GP4 = d

−−→
GK,

−−−→
KP5 = e

−−−→
KP6, (5.3)
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where a = 5w0

5w0+1 , b = 2w0

2w0+1 , c = w0

w0+1 , d = w0

w0+2 , and e = w0

w0+5 . And w0 > 0 makes

0 < a, b, c, d, e, f < 1, and

θ1 + θ4 = θ2 + θ3,
|
−→
EF|2

|
−−→
GK|2

=
4 ad2

5 b2e

|
−−→
P0E|
|
−−−→
KP6|

, (5.4 a)

40 abc|
−−→
P0E||

−→
EF||

−−→
FG| cos(θ2) = 16 a2d|

−−→
P0E|2|

−−→
GK| cos(θ4) + 25 b3|

−→
EF|3 cos(θ1), (5.4 b)

40 abc|
−−→
P0E||

−→
EF||

−−→
FG| sin(θ2) = 16 a2d|

−−→
P0E|2|

−−→
GK| sin(θ4) + 25 b3|

−→
EF|3 sin(θ1). (5.4 c)

Proposition 5.4 A planar sextic Bézier curve r(t) with control points Pi (i = 0, . . . , 6) is a PH

curve, whose hodograph is defined in (4.14) with w0 > 0, if and only if relations (5.3), (5.4 a),

(5.4 b) and (5.4 c) are satisfied.

Since PH quintics may have inflection points [1], another identification of PH sextics for the

second kind is represented

Corollary 5.5 A planar sextic PH curve r(t), which is constructed by a quintic PH curve r2(t)

and satisfies (5.3), (5.4 a), (5.4 b) and (5.4 c), preserves the convexity with r2(t) if w0 > 0.

Remark 5.6 We find |
−→
EF|2

|
−−→
GK|2

= |
−−→
P0E|
|
−−−→
KP6|

if and only if w0 = 1. This coincides with the condition

shown in Figure 4, which means that the sextic PH curve degenerates to a quintic PH curve.

(a) Convex PH quintic (b) Nonconvex PH quintic (c) Nonconvex PH quintic

Figure 8 PH quintics and constructed PH sextics

Example 5.7 We choose three quintic PH curves with convex and nonconvex Bézier control

polygons in this example. The first two of which are from [4], and the other one is from [1]. The

sextic PH curves constructed from PH quintics are illustrated in Figure 8.

Acknowledgements We thank the referees for their time and comments.
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