Journal of Mathematical Research with Applications Mar., 2017, Vol. 37, No. 2, pp. 137–147 DOI:10.3770/j.issn:2095-2651.2017.02.002 Http://jmre.dlut.edu.cn

Quasi-Zero-Divisor Graphs of Non-Commutative Rings

Shouxiang ZHAO^{1,2}, Jizhu NAN^{1,*}, Gaohua TANG³

1. School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China;

2. Department of Mathematics and Computer Science, Guilin Normal College,

Guangxi 541001, P. R. China;

3. School of Mathematical and Statistics Sciences, Guangxi Teachers Education University,

Guangxi 530023, P. R. China

Abstract In this paper, a new class of rings, called FIC rings, is introduced for studying quasi-zero-divisor graphs of rings. Let R be a ring. The quasi-zero-divisor graph of R, denoted by $\Gamma_*(R)$, is a directed graph defined on its nonzero quasi-zero-divisors, where there is an arc from a vertex x to another vertex y if and only if xRy = 0. We show that the following three conditions on an FIC ring R are equivalent: (1) $\chi(R)$ is finite; (2) $\omega(R)$ is finite; (3) Nil_{*}R is finite where Nil_{*}R equals the finite intersection of prime ideals. Furthermore, we also completely determine the connectedness, the diameter and the girth of $\Gamma_*(R)$.

Keywords quasi-zero-divisor; zero-divisor graph; chromatic number; clique number; FIC ring

MR(2010) Subject Classification 05C25; 05C15; 16U99

1. Introduction

Given a ring R, there are many ways to associate a directed or undirected graph to R in order to study the properties of R in terms of some invariants of the resulting graphs. In 1988, Beck [1] introduced the notion of the zero-divisor graph for a commutative ring, and mainly studied the coloring problem of rings. In 1999, Anderson and Livingston [2] associated a graph $\Gamma(R)$ to a commutative ring R, called the zero-divisor graph of R, with vertices set $Z(R)^* = Z(R) \setminus \{0\}$ of all nonzero zero-divisors, in which two distinct vertices $x, y \in Z(R)^*$ are adjacent if and only if xy = 0, and then they investigated the interplay between the ring-theoretic properties of Rand the graph-theoretic properties of $\Gamma(R)$. In 2002, Redmond [3] extended the definition to non-commutative rings. He defined a directed graph $\Gamma(R)$ for a ring R with the vertices set $Z(R)^*$, where $x \longrightarrow y$ is an edge between distinct vertices x and y if and only if xy = 0. In 2006, Akbari and Mohammadian [4] defined an undirected graph $\overline{\Gamma}(R)$ for an arbitrary ring R

Received June 5, 2015; Accepted July 29, 2016

Supported by the National Natural Science Foundation of China (Grant Nos. 11371343; 11161006; 11661014; 11171142), the Guangxi Science Research and Technology Development Project (Grant No. 1599005-2-13), the Scientic Research Fund of Guangxi Education Department (Grant No. KY2015ZD075) and the Natural Science Foundation of Guangxi (Grant No. 2016GXSFDA380017).

^{*} Corresponding author

E-mail address: shouxiangzhao@163.com (Shouxiang ZHAO); jznan@163.com (Jizhu NAN); tanggaohua@163.com (Gaohua TANG)

with identity, where the vertices set of the graph $\overline{\Gamma}(R)$ is $Z(R)^*$, and two distinct vertices x and y in the graph are adjacent if and only if either xy = 0 or yx = 0 holds. In 2008, Behboodi and Beyranvand [5] introduced the strong zero-divisor graph $\widetilde{\Gamma}(R)$ for a ring R. In 2015, Alibemani and Bakhtyiari, etc. [6], introduced the annihilator ideal graph for rings. Motivated by previous studies, we introduce a new graph for a ring (not necessarily commutative and not necessarily contains the identity) and study its properties.

Let R be a ring. An element $a \in R$ is said to be a left quasi-zero-divisor (resp., right quasi-zero-divisor) if there exists $0 \neq b \in R$ such that aRb = 0 (resp., bRa = 0). An element in R is called a quasi-zero-divisor of R if it is a left or a right quasi-zero-divisor. The sets of all left quasi-zero-divisors, right quasi-zero-divisors and quasi-zero-divisors of R are denoted by $Q_l(R)$, $Q_r(R)$ and Q(R), respectively. The quasi-zero-divisor graph of the ring R, denoted by $\Gamma_*(R)$, is a directed graph with the vertices set $Q(R)^* = Q(R) \setminus \{0\}$ of all nonzero quasi-zero-divisors and with an arc from x to y, denoted by $x \longrightarrow y$, if and only if xRy = 0 for distinct $x, y \in Q(R)^*$. It is clear that $\Gamma_*(R)$ is an empty graph if and only if R is a prime ring. The basis graph of $\Gamma_*(R)$, denoted by $\overline{\Gamma}_*(R)$, is an undirected graph with the vertices set $Q(R)^*$, where two distinct vertices x and y are adjacent, denoted by $x \longrightarrow y$, if and only if either xRy = 0 or yRx = 0 holds.

Now, let us recall some notions that will be used in our paper. A graph (resp., directed graph) G is an ordered pair (V(G), E(G)) consisting of a set V(G) of vertices and a set E(G) of edges, together with an incidence function ψ_G that associates with each edge of G an unordered (resp., ordered) pair of vertices of G. The chromatic number of G, denoted by $\chi(G)$, is defined to be the minimal index k if one assigns k colors to each vertex of G in such a way that every two adjacent vertices have different colors. A subset $\{x_1, \ldots, x_m\}$ of V(G) is called an m-clique of G if x_i and x_j are adjacent for $1 \leq i \neq j \leq m$. The clique number of G, denoted by $\omega(G)$, is defined to be the maximal number m if G has an m-clique. Undefined notions and notations in graph theory, please refer to [7]. For simplification, the chromatic number and the clique number of $\Gamma_*(R)$ are denoted by $\chi(R)$ and $\omega(R)$, respectively.

Now we state the key definition that will be used in this paper. A ring R is called FIC, if it satisfies the following condition: for any finite ideal I of R, R/I having an infinite clique implies that R contains an infinite clique. It is easy to say that all finite rings are FIC. If R is an FIC ring, then the quotient ring R/I is also FIC for the finite ideal I of R. In fact, for any finite ideal $K (I \subseteq K)$ of R, if $(R/I)/(K/I) (\cong R/K)$ has an infinite clique, then R has an infinite clique C and $\overline{C} = \{\overline{c} \in R/I : c \in C\}$ is an infinite clique of R/I. Thus R/I is an FIC ring.

2. Some properties of FIC rings

As usual, let \mathbb{Z}_n and \mathbb{N} denote the ring of integers mod n and the set of all positive integers, respectively. The set of all $n \times n$ matrices over R is a matrix ring denoted by $\mathbb{M}_n(R)$. The cardinal of a set A is denoted by |A|. An element x in R is called finite if both the left ideal Rxand the right ideal xR of R are finite; otherwise x is called infinite.

Proposition 2.1 Let R be a ring. If R contains infinitely many finite elements, then R contains

an infinite clique.

Proof Let $X = \{x_i \in R : x_i \neq 0\}$ is a finite element for $i \in \mathbb{N}\}$ be an infinite set. Now we construct an infinite clique of R. Since x_1 is a finite element, we can write $x_1R = \{a_1, a_2, \ldots, a_m\}$ and $Rx_1 = \{b_1, b_2, \ldots, b_k\}$. Then we have $x_1Rx_i \subseteq x_1R$ and $a_tx_i \in x_1R$ for all $x_i \in X$ where $1 \leq t \leq m$ and so there exists an infinite set $X_1 = \{x_i^1 \in X : a_1x_i^1 = a_1x_1^1 \text{ for all } i \in \mathbb{N}\}$. Repeating this process, we can also obtain an infinite set $X_m = \{x_i^m \in X_{m-1} \subseteq X : a_tx_i^m = a_tx_1^m \text{ where } i \in \mathbb{N} \text{ and } 1 \leq t \leq m\}$. Let

$$Y = \{y_i \in R : y_i = x_1^m - x_i^m \text{ and } y_i \neq 0, x_1 \text{ for all } x_i^m \in X_m\}$$

Then Y is an infinite set of finite elements with $x_1Ry_i = 0$ for all $y_i \in Y$. Similarly, we can get an infinite set $Y_k = \{y_i^k \in Y : y_i^k b_t = y_1^k b_t \text{ and } x_1Ry_i^k = 0 \text{ where } i \in \mathbb{N} \text{ and } 1 \le t \le k\}$. Let

$$Z = \{z_i \in R : z_i = y_1^k - y_i^k \text{ and } z_i \neq 0, x_1 \text{ for all } y_i^k \in Y_k\}$$

Then Z is an infinite set of finite elements with $z_i R x_1 = 0$ and $x_1 R z_i = 0$ for all $z_i \in Z$.

Repeating the process of constructing the set Y and the set Z, then we can obtain an infinite clique of R. \Box

Theorem 2.2 The commutative ring R is FIC.

Proof Let *I* be a finite ideal of *R*. If R/I contains no infinite cliques, we are done. Now we suppose that R/I contains an infinite clique $\overline{H} = \{\overline{x_i} \in R/I : x_i \in R \text{ for all } i \in \mathbb{N}\}$. In order to prove that *R* is an FIC ring, we need show that *R* contains an infinite clique. Write $H = \{x_i \in R: all \ \overline{x_i} \in \overline{H}\}$ and

$$H_1^2 = \{x_i x_j : x_i x_j \neq 0 \text{ for all } x_i \neq x_j \in H\}.$$

Let x_1 be an element of H. If $|H_1^2| = \infty$, then $\overline{H_1^2} = \{\overline{y_i} \in R/I : \text{all } y_i \in H_1^2\}$ is also an infinite clique in R/I. So we get an infinite set $Z = \{z_i \in H_1^2 : x_1z_i = x_1z_1 \text{ where all } i \in \mathbb{N}\}$. Let

$$\overline{H_1} = \{\overline{c_i} \in R/I : c_i = z_1 - z_i \text{ and } c_i \neq 0, x_1 \text{ for all } z_i \in Z\}$$

Then $\overline{H_1}$ is also an infinite clique of R/I such that $x_1Rc_i = c_iRx_1 = 0$ for all $c_i \in \overline{H_1}$. Repeating this process, we can obtain an infinite clique of R. If $|H_1^2| < \infty$, then we have $(x_1 \cdot H) \setminus \{x_1^2\} \subseteq H_1^2$. So we get an infinite set $\{t_i \in H : x_1t_i = x_1t_1 \text{ where } i \in \mathbb{N}\}$. Similar to the proof of the case of $|H_1^2| = \infty$, we can also obtain an infinite clique of R as the case of $|H_1^2| \neq \infty$. \Box

Lemma 2.3 ([7, Theorem 3.1]) Let R be a ring and $\mathbb{M}_n(R)$ be the matrix ring over R. Then the ideal of $\mathbb{M}_n(R)$ is of the form $\mathbb{M}_n(I)$ for a uniquely determined ideal I of R.

Theorem 2.4 Let R be a commutative ring with identity. Then $\mathbb{M}_n(R)$ is an FIC ring for $n \in \mathbb{N}$.

Proof Let M be a finite ideal of $\mathbb{M}_n(R)$. If $\mathbb{M}_n(R)/M$ contains no infinite cliques, we are done. Now we suppose that $\mathbb{M}_n(R)/M$ contains an infinite clique $\overline{C} = \{\overline{A_i} \in \mathbb{M}_n(R)/M : \text{all } i \in \mathbb{N}\}$. By Lemma 2.3, there exists a uniquely finite ideal I of R such that $M = \mathbb{M}_n(I)$. In order to prove that $\mathbb{M}_n(R)$ is an FIC ring, we need show that $\mathbb{M}_n(R)$ contains an infinite clique. Now write $C = \{A_i \in \mathbb{M}_n(R) : \text{all } \overline{A_i} \in \overline{C}\}$. So we have $A_i \mathbb{M}_n(R) A_j \subseteq M = \mathbb{M}_n(I)$ for all $A_i \neq A_j \in C$. Let $A_i \in C$ and

$$X_i = \{ 0 \neq a_{kl} \in R : A_i = (a_{kl})_{n \times n} \text{ for } 1 \le k, l \le n \},\$$

where $i \in \mathbb{N}$. Then it is easy to see that there exists $t_1 \in \mathbb{N}$ such that $Y_1 = (X_2 \cup \cdots \cup X_{t_1}) \setminus Y_0 \neq \emptyset$ for $Y_0 = X_1$. Pick up $y_1 \in Y_1$, without loss of generality, we can assume that $y_1 \in X_{t_1}$. So there exists $t_2 \in \mathbb{N}$ such that $Y_2 = (X_{t_1+1} \cup \cdots \cup X_{t_2}) \setminus (Y_0 \cup Y_1) \neq \emptyset$. Now pick up $y_2 \in Y_2$, without loss of generality, we can assume that $y_2 \in X_{t_2}$. Repeating this process, we can obtain an infinite set $Y = \{y_i \in R : \text{all } i \in \mathbb{N}\}$. Let

$$\overline{Y} = \{ \overline{y_i} \in R/I : \text{all } y_i \in Y \subseteq R \}.$$

Then we need to prove that \overline{Y} is an infinite clique of R/I. Let $A_{t_i} = (a_{kl})_{n \times n}$ and $A_{t_j} = (b_{st})_{n \times n} \in C$ for $i \neq j \in \mathbb{N}$. For every $r \in R$, there exist $P, Q \in \mathbb{M}_n(R)$ such that the k-th row of $A_{t_i}P$ is $(a_{kl}r, 0, \ldots, 0)$ and the t-th column of QA_{t_j} is $(b_{st}, 0, \ldots, 0)^T$. So we have $a_{kl}rb_{st} \in I$ and $y_iRy_j \subseteq I$ for $y_i, y_j \in Y$ where $1 \leq k, l, s, t \leq n$. Thus \overline{Y} is an infinite clique of R/I. By Theorem 2.2, we know that R contains an infinite clique $C' = \{c_i \in R : \text{all } i \in \mathbb{N}\}$. Now let C'' denote the set

 $\{C_k = (c_{ij})_{n \times n} : (1, 1)$ -entry of C_k is c_k and others entries are 0 for all $c_k \in C'\}$.

Then C'' is an infinite clique of $\mathbb{M}_n(R)$. Therefore $\mathbb{M}_n(R)$ is an FIC ring. \Box

A nonempty subset S of a ring R is called an m-system if for any $a, b \in S$, there exists $r \in R$ such that $arb \in S$. For an ideal I of R, the radical ideal of I, denoted by \sqrt{I} , is defined to be the set of $\{s \in R : \text{every } m\text{-system containing } s \text{ meets } I\}$ in [8]. By [8, Theorem 10.7], we know that the radical ideal of I equals the intersection of all the prime ideals containing I. An ideal I of R is called semiprime if for any ideal K of R, $K^2 \subseteq I$ implies that $K \subseteq I$. The lower nilradical of R, denoted by Nil_{*}R, is defined to be the set of $\sqrt{\langle 0 \rangle}$. It is that Nil_{*}R is the smallest semiprime ideal where it equals the intersection of all the prime ideals of R. We also know that Nil_{*}R is the intersection of all the minimal prime ideals of R (see [8, Exercise 10.14]). The following two lemmas are also from [8].

Lemma 2.5 ([8, Proposition 10.16]) The following conditions are equivalent:

- (1) R is a semiprime ring;
- (2) $Nil_*R = 0;$
- (3) R has no nonzero nilpotent ideal;
- (4) R has no nonzero nilpotent left ideal.

Note that if R is a semiprime ring, then for any $x, y \in R$, we have xRy = 0 if and only if yRx = 0. In fact, if xRy = 0 and $yRx \neq 0$, then there exists $r \in R$ such that $yrx \neq 0$. But we have $yr \cdot x(yrx)y \cdot rx \in yr \cdot xRy \cdot rx = 0$ and $yrx \in \text{Nil}_*(R) = 0$. This is a contradiction and so the case of xRy = 0 and $yRx \neq 0$ is not true. Similarly, if R is a semiprime ring, then the case of $xRy \neq 0$ and yRx = 0 is also not true. Thus for a semiprime ring R, we know that xRy = 0

Quasi-zero-divisor graphs of non-commutative rings

if and only if yRx = 0.

Lemma 2.6 ([8, Proposition 10.2]) For a proper ideal P of a ring R, the following statements are equivalent:

- (1) P is prime;
- (2) For any $a, b \in R$, $\langle a \rangle \langle b \rangle \subseteq P$ implies that $a \in P$ or $b \in P$;
- (3) For any $a, b \in R$, $aRb \subseteq P$ implies that $a \in P$ or $b \in P$;
- (4) For any left ideals I, K of $R, IK \subseteq P$ implies that $I \subseteq P$ or $K \subseteq P$;
- (4') For any right ideals I, K of $R, IK \subseteq P$ implies that $I \subseteq P$ or $K \subseteq P$.

To investigate the relationships between prime ideals and $\Gamma_*(R)$ of a ring R, we introduce the following definition. Let I be an ideal of R. The quasi-annihilator ideal of I, denoted by Q-ann(I), is defined to be the set of $\{a \in R : aRI = IRa = 0\}$. We will denote by Q(R) the set of all quasi-annihilator ideals of every ideal of a ring R.

Proposition 2.7 Let R be a semiprime FIC ring. If R contains no infinite cliques, then Q(R) satisfies the condition of ACC and every maximal element of Q(R) is a prime ideal.

Proof If the proposition is not true, then we can assume that there exists an infinite strictly ascending chain

$$Q-ann(\langle a_1 \rangle) \subset Q-ann(\langle a_2 \rangle) \subset \cdots \subset Q-ann(\langle a_n \rangle) \subset \cdots$$

Let $x_{n+1} \in \text{Q-ann}(\langle a_{n+1} \rangle) \setminus \text{Q-ann}(\langle a_n \rangle)$ and $y_n \in (x_{n+1}Ra_n \cup a_nRx_{n+1}) \setminus \{0\}$ for $n \in \mathbb{N}$. Then there exists $r_i \in R$ such that $y_i = x_{i+1}r_ia_i \neq 0$ or $y_i = a_ir_ix_{i+1} \neq 0$. Without loss of generality, we can set $y_i = x_{i+1}r_ia_i$ and $y_j = x_{j+1}r_ja_j$ where $i < j \in \mathbb{N}$, then we have $y_iRy_j = x_{i+1}(r_ia_iRx_{j+1}r_j)a_j \subseteq x_{i+1}Ra_j = 0$. Thus we have $y_iRy_j = y_jRy_i = 0$ for all $i \neq j \in \mathbb{N}$. Since R contains no infinite cliques, there exist some $i \neq j \in \mathbb{N}$ such that $y_i = y_j$. Then we get $y_iRy_j = y_iRy_i = 0$ and $y_i^3 = 0$. By Lemma 2.5, we know that $y_i \in \text{Nil}_*R = 0$, leading to a contradiction. Thus $\mathcal{Q}(R)$ satisfies the condition of ACC.

Let Q-ann $(\langle x \rangle)$ be a maximal element of $\mathcal{Q}(R)$ and $a, b \in R \setminus Q$ -ann $(\langle x \rangle)$. In order to prove that Q-ann $(\langle x \rangle)$ is a prime ideal, by Lemma 2.6, we only need to show that $aRb \notin Q$ -ann $(\langle x \rangle)$. If it is not true, then it is to say $aRb \subseteq Q$ -ann $(\langle x \rangle)$. Since $a \notin Q$ -ann $(\langle x \rangle)$, we have $aRx \neq 0 \neq xRa$ and also have $bRx \neq 0 \neq xRb$. So there exists $r_1 \in R$ such that $br_1x \neq 0$. Since $aRb \subseteq Q$ -ann $(\langle x \rangle)$, it follows that aRbRx = 0. So $aRbr_1x = 0$ and $br_1xRa = 0$. Now we need show that Q-ann $(\langle x \rangle)$ is not a maximal element of $\mathcal{Q}(R)$. It is easy to see that Q-ann $(\langle x \rangle) \subseteq Q$ -ann $(\langle br_1x \rangle)$ and $a \in Q$ -ann $(\langle br_1x \rangle) \setminus Q$ -ann $(\langle x \rangle)$. Since $Nil_*R = 0$, we have $br_1x \notin Q$ -ann $(\langle x \rangle)$. So Q-ann $(\langle br_1x \rangle) \neq R$ and Q-ann $(\langle x \rangle) \notin Q$ -ann $(\langle br_1x \rangle) \in \mathcal{Q}(R)$. That is to say Q-ann $(\langle x \rangle)$ is not a maximal element of $\mathcal{Q}(R)$. Thus $aRb \notin Q$ -ann $(\langle x \rangle)$. \Box

Proposition 2.8 Let R be a semiprime ring and $x, y \in R$. If Q-ann $(\langle x \rangle)$ and Q-ann $(\langle y \rangle)$ are different prime ideals, then xRy = 0 and yRx = 0.

Proof By the statements after Lemma 2.5, we only need to show that xRy = 0. If it is

not true, then it is to say $xRy \neq 0$. Since R is semiprime, it follows that $yRx \neq 0$. Then we have $\langle x \rangle \not\subseteq \text{Q-ann}(\langle y \rangle)$ and $\langle x \rangle \cdot \text{Q-ann}(\langle x \rangle) = 0 \subseteq \text{Q-ann}(\langle y \rangle)$. By Lemma 2.6, we know that $\text{Q-ann}(\langle x \rangle) \subseteq \text{Q-ann}(\langle y \rangle)$, and also have $\text{Q-ann}(\langle y \rangle) \subseteq \text{Q-ann}(\langle x \rangle)$. Then $\text{Q-ann}(\langle x \rangle) =$ $\text{Q-ann}(\langle y \rangle)$ and so xRy = 0. \Box

Proposition 2.9 Let R be a semiprime FIC ring. Then the following conditions are equivalent:

- (1) $\chi(R)$ is finite;
- (2) $\omega(R)$ is finite;
- (3) $\langle 0 \rangle$ is the finite intersection of prime ideals of R;
- (4) R contains no infinite cliques.

Proof The implications $(1) \Rightarrow (2)$ and $(2) \Rightarrow (4)$ are trivial.

(4) \Rightarrow (3). Since R contains no infinite cliques, Q(R) satisfies the condition of ACC by Proposition 2.7. Let

$$\mathcal{Q}_1(R) = \{ \operatorname{Q-ann}(\langle x \rangle) \in \mathcal{Q}(R) : \operatorname{Q-ann}(\langle x \rangle) \text{ is a maximal element of } \mathcal{Q}(R) \}.$$

Then $\mathcal{Q}_1(R)$ is a set of prime ideals by Proposition 2.7. Since R contains no any infinite cliques, $|\mathcal{Q}_1(R)|$ is finite by Proposition 2.8. Let $a \in Q(R)^*$. Now we will prove that there exists $Q-\operatorname{ann}(\langle x \rangle) \in \mathcal{Q}_1(R)$ such that $a \notin Q-\operatorname{ann}(\langle x \rangle)$. Since $Q-\operatorname{ann}(\langle a \rangle)$ is in $\mathcal{Q}(R)$ and $\mathcal{Q}(R)$ satisfies the condition of ACC, there exists $Q-\operatorname{ann}(\langle x \rangle) \in \mathcal{Q}_1(R)$ such that $Q-\operatorname{ann}(\langle a \rangle) \subseteq Q-\operatorname{ann}(\langle x \rangle)$. In there we know that $aRx \neq 0$ and $xRa \neq 0$. If it is not true, then it is to say aRx = xRa = 0. Then we have $x \in Q-\operatorname{ann}(\langle a \rangle) \subseteq Q-\operatorname{ann}(\langle x \rangle)$. So we have xRx = 0 with $x^3 = 0$ ($x \in \operatorname{Nil}_*R = 0$) and this is a contradiction. Thus $a \notin Q-\operatorname{ann}(\langle x \rangle)$ and

$$\bigcap_{\text{Q-ann}(\langle x \rangle) \in \mathcal{Q}_1(R)} \text{Q-ann}(\langle x \rangle) \subseteq R \setminus Q(R)^*,$$

where $\mathcal{Q}_1(R) \subseteq \operatorname{Spec} R$ and $|\mathcal{Q}_1(R)| < \infty$. Finally, we will prove that

$$\bigcap_{\mathbf{Q}-\mathrm{ann}(\langle x \rangle) \in \mathcal{Q}_1(R)} \mathbf{Q}-\mathrm{ann}(\langle x \rangle) = 0.$$

Assume to the contrary, then we have $C = \bigcap_{Q-\operatorname{ann}(\langle x \rangle) \in \mathcal{Q}_1(R)} Q-\operatorname{ann}(\langle x \rangle) \neq 0$ and $\bigcap_{P_i \in \mathcal{S}(R)} P_i = \operatorname{Nil}_* R = 0$ with $\mathcal{Q}_1(R) \subseteq \mathcal{S}(R) \subseteq \operatorname{Spec} R$, where $\mathcal{S}(R)$ is a minimum set satisfying $\bigcap_{P_i \in \mathcal{S}(R)} P_i = \operatorname{Nil}_* R$. Pick up $0 \neq c_0 \in C$ and $p_k \in P_k \setminus C$ for some $P_k \in \mathcal{S}(R) \setminus \mathcal{Q}_1(R)$. Then we have $c_0 R p_k \neq 0$ and there exists $r_k \in R$ such that $0 \neq c_1 = c_0 r_k p_k \in C \cap P_k$. Pick up $p_l \in P_l \setminus (C \cap P_k)$ for some $P_l \in \mathcal{S}(R) \setminus (\mathcal{Q}_1(R) \cup \{P_k\})$. Then we have $c_1 R p_l \neq 0$ and there exists $r_l \in R$ such that $0 \neq c_2 = c_1 r_l p_l \in C \cap P_k \cap P_l$. Repeating this process, we can get $0 \neq c \in C \cap (\bigcap_{P_i \in \mathcal{S}(R)} P_i) = 0$. Thus $\bigcap_{Q-\operatorname{ann}(\langle x \rangle) \in \mathcal{Q}_1(R)} Q-\operatorname{ann}(\langle x_i \rangle) = 0$.

(3) \Rightarrow (1). Let $\langle 0 \rangle = P_1 \cap \cdots \cap P_k$, where P_1, \ldots, P_k are prime ideals of R. Define a function f on $\Gamma_*(R)$ by

$$f(x) = \begin{cases} \min\{i : x \notin P_i\}, & \text{if } x \in Q(R)^* \bigcap (P_1 \bigcup \dots \bigcup P_k), \\ k+1, & \text{if } x \in Q(R)^* \setminus (P_1 \bigcup \dots \bigcup P_k). \end{cases}$$

Let $x \neq y \in Q(R)^*$. In order to prove that f(x) is a coloring function on $\Gamma_*(R)$, we need show

that if f(x) = f(y), then we have $xRy \neq 0 \neq yRx$. If f(x) = f(y) = l with $1 \leq l \leq k$, then we have $x, y \notin P_l$. If f(x) = f(y) = k + 1, then we have $x, y \notin P_i$ for $1 \leq i \leq k$. By Lemma 2.6, we get $xRy \neq 0 \neq yRx$. Thus we need at most k + 1 colors to color all of $Q(R)^*$. \Box

Theorem 2.10 Let R be a semiprime FIC ring. If $\chi(R)$ is finite, then R has only finitely many minimal prime ideals. Moreover, if the number of minimal prime ideals of R is equal to n, then we have $n \leq \omega(R) \leq \chi(R) = n + 1$.

Proof By Proposition 2.9, we know that $\langle 0 \rangle$ is the finite intersection of prime ideals of R. So there are only finitely many minimal prime ideals in R, say P_1, P_2, \ldots, P_n . Since Nil_{*} $R = P_1 \cap P_2 \cap \cdots \cap P_n = 0$, we have $\chi(R) \leq n+1$ by the proof of Proposition 2.9. Let $x_i \notin P_i$ and

$$x_i \in P_1 \bigcap \cdots \bigcap P_{i-1} \bigcap P_{i+1} \bigcap \cdots \bigcap P_n$$

where $1 \leq i \leq n$. Then $x_i R x_j \subseteq P_1 \cap \cdots \cap P_{i-1} \cap P_{i+1} \cap \cdots \cap P_n$ and $x_i R x_j \subseteq P_1 \cap \cdots \cap P_{j-1} \cap P_{j+1} \cap \cdots \cap P_n$ where $i \neq j$. So $x_i R x_j \subseteq P_1 \cap P_2 \cap \cdots \cap P_n = 0$ for $1 \leq i \neq j \leq n$, and thus $\{x_1, x_2, \ldots, x_n\}$ is a clique of R. So we have $n \leq \omega(R)$ and $n \leq \omega(R) \leq \chi(R) \leq n+1$. \Box

Proposition 2.11 Let R be an FIC ring. If R contains an infinite element x such that $\langle x \rangle$ is a nilpotent ideal, then R contains an infinite clique.

Proof By assumption, there exists $k \in \mathbb{N}$ such that $|\langle x \rangle^k| = \infty$ and $|\langle x \rangle^{k+1}| < \infty$. If every element in $\langle x \rangle^k$ is finite, then R has an infinite clique by Proposition 2.1. If there exists $a \in \langle x \rangle^k$ such that a is infinite, then either $aR/\langle x \rangle^{k+1}$ or $Ra/\langle x \rangle^{k+1}$ is an infinite clique of $R/\langle x \rangle^{k+1}$, where $aR/\langle x \rangle^{k+1} = \{\overline{r} \in R/\langle x \rangle^{k+1} : \text{all } r \in aR\}$ and $Ra/\langle x \rangle^{k+1} = \{\overline{r} \in R/\langle x \rangle^{k+1} : \text{all } r \in Ra\}$. Since R is an FIC ring and $\langle x \rangle^{k+1}$ is finite, it follows that R also contains an infinite clique. \Box

Theorem 2.12 Let R be an FIC ring. Then the following conditions are equivalent:

- (1) $\chi(R)$ is finite;
- (2) $\omega(R)$ is finite;
- (3) $\operatorname{Nil}_{*}R$ is finite and it equals the finite intersection of prime ideals of R;
- (4) R contains no infinite cliques.

Proof The implications $(1) \Rightarrow (2)$ and $(2) \Rightarrow (4)$ are trivial.

 $(4) \Rightarrow (3)$. It is clear that if x is in Nil_{*}R, then $\langle x \rangle$ is a nilpotent ideal of R. Since there are not infinite cliques in R, we have Nil_{*}R is finite and R/Nil_{*}R contains no infinite cliques by Propositions 2.1 and 2.11. By Proposition 2.9, it follows that the zero ideal $\langle 0 \rangle$ of R/Nil_{*}R is the finite intersection of prime ideals of R/Nil_{*}R.

 $(3) \Rightarrow (1)$. Let Nil_{*} $R = P_1 \cap P_2 \cap \cdots \cap P_k$, where P_1, P_2, \ldots, P_k are prime ideals of R. Define a function on $\Gamma_*(R)$ by

$$f(x) = \begin{cases} \min\{i : x \notin P_i\}, & \text{if } x \in (Q(R)^* \cap (P_1 \bigcup \dots \bigcup P_k)) \setminus \operatorname{Nil}_*(R), \\ k+1, & \text{if } x \in (Q(R)^* \setminus (P_1 \bigcup \dots \bigcup P_k)) \setminus \operatorname{Nil}_*(R), \\ j+k+1, & \text{if } y_j \in \operatorname{Nil}_*(R) \setminus \{0\}. \end{cases}$$

Let $x \neq y \in Q(R)^* \setminus \operatorname{Nil}_*(R)$. If f(x) = f(y) = l with $1 \leq l \leq k$, then we have $x, y \notin P_l$. If f(x) = f(y) = k+1, then we have $x, y \notin P_i$ for $1 \leq i \leq k$. By Lemma 2.6, we get $xRy \neq 0 \neq yRx$. Since Nil_*R is finite, we need only a finite number of colors to color all of $Q(R)^*$. \Box

Theorem 2.13 Let R be an FIC ring with $\chi(R) < \infty$. Then the radical ideal of any finite ideal of R is finite and it equals the finite intersection of prime ideals. Moreover, there exist finitely many finite ideals in R.

Proof Let K be a finite ideal of R. Since R is an FIC ring and $\chi(R) < \infty$, we know that R/K has no infinite cliques. By Theorem 2.12, we have $\chi(R/K) < \infty$ and $\operatorname{Nil}_*(R/K) = \sqrt{K/K}$ is the finite intersection of prime ideals of R/K. Now we want to show that $\sqrt{K/K}$ is finite. If it is not true, then it is to say $\operatorname{Nil}_*(R/K) = \infty$. Then we have two cases to consider:

Case 1 If x is finite for every $x \in \text{Nil}_*(R/K)$, then R/K contains an infinite clique by Proposition 2.1. So R contains an infinite clique and this is a contradiction.

Case 2 If there exists $x \in \text{Nil}_*(R/K)$ such that x is infinite, then $\langle x \rangle$ is nilpotent and R/K contains an infinite clique by Proposition 2.11. So R contains an infinite clique and this is also a contradiction.

Thus $\sqrt{K/K}$ is finite. Since K is finite, it follows that \sqrt{K} is finite.

Let $A = \{x \in R : x \text{ is finite}\}$. Since $\chi(R) < \infty$, we have $|A| < \infty$ and $\omega(R) < \infty$ by Proposition 2.1 and Theorem 2.12. Since A contains every finite ideal, we have the number of the finite ideals of R is finite. \Box

3. Some properties of $\Gamma_*(R)$ and $\overline{\Gamma}_*(R)$

In this section, we will study the properties of $\Gamma_*(R)$ and $\overline{\Gamma}_*(R)$. We first present three examples to illustrate the relationships among the graphs $\Gamma(R), \Gamma_*(R), \overline{\Gamma}(R), \overline{\Gamma}_*(R)$ and $\widetilde{\Gamma}(R)$ for a ring R. Note that if R has the identity, $\Gamma_*(R)$ may be a subgraph of $\Gamma(R)$ and $\overline{\Gamma}_*(R)$ may also be a subgraph of $\overline{\Gamma}(R)$. The following example shows that the subgraphs could be proper.

Example 3.1 Let $\mathbb{M}_2(\mathbb{Z})$ be a matrix ring over the integer numbers ring \mathbb{Z} . Since $\mathbb{M}_2(\mathbb{Z})$ has the identity, it follows that $a\mathbb{M}_2(\mathbb{Z})b = 0$ implies ab = 0 for $a, b \in \mathbb{M}_2(\mathbb{Z})$. Note that

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbb{M}_2(\mathbb{Z}) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \neq 0 \text{ and } \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbb{M}_2(\mathbb{Z}) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \neq 0,$$

but $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0$. Thus $\Gamma_*(\mathbb{M}_2(\mathbb{Z}))$ and $\overline{\Gamma}_*(\mathbb{M}_2(\mathbb{Z}))$ are proper subgraphs of $\Gamma(\mathbb{M}_2(\mathbb{Z}))$ and $\overline{\Gamma}(\mathbb{M}_2(\mathbb{Z}))$, respectively.

Example 3.2 Let $R = \{0, 2, 4, 6\}$ be a subring of \mathbb{Z}_8 . Then we have 2R6 = 6R2 = 0, but $2 \cdot 6 = 6 \cdot 2 = 4 \neq 0$. Note that $\Gamma_*(R)$ is a directed complete graph and $\overline{\Gamma}_*(R)$ is an undirected complete graph. Figures 3.1–3.3 show diagrams of $\Gamma(R)$, $\Gamma_*(R)$, $\overline{\Gamma}_*(R)$ and $\widetilde{\Gamma}(R)$. Thus $\Gamma(R)$ and

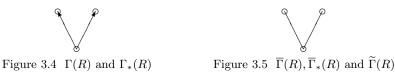
 $\Gamma(R)$ are proper subgraphs of $\overline{\Gamma}_*(R)$.

Figure 3.1
$$\Gamma_*(R)$$
 Figure 3.2 $\Gamma(R)$ and $\tilde{\Gamma}(R)$ Figure 3.3 $\overline{\Gamma}_*(R)$

Example 3.3 Let $R = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in \mathbb{Z}_2 \right\}$. Then $\Gamma_*(R)$ has three vertices and two edges with

$$\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \text{ and } \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \longrightarrow \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right).$$

Figures 3.4 and 3.5 show diagrams of $\Gamma(R)$, $\Gamma_*(R)$, $\overline{\Gamma}(R)$, $\overline{\Gamma}_*(R)$ and $\Gamma(R)$. We can see that $\Gamma_*(R)$ and $\Gamma(R)$ are not connected.



Recall that a (directed) graph G is connected if there is a (directed) path between any two vertices of G; otherwise the (directed) graph is disconnected. The distance between vertices a and b in a (directed) graph, denoted by d(a, b), is the number of edges in a shortest (directed) path. The diameter of a (directed) graph G, denoted by diam(G), is the greatest distance between any distinct two vertices of G. In [3], Redmond proved that $\Gamma(R)$ is connected if and only if $Z_l(R) = Z_r(R)$ and also proved that if $\Gamma(R)$ is connected, then diam($\Gamma(R)$) ≤ 3 . We have a similar conclusion on $\Gamma_*(R)$.

Theorem 3.4 Let R be a ring. Then $\Gamma_*(R)$ is connected if and only if $Q_l(R) = Q_r(R)$. Moreover, if $\Gamma_*(R)$ is connected, then diam $(\Gamma_*(R)) \leq 3$.

Proof Suppose that $\Gamma_*(R)$ is connected. Then for every vertex $x \in Q(R)^*$, there exist two directed edges beginning at x and ending at x. So x is both a left quasi-zero-divisor and a right quasi-zero-divisor. Thus $Q_l(R) = Q_r(R)$. Conversely, suppose that $Q_l(R) = Q_r(R)$. Then we get $Q(R) = Q_l(R) = Q_r(R)$. In order to prove that $\Gamma_*(R)$ is connected, we need show that for every $x \neq y \in Q(R)^*$, there is a directed path from x to y. Then we have five cases to consider:

Case 1 xRy = 0. Then $x \longrightarrow y$ is a path of length 1.

Case 2 $xRy \neq 0$ and xRx = yRy = 0. Then there exists $r \in R$ such that $xry \neq 0$. In this case, xR(xry) = 0 = (xry)Ry. So $x \longrightarrow xry \longrightarrow y$ is a path of length 2 (Note that $xry \neq x, y$, otherwise $x \longrightarrow y$ is a path and xRy = 0, and this a contradiction).

Case 3 $xRy \neq 0, xRx = 0$ and $yRy \neq 0$. Since $y \in Q(R)^* = Q_r(R) \setminus \{0\}$, there exists $a \in Q(R)^* \setminus \{x, y\} = Q_l(R) \setminus \{0, x, y\}$ such that aRy = 0. If xRa = 0, then $x \longrightarrow a \longrightarrow y$ is a path of length 2. If $xRa \neq 0$, then there exists $r \in R$ such that $xra \neq 0$. So $x \longrightarrow xra \longrightarrow y$ is

a path of length 2.

Case 4 $xRy \neq 0, xRx \neq 0$ and yRy = 0. As the case 3, there is also a path of length 2 between x and y.

Case 5 $xRy \neq 0, xRx \neq 0$ and $yRy \neq 0$. Since $x \in Q(R)^* = Q_l(R) \setminus \{0\}$ and $y \in Q(R)^* = Q_r(R) \setminus \{0\}$, there exist $a \in Q(R)^* = Q_r(R) \setminus \{0, x, y\}$ and $b \in Q(R)^* = Q_l(R) \setminus \{0, x, y\}$ such that xRa = 0 and bRy = 0. If a = b, then $x \longrightarrow a \longrightarrow y$ is a path of length 2. If $a \neq b$ and aRb = 0, then $x \longrightarrow a \longrightarrow b \longrightarrow y$ is a path of length 3. If $a \neq b$ and $aRb \neq 0$, then there exists $r \in R$ such that $arb \neq 0$. So $x \longrightarrow arb \longrightarrow y$ is a path of length 2.

By the above proof, we always have a path from x to y and thus $\Gamma_*(R)$ is connected. The above proof also shows that if $\Gamma_*(R)$ is connected, then diam $(\Gamma_*(R)) \leq 3$. \Box

Theorem 3.5 Let R be a ring. Then $\overline{\Gamma}_*(R)$ is connected and diam $(\overline{\Gamma}_*(R)) \leq 3$.

Proof For each pair $x \neq y \in Q(R)^*$, in order to prove the theorem, we need show that there exists a path of length at most three between x and y. If xRy = 0 or yRx = 0, then x - y is a path of length 1. Now we suppose that $xRy \neq 0$ and $yRx \neq 0$ and then there exists $r \in R$ such that $xry \neq 0$. Then we have four cases to consider:

Case 1 xRx = yRy = 0. Then x - xry - y is a path of length 2.

Case 2 xRx = 0 and $yRy \neq 0$. Then there exists $a \in R \setminus \{0, x, y\}$ such that a and y are adjacent. If x and a are adjacent, then x - a - y is a path of length 2. If x and a are not adjacent, then there exists $r \in R$ with $xra \neq 0$. So x - xra - y is a path of length 2.

Case 3 $xRx \neq 0$ and yRy = 0. As the case 2, there is also a path of length 2 between x and y.

Case 4 $xRx \neq 0$ and $yRy \neq 0$. Then there exist $a, b \in R \setminus \{0, x, y\}$ such that x - a and b - y are two edges in $\overline{\Gamma}_*(R)$. If a = b, then x - a - y is a path of length 2. If $a \neq b$, and a - b is in $\overline{\Gamma}_*(R)$, then x - a - b - y is a path of length 3. If $a \neq b$, and a - b is not in $\overline{\Gamma}_*(R)$, then there exists $r \in R$ such that $arb \neq 0$. In this case, x - arb - y is a path of length 2.

Therefore, $\overline{\Gamma}_*(R)$ is connected and diam $(\overline{\Gamma}_*(R)) \leq 3$. \Box

Recall the definition of the girth of a graph G, denoted by gr(G), is the length of a shortest cycle contained in G. If G contains no cycle, then the girth of G is defined to be ∞ .

Theorem 3.6 ([4]) Let R be a ring. Then $gr(\overline{\Gamma}_*(R)) \in \{3, 4, \infty\}$.

Proof It is clear that $\operatorname{gr}(\overline{\Gamma}_*(R)) \geq 3$. If $\overline{\Gamma}_*(R)$ contains no cycles, then $\operatorname{gr}(\overline{\Gamma}_*(R)) = \infty$. Now we suppose that $\overline{\Gamma}_*(R)$ contains a shortest cycle, say, $x_1 - x_2 - \cdots - x_n - x_1$. If $n \leq 4$, we are done. So we can suppose that n > 4, then x_3 and x_n are not adjacent and $x_3Rx_n \neq 0 \neq x_nRx_3$. Thus there exists $r \in R$ with $x_3rx_n \in Q(R)^*$, and then we have three cases to consider:

Case 1 If $x_3rx_n = x_1$, then $x_1 - x_2 - x_3 - x_4 - x_1$ is a cycle of length 4 and this is a contradiction.

146

Case 2 If $x_3rx_n = x_2$, then $x_1 - x_2 - x_4 - \cdots - x_n - x_1$ is a cycle of length n - 1 and this is a contradiction.

Case 3 If $x_3rx_n \neq x_1, x_2$, then $x_1 - x_2 - x_3rx_n - x_1$ is a cycle of length 3 and this is a contradiction.

Therefore, we have $\operatorname{gr}(\overline{\Gamma}_*(R)) \in \{3, 4, \infty\}$. \Box

Acknowledgements We thank the referees for their time and comments.

References

- [1] I. BECK. Coloring of commutative rings. J. Algebra, 1988, **116**(1): 208–226.
- [2] D. F. ANDERSON, P. S. LIVINGSTON. The zero-divisor graph of a commutative ring. J. Algebra, 1999, 217(2): 434-447.
- [3] S. P. REDMOND. The zero-divisor graph of a non-commutative ring. Int. J. Commutative Rings, 2002, 1(4): 203–211.
- S. AKBARI, A. MOHAMMADIAN. Zero-divisor graphs of non-commutative rings. J. Algebra, 2006, 296(2): 462–479.
- [5] M. BEHBOODI, R. BEYRANVAND. Strong zero-divisor graphs of non-commutative rings. Int. J. Algebra, 2008, 2(1-4): 25-44.
- [6] A. ALIBEMANI, M. BAKHTYIARI, R. NIKANDISH, et al. The annihilator ideal graph of a commutative ring. J. Korean Math. Soc., 2015, 52(2): 417–429.
- [7] J. A. BONDY, U. S. R. MURTY. Graph Theory. Graduate Texts in Mathematics, 244, Springer, New York, 2008.
- [8] T. Y. LAM. A First Course in Noncommutative Rings, second edition. Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 2001.
- [9] D. D. ANDERSON, M. NASEER. Beck's coloring of a commutative ring. J. Algebra, 1993, 159(2): 500-514.
- [10] M. BEHBOODI, R. BEYRANVAND, H. KHABAZIAN. Strong zero-divisors of non-commutative rings. J. Algebra Appl., 2009, 8(4): 565–580.