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On Semiclean Group Rings
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Abstract A ring R with unity is called semiclean, if each of its elements is the sum of a unit

and a periodic. Every clean ring is semiclean. It is not easy to characterize a semiclean group

ring in general. Our purpose is to consider the following question: If G is a locally finite group

or a cyclic group of order 3, then when is RG semiclean? Some known results on clean group

rings are generalized.
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1. Introduction

Throughout this paper, all rings are associative rings with identity. Let R be a ring and G

a group. We will denote by RG the group ring of G over R. We use the symbol U(R), J(R) to

denote the set of units and the Jacobson radical of R, respectively.

An element of a ring is called clean if it is the sum of an idempotent and a unit, and a ring

R is called clean if each of its elements is clean. This notion was first introduced by Nicholson in

1977 (see [1]). A ring whose idempotents are central is called abelian. Usually, we write Cn for

the cyclic group of order n. A group G is called locally finite if every finitely generated subgroup

of G is finite. Let p be a prime number. A group G is called a p-group if the order of each

element of G is a power of p. A group G is said to be an elementary p-group if all non-identity

elements of G are of order of p. It is well known that a finite abelian elementary p-group is a

direct product of finitely many copies of Cp.

When is a group ring RG clean? This question was first considered by Han and Nicholson [2].

In general, the question when RG is clean seems to be difficult to answer. It is still unanswered

when RC2 is clean. If G is a locally finite group and R is semiperfect or unit-regular or strongly

π-regular or abelian clean ring, whether is RG clean? These questions were considered by Zhou

[3]. Semiclean ring was first defined by Ye [4]. The author in [4] also proved that the group ring

ZpG with G a cyclic group of order 3 is semiclean. When is RG semiclean if G is a locally finite

group or a cyclic group of order 3? In this paper, this question was mainly considered, and some

important results have been obtained.
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For a group ring RG, the ring homomorphism ε : RG → R such that ε(Σg∈Grgg) = Σg∈Grg

is called the augmentation mapping of RG. Its kernel is ∆(RG) = {
∑

g∈G ag(g − 1) : 1 ̸=
g ∈ G, ag ∈ R} and RG/∆(RG) ∼= R. If H is a normal subgroup of G, then ∆(RH) =

{
∑

h∈H ah(h − 1) : 1 ̸= h ∈ H, ah ∈ R}, denoting the kernel of ε|RH , is an ideal of RG and

RG/∆(RH) ∼= R(G/H). Let IG denote the elements of RG with coefficients in an ideal I, then

IG is an ideal and RG/IG ∼= (R/I)G. We refer to [5] for further details on group rings. More

recent studies on clean rings and semiclean rings can be found in [6–8] and the references therein.

Recall some notion from [4]. An element x of a ring R is called semiclean if x = u + f ,

where f is a periodic, i.e., fk = f l,f ∈ R for some positive integers k and l (k ̸= l) and u is a

unit in R. A ring R is semiclean if each of its element is semiclean. Let I be an ideal of a ring

R. We say that periodics in R can be lifted modulo I, if for any a ∈ R with ak − al ∈ I, there

exists b ∈ R such that bk = bl ∈ R and a− b ∈ I.

2. Main results

Proposition 2.1 If R is a semiclean ring, G is a locally finite qroup, and ∆(RG) ⊆ J(RG),

then RG/J(RG) is a semiclean ring.

Proof Since G is a locally finite group, it implies J(R) ⊆ J(RG), and J(RG)/∆(RG) ∼= J(R)

by [5, Proposition 9]. Then RG/J(RG) ∼= RG/∆(RG)
J(RG)/∆(RG)

∼= R/J(R). Note that R/J(R) is a

semiclean ring, hence RG/J(RG) is a semiclean ring. �

Lemma 2.2 ([3, Lemma 2]) Let p be a prime with p ∈ J(R). If G is a locally finite group, then

∆(RG) ⊆ J(RG).

Proposition 2.3 Let R be a ring, p a prime number with p ∈ J(R) and G a locally finite

group with G = NH where N is a normal p-subgroup of G and H is a subgroup of G. If RH is

semiclean, then RG/J(RG) is semiclean.

Proof By assumption G = NH, for g ∈ G, there exists n ∈ N , h ∈ H such that g = nh =

(n− 1)h+h ∈ ∆(RN)+RH, so RG = ∆(RN)+RH. Lemma 4.1 in [9] yields J(RN) ⊆ J(RG)

and Lemma 2.2 shows that ∆(RN) ⊆ J(RN). Hence RG = J(RG) + RH. We now prove

J(RH) = RH
∩
J(RG). One obtains RH

∩
J(RG) ⊆ J(RH) by [5, Proposition 9]. From

J(RG/J(RG)) = 0, we conclude RH/[RH
∩
J(RG)] ∼= RG/J(RG) is semiprimitive, and so

J(RH) ⊆ RH
∩

J(RG) by [10, Corollary 15.6]. Therefore RH/J(RH) ∼= RG/J(RG). We

obtain RG/J(RG) is semiclean from RH semiclean. �

Proposition 2.4 Let R be a ring with 2 ∈ U(R) and G is an abelian elementary 2-group.

Then RG is semiclean if and only if R is semiclean.

Proof We may assume that G is a finite group. Then G is a direct product of n copies

of C2 for some n > 1. Since 2 ∈ U(R), RC2
∼= R

⊕
R. As 2 is a unit of RC2, we have

R(C2 × C2) ∼= (RC2)(C2) ∼= RC2

⊕
RC2

∼= R
⊕

R
⊕

R
⊕

R. A similar argument shows that
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RG is isomorphic to the direct sum of 2n copies of R. Therefore RG is semiclean if and only if

R is semiclean. �

Theorem 2.5 For a ring R and a locally finite group G, RG is semiclean if and only if SG is

semiclean for every indecomposable image S of R.

Proof (⇐) If I is an ideal of R and ai ∈ R and gi ∈ G (i = 1, . . . , n), we denote ai = (ai+ I) ∈
R/I, so ∑

aigi =
∑

(ai + I)gi ∈ (R/I)G.

Suppose that RG is not semiclean. Then there exists a finite subset F of G such that
∑

g∈F agg

is not semiclean in RG, where each ag ∈ R. Thus, M = {I ▹ R|
∑

g∈F aig is not semiclean in

(R/I)G} is not empty. For a chain {Iλ} of elements of M , let I =
∪

λ Iλ, then I is an ideal of R.

Assume that
∑

g∈F aig is semiclean in (R/I)G. Because G is a locally finite group, there exists

a finite subgroup H of G with F ⊆ H such that∑
g∈H

agg =
∑
g∈H

fgg +
∑
g∈H

ugg, (2.1)

where ag = 0 for all g ∈ H\F ,
∑

g∈H fgg is a periodic in (R/I)H and
∑

g∈H ugg is a unit in

(R/I)H with inverse
∑

g∈H vgg. Write H = {1 = g1, g2, . . . , gn}. Thus, the following (2.2)–(2.4)

hold in R/I for m = 1, . . . , n. By (2.1) we have

agm = fgm + ugm . (2.2)

Since
∑

g∈H fgg is a periodic in (R/I)H, it follows (fg1g1 + fg2g2 + · · · + fgngn)
k = (fg1g1 +

fg2g2 + · · · + fgngn)
l for some positive integers k and l (k ̸= l). Comparing the coefficients of

the two sides of equal, then we have∑
gi1gi2 ···gik=gm

fgi1
fgi2

· · · fgik
=

∑
gi1gi2 ···gil=gm

fgi1
fgi2

· · · fgil
. (2.3)

Since
∑

g∈H ugg is a unit in (R/I)H, we have (ug1g1+ug2g2+ · · ·+ugngn)(vg1g1 + vg2g2+ · · ·+
vgngn) = 1. Comparing the coefficients of the two sides of equal, then we have∑

gigj=gm

ugivgj = δ1m1 =
∑

gigj=gm

vgiugj , (2.4)

where δ11 = 1 and δ1m = 0 for m ̸= 1. It follows that all the following elements (for m =

1, . . . , n) are in I: agm − fgm − ugm ∈ I, δ1m −
∑

gigj=gm
ugivgj ∈ I, δ1m −

∑
gigj=gm

vgiugj ∈ I,∑
gi1gi2 ···gik=gm

fgi1 fgi2 · · · fgik −
∑

gi1gi2 ···gil=gm
fgi1 fgi2 · · · fgil ∈ I. Because {Iλ} is a chain,

there exists some Iλ such that all these elements are in Iλ. Hence (2.2)–(2.4) hold in R/Iλ and

(2.1) holds in (R/Iλ)G. So
∑

g∈F agg is semiclean in (R/Iλ)G. This contradiction shows that I

is in M . By Zorn’s Lemma, M contains a maximal element, say I. It now suffices to show that

R/I is indecomposable.

Assume that R/I is decomposable, then there exists ideals Kj(j = 1, 2) of R and I ⊆ Kj

such that

R/I ∼= R/K1

⊕
R/K2, via r + I 7→ (r +K1, r +K2).
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Accordingly, (R/I)G ∼= (R/K1

⊕
R/K2)G ∼= (R/K1)G

⊕
(R/K2)G, where the composition of

the two isomorphisms is
∑

(rg+I)g 7→ (
∑

(rg+K1)g,
∑

(rg+K2)g). By the maximality of I inM ,

(
∑

g∈F (ag+Kj)g is semiclean in (R/Kj)G for j = 1, 2. Hence (
∑

g∈F (ag+K1)g,
∑

g∈F (ag+K2)g)

is a semiclean element of (R/K1)G
⊕

(R/K2)G; so
∑

g∈F agg is semiclean in (R/I)G. This is a

contradiction.

⇒. For an image S of R, SG is an image of RG. So SG is semiclean when RG is semiclean.

Lemma 2.6 ([11, Proposition 9]) Let R be a commutative ring and let Cn be a cyclic group

of order n generated by g. Then an element x =
∑n−1

i=0 kig
i ∈ RCn is invertible if and only if

detA ∈ R is invertible, where ki ∈ R and A =

 k0 kn−1 ··· k1

k1 k0 ··· k2

. . .
kn−1 kn−2 ··· k0

.

Theorem 2.7 Let R be a commutative local ring with 2 ∈ U(R) and let G = {1, a, a2} be a

cyclic group of order 3 generated by a. Then RG is a semiclean ring.

Proof Let x = k + la + ma2 ∈ RG, where k, l,m ∈ R. Let us look at the following ways to

express x = k + la+ma2:

k + la+ma2 = 1 + [(k − 1) + la+ma2] = a+ [k + (l − 1)a+ma2]

= a2 + [k + la+ (m− 1)a2] = −1 + [(k + 1) + la+ma2]

= −a+ [k + (l + 1)a+ma2] = −a2 + [k + la+ (m+ 1)a2].

We first consider the elements in the first column on the right of the equal sign. We can see:

12 = 1, a4 = a, (a2)4 = a2, (−1)3 = (−1), (−a)7 = −a, (−a2)7 = −a2, so those elements are

periodic. In order to show that x is semiclean, we need to show that at least one of the elements

in the second column on the right of equal sign is a unit in RG. By Lemma 2.6, we only need to

show that at least one of the following six elements is a unit in R:

(k − 1)3 + l3 +m3 − 3(k − 1)lm, (2.5)

k3 + (l − 1)3 +m3 − 3k(l − 1)m, (2.6)

k3 + l3 + (m− 1)3 − 3kl(m− 1), (2.7)

(k + 1)3 + l3 +m3 − 3(k + 1)lm, (2.8)

k3 + (l + 1)3 +m3 − 3k(l + 1)m, (2.9)

k3 + l3 + (m+ 1)3 − 3kl(m+ 1). (2.10)

Suppose it is not true. Since R is a commutative local ring, all (2.5)–(2.10) belong to J(R).

By (2.5) and (2.8), we have [(k+1)3+ l3+m3−3(k+1)lm]− [(k−1)3+ l3+m3−3(k−1)lm] =

2(3k2 − 3lm+ 1) ∈ J(R). Since 2 is a unit in R, we have

3k2 − 3lm+ 1 ∈ J(R). (2.11)
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If 3 ∈ J(R), then 1 ∈ J(R), this is a contradiction, so 3 is a unit in R. We have 3k3−3klm+k =

k(3k2 − 3lm+ 1) ∈ J(R). Similarly, 3l3 − 3klm+ l ∈ J(R), 3m3 − 3klm+m ∈ J(R). Thus, we

obtain 3(k3 + l3 +m3 − 3klm) + (k + l +m) ∈ J(R). Since 3 is a unit in R,

(k3 + l3 +m3 − 3klm) + 3−1(k + l +m) ∈ J(R). (2.12)

By (2.5)+(2.8)−(2.12)×2, [2k3+2l3+2m3+6k−6klm]−2[(k3+l3+m3−3klm)+3−1(k+l+m)] =

2[3k−3−1(k+ l+m)] ∈ J(R). Since 2 ∈ U(R), we have 3k−3−1(k+ l+m) ∈ J(R). Similarly, we

have 3l−3−1(k+ l+m) ∈ J(R), 3m−3−1(k+ l+m) ∈ J(R). 3(k+ l+m)−3(3−1(k+ l+m)) =

3(k+l+m)−(k+l+m) = 2(k+l+m) ∈ J(R). Since 2 is a unit in R, it follows (k+l+m) ∈ J(R).

Therefore, 3k ∈ J(R), which means k ∈ J(R). Similarly, l ∈ J(R), m ∈ J(R). By (2.11),

1 ∈ J(R), a contradiction. Thus, x is a semiclean element.

Corollary 2.8 Let R be a commutative semiperfect ring with 2 ∈ U(R) and let G be a cyclic

group of order 3. Then RG is a semiclean ring.

Proof Since R is semiperfect, there exists orthogonal local idempotents {e1, e2, . . . , en} such

that 1 = e1 + e2 + · · · + en by [10, Theorem 27.6]. So R = e1Re1 × e2Re2 × · · · × enRen is a

direct product of commutative local rings. Therefore, RG ∼= e1Re1G× e2Re2G× · · · × enRenG,

thus RG is semiclean by Theorem 2.7. �

Remark 2.9 As we all know, the ring Zp = {m/n|m,n ∈ Z, gcd(p, n) = 1}, where p ̸= 2 is a

prime number, is a commutative local ring and 2 ∈ U(R). Let G be a cyclic group of order 3.

Then ZpG is a semiclean ring [4, Theorem 3.1]. We obtain this result immediately by Theorem

2.7.
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