Journal of Mathematical Research with Applications Mar., 2017, Vol. 37, No. 2, pp. 199–208 DOI:10.3770/j.issn:2095-2651.2017.02.008 Http://jmre.dlut.edu.cn

A Generalization of VNL-Rings and PP-Rings

Yueming XIANG

Department of Mathematics and Applied Mathematics, Huaihua University, Hunan 418000, P. R. China

Abstract Let R be a ring. An element a of R is called a left PP-element if Ra is projective. The ring R is said to be a left almost PP-ring provided that for any element a of R, either a or 1-a is left PP. We develop, in this paper, left almost PP-rings as a generalization of von Neumann local (VNL) rings and left PP-rings. Some properties of left almost PP-rings are studied and some examples are also constructed.

Keywords VNL-rings; left PP-rings; left almost PP-rings

MR(2010) Subject Classification 16E50; 16L99

1. Introduction

As a common generalization of von Neumann regular rings and local rings, Contessa in [1] called a commutative ring R von Neumann local (VNL) if for each $a \in R$, either a or 1-a is von Neumann regular (An element $a \in R$ is von Neumann regular provided that there exists an element $x \in R$ such that a = axa). VNL-rings are also exchange rings. Some properties of VNL-rings and SVNL-rings were investigated in [2]. Later Chen and Tong in [3] defined a noncommutative ring to be a VNL-ring. Some results on commutative VNL-rings were extended. Moreover, Grover and Khurana in [4] characterized VNL-rings in the sense of relating them to some familiar classes of rings. On the other hand, we recall that a ring R is said to be left PP (see [5]) (or left Rickart) provided that every principal left ideal is projective, or equivalently the left annihilator of any element of R is a summand of R_R . A ring is called a PP-ring if it is both left and right PP-ring. Examples include von Neumann regular rings and domains. The PP-rings and their generalizations have been extensively studied by many authors [5–15].

We say that, in this paper, an element a of R is left PP in R if Ra is projective, or equivalently, if $l_R(a) = Re$ for some $e^2 = e \in R$. Obviously, R is a left PP-ring if and only if every element of R is left PP. A ring R is said to be a left almost PP-ring provided that for any element a of R, either a or 1-a is left PP. left almost PP-rings are introduced as the generalization of left PP-rings and VNL-rings. Some examples turn out to show that this generalization is non-trivial. In Section 2, we investigate the properties of left almost PP-rings. Extensions of left PP-rings are considered in Section 3. Some results on left PP-rings are

Received January 5, 2016; Accepted November 23, 2016

Supported by the Natural Science Foundation of Hunan Province (Grant No. 2016JJ2050).

E-mail address: xymls999@126.com

extended onto left almost PP-rings. Section 4 focuses on semiperfect, left almost PP-rings. We give the structure of this class rings.

Throughout R is an associative ring with identity and all modules are unitary. J(R) will denote the Jacobson radical of R. \mathbb{Z}_n stands for the ring of integers mod n. $M_n(R)$ denotes the ring of all $n \times n$ matrices over a ring R with an identity I_n . If X is a subset of R, the left (resp., right) annihilator of X in R is denoted by $l_R(X)$ (resp., $r_R(X)$). If $X = \{a\}$, we usually abbreviate it to $l_R(a)$ (resp., $r_R(a)$). For the usual notations we refer the reader to [1], [7] and [16].

2. Left almost PP-rings

We start this section with the definition.

Definition 2.1 Let R be a ring and $a \in R$. a is called a left PP-element in R if Ra is projective, or equivalently, $l_R(a) = Re$ for some $e^2 = e \in R$. The ring R is said to be a left almost PP-ring provided that for any element a of R, either a or 1-a is left PP. Similarly, right almost PP-rings can be defined. A ring R is called almost PP if it is left and right almost PP.

Remark 2.2 (1) Obviously, left *PP*-rings are left almost *PP*-rings.

- (2) Every VNL-ring is a left and right almost PP-ring.
- (3) Clearly, $a \in R$ is left PP if and only if au is left PP for every unit element $u \in R$.

Example 2.3 (1) The ring \mathbb{Z} of integers is an almost PP-ring but not a VNL-ring.

- (2) The ring \mathbb{Z}_4 of integers mod 4 is an almost PP-ring but not a PP-ring.
- (3) Let $R = \{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a, b \in \mathbb{Z}_2 \}$. Then $R = \{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \}$.

If $c = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, let $e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$; If $c = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, let $e = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$; If $c = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, consider $1 - c = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, let $e = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. In either case, we have $l_R(c) = Re$ or $l_R(1 - c) = Re$. So R is a left almost PP-ring. choose $c = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in R$, Rc is not projective since $l_R(c) = J(R)$ cannot be generated by an idempotent, then R is not a left PP-ring.

Example 2.4 If R is a left PP-ring, S is local and let $_RM_S$ be bimodule, then $\begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ is a left almost PP-ring.

Proof Let $T = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$. For any $\alpha = \begin{pmatrix} a & m \\ 0 & b \end{pmatrix} \in T$. Since S is local, b or $1_S - b$ is invertible. Assume that b is invertible. Note that a is a left PP-element in R, so there exists $e^2 = e \in R$ such that $l_R(a) = Re$. Then

$$\left(\begin{array}{cc} e & -emb^{-1} \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} a & m \\ 0 & b \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right).$$

Let $\beta = \begin{pmatrix} e & -emb^{-1} \\ 0 & 0 \end{pmatrix}$. Then $\beta^2 = \beta \in T$ and $T\beta \subseteq l_T(\alpha)$. Now for any $\begin{pmatrix} a_1 & m_1 \\ 0 & b_1 \end{pmatrix} \in l_T(\alpha)$, $\begin{pmatrix} a_1 & m_1 \\ 0 & b_1 \end{pmatrix} \begin{pmatrix} a & m \\ 0 & b \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, we have $a_1 \in l_R(a) = Re$, $b_1 = 0$ and $m_1 = -a_1mb^{-1}$. So $\begin{pmatrix} a_1 & m_1 \\ 0 & b_1 \end{pmatrix} = \begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} e & -emb^{-1} \\ 0 & 0 \end{pmatrix} \in T\beta$. This implies that α is a left PP-element in T.

Assume that $1_S - b$ is invertible. As $1_R - a$ is a left PP-element in R, there exists $f^2 = f \in R$

such that $l_R(1_R - a) = Rf$. Similarly, $1_T - \alpha = \begin{pmatrix} 1_R & 0 \\ 0 & 1_S \end{pmatrix} - \begin{pmatrix} a & m \\ 0 & b \end{pmatrix} = \begin{pmatrix} 1_{R-a} & -m \\ 0 & 1_{S-b} \end{pmatrix}$ is a left PP-element in T. Therefore, we complete the proof. \square

Now we elaborate some properties of left almost PP-rings.

Proposition 2.5 Let R be a left almost PP-ring. Then the following results hold.

- (1) The center of R is an almost PP-ring.
- (2) For every $e^2 = e \in R$, the corner ring eRe is a left almost PP-ring.
- **Proof** (1) Let C(R) be the center and $x \in C(R)$. Since R is left almost PP, x or 1-x is a left PP-element in R. If x is a left PP-element, then $l_R(x) = Re$ for some $e = e^2 \in R$. Note that $l_R(x) = Re$ is an ideal and $l_R(x) = r_R(x)$ because $x \in C(R)$. It follows that for every $r \in R$, er = ere = re, and hence $e \in C(R)$. We now prove that $l_{C(R)}(x) = C(R)e$. Clearly, $l_{C(R)}(x) = l_R(x) \cap C(R)$ and $C(R)e \subseteq l_{C(R)}(x)$. Let $a \in l_{C(R)}(x)$, then $a \in l_R(x)$ and so $a = ae \cap C(R)e$. Thus, $l_{C(R)}(x) \in C(R)e$. Consequently $l_{C(R)}(x) = C(R)e$. Note that 1-x is also in C(R), if 1-x is a left PP-element in R, then 1-x is a left PP-element in C(R) by using the similar method above. Therefore, C(R) is also an almost PP-ring.
- (2) For any $0 \neq a \in eRe$, a or 1-a is left PP in R by hypothesis. Assume that a is left PP, then $l_R(a) = Rf$ for some $f^2 = f \in R$. Note that $l_{eRe}(a) = l_R(a) \cap eRe$ and $1-e \in l_R(a)$, so 1-e = (1-e)f and fe = efe. Write fe = g, then $g^2 = g \in eRe$. So ga = fea = fa = 0. On the other hand, for any $b \in l_{eRe}(a)$, $b = be = bef = befe = bg \in eReg$. It implies $l_{eRe}(a) = eReg$. If 1-a is a left PP-element in R, then e-a is a left PP-element in eRe by using the similar method. Thus eRe is a left almost PP-ring. \square

An elementary argument using condition in Definition 2.1 shows that a direct product of rings is left PP if and only if each factor is left PP. However, for left almost PP-rings we have the next result.

Theorem 2.6 Let $R = \prod_{\alpha \in I} R_{\alpha}$. Then R is a left almost PP-ring if and only if there exists $\alpha_0 \in I$, such that R_{α_0} is a left almost PP-ring and for each $\alpha \in I - \alpha_0$, R_{α} is a left PP-ring.

Proof \Leftarrow . Let $x = (x_{\alpha}) \in R$, $\alpha \in I$. By hypothesis, x_{α_0} or $1_{R_{\alpha_0}} - x_{\alpha_0}$ is left PP. If x_{α_0} is a left PP-element in R. If $1_{R_{\alpha_0}} - x_{\alpha_0}$ is a left PP-element in R, then 1 - x is a left PP-element in R. Thus, the result follows.

- \Rightarrow . Assume that R is a left almost PP-ring. Then every R_{α} is also a left almost PP-ring. Write $R = R_{\alpha_0} \times S$, where $S = \prod R_{\alpha}$, $\alpha \in I \alpha_0$. If neither R_{α_0} nor S is left PP, then we can find non-left PP-elements $r \in R_{\alpha_0}$ and $s \in S$. Choose $a = (1_{R_{\alpha_0}} r, s)$. Then neither a nor $1 a = (r, 1_S s)$ is left PP in R, a contradiction. Hence, either R_{α_0} or S is a left PP-ring. If S is a left PP-ring, the result follows. If S is a left almost PP-ring, by iteration of this process, we complete the proof. \square
- **Remark 2.7** (1) Note that the direct product of left almost PP-rings may not be a left almost PP-ring. Clearly, \mathbb{Z}_4 and \mathbb{Z}_9 are almost PP-rings. But we claim that $\mathbb{Z}_4 \times \mathbb{Z}_9$ is not an almost PP-ring. Choose $a = (\overline{2}, \overline{4})$. Then neither a nor 1 a is PP in $\mathbb{Z}_4 \times \mathbb{Z}_9$, and we are done. The

example also shows that the homomorphic image of a left almost PP-ring need not to be a left almost PP-ring.

(2) By the theorem above, if $R \times S$ is a left almost PP-ring, then either R or S is left PP. So, in general, the ring \mathbb{Z}_n of integers mod n is an almost PP-ring if and only if $(pq)^2$ does not divide n, where p and q are distinct primes. It is easy to see that n=36 is the least positive integer such that \mathbb{Z}_n is not an almost PP-ring.

Let D be a ring and C a subring of D with $1_D \in C$. We set

$$R[D, C] = \{(d_1, \dots, d_n, c, c, \dots) : d_i \in D, c \in C, n \ge 1\}$$

with addition and multiplication defined componentwise. Since Nicholson used R[D, C] to construct rings which are semiregular but not regular, more and more algebraists use this structure to construct various counterexamples in ring theory.

Theorem 2.8 R[D,C] is a left almost PP-ring if and only if the following hold:

- (1) D is a left PP-ring.
- (2) For any $c \in C$, there exists an $e^2 = e \in C$ such that $l_C(c) = Ce$, $l_D(c) = De$ or $l_C(1-c) = Ce$, $l_D(1-c) = De$.

Proof \Rightarrow . For convenience, let S = R[D, C]. Assume that D is not a left PP-ring. Then there exists a non-left PP-element $x \in D$. Choose $a = (x, 1 - x, 1, 1, ...) \in S$. By hypothesis, either a or 1 - a is left PP in S. If a is a left PP-element in S, then x is left PP in D, a contradiction. If 1 - a is left PP in S, then x is also left PP in D, a contradiction. Thus, D is a left PP-ring.

To prove condition (2), let $c \in C$ and $\overline{c} = (c, c, \ldots) \in S$. Since S is a left almost PPring, either \overline{c} or $\overline{1} - \overline{c}$ is left PP in S. Assume that \overline{c} is left PP, then $l_S(\overline{c}) = S\overline{e}$, where $\overline{e} = (e_1, \ldots, e_m, e, e, \ldots)$ and $e_i \in D, e \in C$ are also idempotents. Thus $Ce \subseteq l_C(c)$ and $De \subseteq l_D(c)$.

If $x \in l_C(c)$, let $\overline{x} = (x, x, ...)$. Then $\overline{x} \in l_S(\overline{c}) = S\overline{e}$, and $\overline{x} = (a_1e_1, ..., a_me_m, be, be, ...)$. Thus, by computing the (m+1)th component of \overline{x} , we have $x = be \in Ce$, thus $l_C(c) = Ce$.

If $s \in l_D(c)$, let $\overline{s} = (d_1, d_2, \dots, d_{m+1}, 0, \dots)$, where $d_i = s$ for $i = 1, \dots, m+1$. Then $\overline{s} \in l_S(\overline{c}) = S\overline{e}$, showing that $s \in De$, thus $l_D(c) = De$.

Assume that $\overline{1} - \overline{c}$ is left PP, then we have $l_C(1-c) = Ce$, $l_D(1-c) = De$ by the similar argument.

 \Leftarrow . Let $\overline{a} = (a_1, \ldots, a_n, c, c, \ldots) \in S$. For any $\overline{x} = (x_1, \ldots, x_n, \ldots, x_m, x, x, \ldots) \in l_S(\overline{a})$, we have $x_i a_i = 0$ $(i = 1, \ldots, m)$, where $a_{n+1} = \cdots = a_m = c$, and xc = 0. Note that $l_D(a_i) = De_i (i = 1, \ldots, n)$. If $l_C(c) = Ce$ and $l_D(c) = De$, where $e^2 = e \in C$ are also idempotent. So $x_i = d_i e_i$ $(i = 1, \ldots, n)$, $x_i = d_i e$ $(i = n + 1, \ldots, m)$, x = c'e with all $d_i \in D$, $c' \in C$. Thus

$$\overline{x} = (d_1, \dots, d_n, d_{n+1}, \dots, d_m, c', c', \dots)(e_1, \dots, e_n, e, \dots, e, e, e, e, \dots) \in S\overline{e}.$$

On the other hand, for any $\overline{y} = (y_1, \dots, y_m, y, y, \dots) \in S\overline{e}$, we have $y_i \in De_i$ $(i = 1, \dots, n)$, $y_i \in De$ $(i = n + 1, \dots, m)$ and $y \in Ce$. Then $y_i a_i = 0$ $(i = 1, \dots, n)$, $y_i c = 0$ $(i = n + 1, \dots, m)$ and yc = 0. It implies that \overline{y} $\overline{a} = 0$, and hence $\overline{y} \in l_S(\overline{a})$. Therefore, \overline{a} is left PP in S.

If $l_C(1-c) = Ce$, $l_D(1-c) = De$, using the similar argument above, we can prove $\overline{1} - \overline{a}$ is left PP in S.

Therefore, S is a left almost PP-ring. \square

By Theorem 2.8, we have the next corollaries immediately.

Corollary 2.9 R[D,D] is a left almost PP-ring if and only if D is a left PP-ring.

Corollary 2.10 R[D, C] is a left PP-ring if and only if D and C are left PP-rings and for any $c \in C$, there exists an $e^2 = e \in C$ such that $l_D(c) = De$.

Example 2.11 Let S = R[D, C], where $D = \mathbb{Q}$ and $C = \mathbb{Z}$. Then S is an almost PP-ring by Theorem 2.8. But S is not a VNL-ring in view of the argument of [4, Example 2.5].

Example 2.12 Let S = R[D, C], where $D = M_2(\mathbb{Z}_2)$ and $C = \{\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a, b \in \mathbb{Z}_2 \}$. Then S is an almost PP-ring which is not left PP, not local.

Proof Obviously, $D = M_2(\mathbb{Z}_2)$ is a PP-ring. $C = \{\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\}$.

If $c = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, let $e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$; If $c = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, let $e = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$; If $c = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, consider $1 - c = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, let $e = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

In either case, we have $l_C(c) = Ce$, $l_D(c) = De$ or $l_C(1-c) = Ce$, $l_D(1-c) = De$. By Theorem 2.8, S is a left almost PP-ring. Similarly, we can prove that S is a right almost PP-ring.

Choose $c = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in C$, Rc is not projective since $l_C(c) = J(C)$ cannot be generated by an idempotent, then C is not a left PP-ring. Thus S is not a left PP-ring by Corollary 2.10. Note that $J(S) = R[J(D), J(D) \cap J(C)] = 0$, then S is not local, otherwise, S is regular, a contradiction. \square

3. Matrix extensions

Matrix constructions will provide new sources of examples of left almost PP-rings. In this section, we will develop results which allows us to study when full matrices and triangular matrices are left almost PP-rings.

Lemma 3.1 Let R be a ring and $a \in R$. Then the following are equivalent:

- (1) $a \in R$ is a left PP-element.
- (2) $\alpha = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \in M_2(R)$ is a left PP-element.
- (3) $\beta = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \in M_2(R)$ is a left PP-element.

Proof Write $S = M_2(R)$.

 $(1)\Rightarrow(2)$. If $a\in R$ is left PP, there exists an idempotent $e^2=e\in R$ such that $l_R(a)=Re$. Hence $\left(\begin{smallmatrix} e&0\\0&0\end{smallmatrix}\right)\left(\begin{smallmatrix} a&0\\0&1\end{smallmatrix}\right)=\left(\begin{smallmatrix} 0&0\\0&0\end{smallmatrix}\right)$ and $\left(\begin{smallmatrix} e&0\\0&0\end{smallmatrix}\right)^2=\left(\begin{smallmatrix} e&0\\0&0\end{smallmatrix}\right)\in l_S(\alpha)$. If $\left(\begin{smallmatrix} b&c\\m&n\end{smallmatrix}\right)\in l_S(\alpha)$,

$$\left(\begin{array}{cc} b & c \\ m & n \end{array}\right) \left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} ba & c \\ ma & n \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right).$$

It implies that $b, m \in l_R(a) = Re, c = n = 0$. Then $b = r_1 e, m = r_2 e$, and so

$$\left(\begin{array}{cc} b & c \\ m & n \end{array}\right) = \left(\begin{array}{cc} r_1 & 0 \\ r_2 & 0 \end{array}\right) \left(\begin{array}{cc} e & 0 \\ 0 & 0 \end{array}\right) \in S \left(\begin{array}{cc} e & 0 \\ 0 & 0 \end{array}\right).$$

We prove that $l_S(\alpha) = S(\begin{smallmatrix} e & 0 \\ 0 & 0 \end{smallmatrix})$.

 $(2)\Rightarrow(1)$. Assume that $\alpha=\begin{pmatrix}a&0\\0&1\end{pmatrix}\in S$ is left PP, there exists an idempotent $E=\begin{pmatrix}a_1&a_2\\a_3&a_4\end{pmatrix}\in S$ such that $l_S(\alpha)=SE$. So

$$\left(\begin{array}{cc} a_1 & a_2 \\ a_3 & a_4 \end{array}\right) \left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right),$$

and hence $a_2 = a_4 = 0$, $a_1 = a_1^2$, $a_3 a_1 = a_3$, $a_1, a_3 \in l_R(a)$. Conversely, if $x \in l_R(a)$, then

$$\left(\begin{array}{cc} x & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right),$$

and hence $\begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} \in l_S(\alpha) = SE$. Thus

$$\begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} r_1 & r_2 \\ r_3 & r_4 \end{pmatrix} \begin{pmatrix} a_1 & 0 \\ a_3 & 0 \end{pmatrix} = \begin{pmatrix} (r_1 + r_2 a_3)a_1 & 0 \\ r_3 a_1 + r_4 a_3 & 0 \end{pmatrix}.$$

It implies that $x = (r_1 + r_2 a_3)a_1 \in Ra_1$. Therefore, $l_R(a) = Ra_1$, where $a_1^2 = a_1 \in R$.

 $(1)\Leftrightarrow(3)$ is similar to the proof of $(1)\Leftrightarrow(2)$. \square

Now we are in a position to prove when a matrix ring is a left almost PP-ring. The following result is a generalization of [16, Proposition 7.63].

Theorem 3.2 Let R be a ring. Then the following are equivalent:

- (1) R is a left semihereditary ring;
- (2) $M_n(R)$ is a left PP-ring for every $n \ge 1$;
- (3) $M_n(R)$ is a left almost PP-ring for every $n \ge 1$.

Proof $(1)\Leftrightarrow(2)$ is dual to [16, Proposition 7.63]. $(2)\Rightarrow(3)$ is trivial.

 $(3)\Rightarrow(2)$. It is enough to show that if $M_2(R)$ is left almost PP, then R is left PP. For any $a \in R$. Choose $A = \begin{pmatrix} a & 1 \\ -a & 1 \end{pmatrix} \in M_2(R)$. By hypothesis, either $A \in M_2(R)$ or $I_2 - A \in M_2(R)$ is left PP. Suppose that $A \in M_2(R)$ is left PP. Note that

$$A = \left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ -a & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right),$$

by Remark 2.2(3), $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \in M_2(R)$ is left PP. So $a \in R$ is left PP by Lemma 3.1.

If $I_2 - A \in M_2(R)$ is left PP, noting that

$$I_2 - A = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix},$$

by Remark 2.2(3), we have $\begin{pmatrix} 0 & a \\ 1 & 0 \end{pmatrix} \in M_2(R)$ is left PP. So $a \in R$ is left PP by Lemma 3.1 again.

By the theorem above and Example 2.3, being a left almost PP-ring is not Morita invariant. The next example shows that the definition of almost PP-rings is not left-right symmetric.

Example 3.3 Let S be a von Neumann regular ring with an ideal I such that, as a submodule of S, I is not a direct summand. Let R = S/I and $T = \begin{pmatrix} R & R \\ 0 & S \end{pmatrix}$. By the augment of [16, Example 2.34], T is left semihereditary but not right semihereditary. Then there exists some n ($n \ge 2$) such that the matrix ring $M_n(T)$ is a left almost PP ring but not right almost PP.

A ring R is said to be right Kasch if every simple right R-module embeds in R_R .

Proposition 3.4 If R is a right Kasch and left almost PP ring, then it is a right almost PP-ring.

Proof For any $a \in R$, a or 1-a is left PP in R. Assume that a is a left PP-element in R. There exists $e^2 = e \in R$ such that l(a) = R(1-e). Then a = ea, and hence $aR \subseteq eR$. Now we prove that aR = eR. Otherwise, $aR \subseteq M$, where M is a maximal submodule of eR. Since R is right Kasch, there exists a monomorphism $f : eR/M \to R$ by f(e+M) = b. Then eb = b and ba = 0. So $b \in l(a) = R(1-e)$, and hence b = be = 0. Since f is a monomorphism, $e \in M$, contradicting with the maximality of M. So aR = eR is projective. It implies that a is a right PP-element. Assume that 1-a is a left PP-element. We can prove 1-a is a right PP-element by the similar method. \square

Let R and S be rings and RM_S a bimodule. We write the generalized triangular matrix as $T = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$. Following [13], a left module is a PP-module if every principal submodule is projective. Now we consider the necessary and sufficient conditions of what a generalized triangular matrix ring is left almost PP.

Proposition 3.5 Let R and S be rings and $_RM_S$ a bimodule. If the following hold:

- (1) R is left PP and S is left almost PP;
- (2) If $b \in S$ is a left PP-element, then $l_M(b) = Ml_S(b)$ and M/Mb is a left PP-module. If $b \in S$ is not a left PP-element, then $l_M(1-b) = Ml_S(1-b)$ and M/M(1-b) is a left PP-module. then $T = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ is a left almost PP-ring.

Proof For any $\alpha = \binom{a \ m}{0 \ b} \in T$. If b is left PP in S, then $l_S(b) = Sf$ with $f^2 = f \in S$. Note that $l_R(a) = Re_1$, $l_R(m+Mb) = Re_2$, where $e_i^2 = e_i \in R$, i = 1, 2. By [13, Lemma 1], $Re_1 \cap Re_2 = Re$ for $e^2 = e \in R$. So $e \in Re_1$, Re_2 , we can let $em = m_1b$ for some $m_1 \in M$. Write $m_2 = em_1(1-f)$, then $m_2b = em$, and hence $\beta = \binom{e \ -m_2}{0 \ f} \in l_T(\alpha)$. Conversely, if $\binom{x \ y}{0 \ s} \in l_T(\alpha)$, xa = 0, sb = 0, xm = -yb, and so xe = x, sf = s and $(y + xm_2)b = yb + xm_2b = -xm + xem = -xm + xm = 0$. Hence $y + xm_2 \in l_M(b) = Ml_S(b)$, and we have $y + xm_2 = (y + xm_2)f$. It follows that $\binom{x \ y}{0 \ s} = \binom{x \ y + xm_2}{0 \ s} \binom{e \ -m_2}{0 \ s} \in T\beta$. Thus α is a left PP-element in T.

If $b \in S$ is not left PP-element, then 1-b is left PP because S is a left almost PP-ring. Using the similar method above, we can prove that $1-\alpha = \binom{1-a-m}{0}$ is a left PP-element in T.

Therefore, T is left almost PP. \square

Proposition 3.6 Let R and S be rings and RM_S a bimodule. If $T = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ is a left almost PP-ring, then one of R and S is left PP and the other is left almost PP.

Proof The result follows from Proposition 2.5(2) and Lemma 4.1 below. \Box

Corollary 3.7 Let $T_n(R)$ be the rings of upper triangular matrices over R. Then the following are equivalent:

- (1) R is regular;
- (2) $T_n(R)$ is a left PP-ring for every $n \ge 1$;
- (3) $T_n(R)$ is a left almost PP-ring for every $n \ge 1$.

Proof It follows by [13, Theorem 4] and Proposition 3.6. \square

4. Semiperfect left almost PP-rings

Now we consider the structure of semiperfect, left almost PP-rings.

Lemma 4.1 If R is a left almost PP-ring and $e^2 = e \in R$, then either eRe or (1 - e)R(1 - e) is a left PP-ring.

Proof We have the Pierce decomposition

$$R \cong \left(\begin{array}{cc} eRe & eR(1-e) \\ (1-e)Re & (1-e)R(1-e) \end{array} \right).$$

If $x \in eRe$ and $y \in (1-e)R(1-e)$ are not left PP-elements, then neither $a = \begin{pmatrix} x & 0 \\ 0 & 1-y \end{pmatrix}$ nor $1-a = \begin{pmatrix} 1-x & 0 \\ 0 & y \end{pmatrix}$ are left PP-elements. \square

Recall a ring R is abelian if each idempotent in R is central. An element a of a ring R is called an exchange element if there exists an idempotent $e \in R$ such that $e \in Ra$ and $1 - e \in R(1 - a)$. The ring R is an exchange ring if and only if every element of R is an exchange element.

Proposition 4.2 The following are equivalent for an abelian, exchange ring R.

- (1) R is an almost PP-ring;
- (2) For every $e^2 = e \in R$, either eRe or (1 e)R(1 e) is a left PP-ring.

Proof $(1) \Rightarrow (2)$. It follows by Lemma 4.1.

 $(2)\Rightarrow(1)$. For any $a\in R$, as R is an exchange ring, there exists $e^2=e\in R$ such that $e\in Ra$ and $1-e\in R(1-a)$. So Ra+R(1-e)=R and R(1-a)+Re=R. It implies that Rae=Re and R(1-a)(1-e)=R(1-e). Thus ae is left PP-element in Re and (1-a)(1-e) is left PP-element in R(1-e).

Now if eRe = Re is left PP, then (1-a)e is a left PP-element in eRe, and hence 1-a = (1-a)e + (1-a)(1-e) is left PP in R. Similarly, if (1-e)R(1-e) = R(1-e) is left PP, then a is left PP in R. Therefore, R is an almost PP-ring. \square

Lemma 4.3 Let R be a local ring. Then R is a left PP-ring if and only if R is a domain.

Proposition 4.4 Let R be a semiperfect, left almost PP-ring with $1 = e_1 + e_2$, where e_1, e_2 are orthogonal local idempotents. Then R is isomorphic to one of the following:

- (1) $M_2(D)$ for some domain D;
- (2) $\binom{D_1}{X} \binom{Y}{D_2}$, where D_1 is a domain, D_2 is a local ring and $XY \subseteq J(D_1), YX \subseteq J(D_2)$. In particular, if R is also abelian, then $R \cong M_2(D)$ or $R \cong A \times B$, where D, A are domains and B is a local ring.

Proof We use the Pierce decomposition

$$R \cong \left(\begin{array}{cc} e_1 R e_1 & e_1 R e_2 \\ e_2 R e_1 & e_2 R e_2 \end{array} \right).$$

If $e_1R \cong e_2R$, then $R \cong M_2(e_1Re_1)$, where e_1Re_1 is a local left PP-ring by Lemma 4.1. So e_1Re_1 is a domain. If $e_1R \ncong e_2R$, then $e_1Re_2 \subseteq J(R)$ and $e_2Re_1 \subseteq J(R)$ by [4, Lemma 4.2]. We assume that e_1Re_1 is a local left PP-ring by Lemma 4.1, and hence e_1Re_1 is a domain. Note $e_1Re_2Re_1 \subseteq e_1Re_1 \cap J(R) = J(e_1Re_1)$ and $e_2Re_1Re_2 \subseteq e_2Re_2 \cap J(R) = J(e_2Re_2)$. So write $D_1 = e_1Re_1$, $D_2 = e_2Re_2$, $X = e_1Re_2$ and $Y = e_2Re_1$, then (2) follows. \square

Proposition 4.5 Let R be a semiperfect, left almost PP-ring with $1 = e_1 + e_2 + e_3$, where e_1, e_2, e_3 are orthogonal local idempotents. Then R is isomorphic to one of the following:

- (1) $M_3(D)$ for some domain D;
- (2) $\binom{D_1}{X} \binom{Y}{D_2}$, where D_1 is a domain, D_2 is a local ring and $XY \subseteq J(D_2), YX \subseteq J(D_1)$;
- (3) $\binom{D_1}{X} \binom{Y}{D_2}$, where D_1 is a prime ring, D_2 is a local ring and $XY \subseteq J(D_2), YX \subseteq J(D_1)$;
- (4) $\begin{pmatrix} S & Y \\ X & D \end{pmatrix}$ with $S \cong \begin{pmatrix} D_1 & Y_1 \\ X_1 & D_2 \end{pmatrix}$ and D_1, D_2, D are domains, $X_1Y_1 \subseteq J(D_2), Y_1X_1 \subseteq J(D_1), XY \subseteq J(D), YX \subseteq J(S)$.

Proof Case 1 If $e_iR \cong e_jR$ for i, j = 1, 2, 3, then $R \cong M_3(e_1Re_1)$, where e_1Re_1 is a local left PP-ring by Lemma 4.1. So e_1Re_1 is a domain.

We now consider the Pierce decomposition

$$R \cong \begin{pmatrix} (1-e_1)R(1-e_1) & (1-e_1)Re_1 \\ e_1R(1-e_1) & e_1Re_1 \end{pmatrix}.$$

Case 2 Assume that e_1Re_1 is local but not a left PP-ring by Lemma 4.1, then $(1-e_1)R(1-e_1)$ is a domain, and hence e_2Re_2 and e_3Re_3 are also domains. By [4, Lemma 4.2], e_1Re_2 , e_2Re_1 , e_1Re_3 and e_3Re_1 are all contained in J(R). So $(1-e_1)Re_1R(1-e_1) \subseteq J(R) \cap (1-e_1)R(1-e_1) = J((1-e_1)R(1-e_1))$ and $e_1R(1-e_1)Re_1 \subseteq J(R) \cap e_1Re_1 = J(e_1Re_1)$. Thus R is isomorphic to the ring in (2).

Case 3 Assume that e_iRe_i is a domain for i=1,2,3. If $e_1R\ncong e_2R$ but $e_2R \cong e_3R$, then $(1-e_1)R(1-e_1)\cong M_2(D)$ for some domain D, and hence $(1-e_1)R(1-e_1)$ is a prime ring. By [4, Lemma 4.2], e_1Re_2 , e_2Re_1 , e_1Re_3 and e_3Re_1 are all contained in J(R). So $(1-e_1)Re_1R(1-e_1)\subseteq J(R)\cap (1-e_1)R(1-e_1)=J((1-e_1)R(1-e_1))$ and $e_1R(1-e_1)Re_1\subseteq J(R)\cap e_1Re_1=J(e_1Re_1)$. Then (3) is done.

Case 4 Assume that e_iRe_i is a domain for i=1,2,3 and $e_1R \ncong e_2R \ncong e_3R$. Then

$$(1-e_1)R(1-e_1) \cong \begin{pmatrix} e_2Re_2 & e_2Re_3 \\ e_3Re_2 & e_3Re_3 \end{pmatrix},$$

where $e_2Re_3Re_2 \subseteq J(e_2Re_2)$ and $e_3Re_2Re_3 \subseteq J(e_3Re_3)$. Note that $(1-e_1)Re_1R(1-e_1) \subseteq J(R) \cap (1-e_1)R(1-e_1) = J((1-e_1)R(1-e_1))$. So write $e_2Re_2 = D_1$, $e_3Re_3 = D_2$, $e_3Re_2 = X_1$, $e_2Re_3 = Y_1$, $e_1Re_1 = D$, $(1-e_1)Re_1 = X$, $e_1R(1-e_1) = Y$, then (4) is also done. \square

Acknowledgements The authors are indebted to the referees for their valuable comments leading to the improvement of the paper.

References

- [1] M. CONTESSA. On certain classes of pm-rings. Comm. Algebra, 1984, 12(11-12): 1447-1469.
- [2] E. A. OSBA, M. HENRIKSEN, O. ALKAM. Combining local and von Neumann regular rings. Comm. Algebra, 2004, 32(7): 2639–2653.
- [3] Weixing CHEN, Wenting TONG. On noncommutative VNL-rings and GVNL-rings. Glasg. Math. J., 2006, 48(1): 11–17.
- [4] H. K. GROVER, D. KHURANA. Some characterizations of VNL rings. Comm. Algebra, 2009, 37(9): 3288-3305.
- [5] Y. HIRANO, M. HONGAN, M. ÔHORI. On right p.p. rings. Math. J. Okayama Univ., 1982, 24(2): 99–109.
- [6] C. HUH, H. K. KIM, Y. LEE. p.p rings and generalized p.p. rings. J. Pure Appl. Algebra, 2002, 167(1): 37–52
- [7] I. KAPLANSKY. Rings of Operators. Benjamin, New York, 1965.
- [8] Y. LEE, C. HUH. Counterexamples on p.p.-rings. Kyungpook Math. J., 1998, 38(2): 421-427.
- [9] Zhongkui LIU, Renyu ZHAO. A generalization of PP-rings and p.q.-Baer rings. Glasg. Math. J., 2006, 48(2): 217–229.
- [10] Lixin MAO, Nanqing DING, Wenting TONG. New characterizations and generalizations of PP rings. Vietnam J. Math., 2005, 33(1): 97–110.
- [11] Lixin MAO. Generalized P-flatness and P-injectivity of modules. Hacet. J. Math. Stat., 2011, 40(1): 27–40.
- [12] W. K. NICHOLSON, J. F. WATTERS. Rings with projective socle. Proc. Amer. Math. Soc., 1988, 102(3): 443–450.
- [13] W. K. NICHOLSON. On PP-rings. Period. Math. Hungar., 1993, $\mathbf{27}(2) \colon 85-88.$
- [14] M. ÔHORI. On non-commutative generalized p.p. rings. Math. J. Okayama Univ., 1984, **26**: 157–167.
- [15] Zhong YI, Yiqiang ZHOU. Baer and quasi-Baer properties of group rings. J. Aust. Math. Soc., 2007, 83(2): 285–296.
- [16] T. Y. LAM. Lectures on Modules and Rings. Springer-Verlag, New York, 1999.