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Abstract Let R be a ring. An element a of R is called a left PP -element if Ra is projective.

The ring R is said to be a left almost PP -ring provided that for any element a of R, either

a or 1 − a is left PP . We develop, in this paper, left almost PP -rings as a generalization of

von Neumann local (VNL) rings and left PP -rings. Some properties of left almost PP -rings

are studied and some examples are also constructed.
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1. Introduction

As a common generalization of von Neumann regular rings and local rings, Contessa in [1]

called a commutative ring R von Neumann local (VNL) if for each a ∈ R, either a or 1 − a is

von Neumann regular (An element a ∈ R is von Neumann regular provided that there exists

an element x ∈ R such that a = axa). VNL-rings are also exchange rings. Some properties

of VNL-rings and SVNL-rings were investigated in [2]. Later Chen and Tong in [3] defined a

noncommutative ring to be a VNL-ring. Some results on commutative VNL-rings were extended.

Moreover, Grover and Khurana in [4] characterized VNL-rings in the sense of relating them to

some familiar classes of rings. On the other hand, we recall that a ring R is said to be left PP

(see [5]) (or left Rickart) provided that every principal left ideal is projective, or equivalently

the left annihilator of any element of R is a summand of RR. A ring is called a PP -ring if it is

both left and right PP -ring. Examples include von Neumann regular rings and domains. The

PP -rings and their generalizations have been extensively studied by many authors [5–15].

We say that, in this paper, an element a of R is left PP in R if Ra is projective, or

equivalently, if lR(a) = Re for some e2 = e ∈ R. Obviously, R is a left PP -ring if and only

if every element of R is left PP . A ring R is said to be a left almost PP -ring provided that

for any element a of R, either a or 1 − a is left PP . left almost PP -rings are introduced as

the generalization of left PP -rings and VNL-rings. Some examples turn out to show that this

generalization is non-trivial. In Section 2, we investigate the properties of left almost PP -rings.

Extensions of left PP -rings are considered in Section 3. Some results on left PP -rings are
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extended onto left almost PP -rings. Section 4 focuses on semiperfect, left almost PP -rings. We

give the structure of this class rings.

Throughout R is an associative ring with identity and all modules are unitary. J(R) will

denote the Jacobson radical of R. Zn stands for the ring of integers mod n. Mn(R) denotes

the ring of all n × n matrices over a ring R with an identity In. If X is a subset of R, the left

(resp., right) annihilator of X in R is denoted by lR(X) (resp., rR(X)). If X = {a}, we usually

abbreviate it to lR(a) (resp., rR(a)). For the usual notations we refer the reader to [1], [7] and

[16].

2. Left almost PP -rings

We start this section with the definition.

Definition 2.1 Let R be a ring and a ∈ R. a is called a left PP -element in R if Ra is projective,

or equivalently, lR(a) = Re for some e2 = e ∈ R. The ring R is said to be a left almost PP -ring

provided that for any element a of R, either a or 1−a is left PP . Similarly, right almost PP -rings

can be defined. A ring R is called almost PP if it is left and right almost PP .

Remark 2.2 (1) Obviously, left PP -rings are left almost PP -rings.

(2) Every VNL-ring is a left and right almost PP -ring.

(3) Clearly, a ∈ R is left PP if and only if au is left PP for every unit element u ∈ R.

Example 2.3 (1) The ring Z of integers is an almost PP -ring but not a VNL-ring.

(2) The ring Z4 of integers mod 4 is an almost PP -ring but not a PP -ring.

(3) Let R = {
(
a b
0 a

)
|a, b ∈ Z2}. Then R = {

(
0 0
0 0

)
,
(
1 0
0 1

)
,
(
1 1
0 1

)
,
(
0 1
0 0

)
}.

If c =
(
0 0
0 0

)
, let e =

(
1 0
0 1

)
; If c =

(
1 0
0 1

)
or
(
1 1
0 1

)
, let e =

(
0 0
0 0

)
; If c =

(
0 1
0 0

)
, consider

1 − c =
(
1 −1
0 1

)
, let e =

(
0 0
0 0

)
. In either case, we have lR(c) = Re or lR(1 − c) = Re. So R is a

left almost PP -ring. choose c =
(
0 1
0 0

)
∈ R, Rc is not projective since lR(c) = J(R) cannot be

generated by an idempotent, then R is not a left PP -ring.

Example 2.4 If R is a left PP -ring, S is local and let RMS be bimodule, then
(
R M
0 S

)
is a left

almost PP -ring.

Proof Let T =
(
R M
0 S

)
. For any α =

(
a m
0 b

)
∈ T . Since S is local, b or 1S − b is invertible.

Assume that b is invertible. Note that a is a left PP -element in R, so there exists e2 = e ∈ R

such that lR(a) = Re. Then(
e −emb−1

0 0

)(
a m

0 b

)
=

(
0 0

0 0

)
.

Let β =
(
e −emb−1

0 0

)
. Then β2 = β ∈ T and Tβ ⊆ lT (α). Now for any

( a1 m1

0 b1

)
∈ lT (α),( a1 m1

0 b1

)(
a m
0 b

)
=
(
0 0
0 0

)
, we have a1 ∈ lR(a) = Re, b1 = 0 and m1 = −a1mb−1. So

( a1 m1

0 b1

)
=(

r 0
0 0

)(
e −emb−1

0 0

)
∈ Tβ. This implies that α is a left PP -element in T .

Assume that 1S−b is invertible. As 1R−a is a left PP -element in R, there exists f2 = f ∈ R
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such that lR(1R − a) = Rf . Similarly, 1T − α =
(
1R 0
0 1S

)
−
(
a m
0 b

)
=
(
1R−a −m

0 1S−b

)
is a left PP -

element in T . Therefore, we complete the proof. �
Now we elaborate some properties of left almost PP -rings.

Proposition 2.5 Let R be a left almost PP -ring. Then the following results hold.

(1) The center of R is an almost PP -ring.

(2) For every e2 = e ∈ R, the corner ring eRe is a left almost PP -ring.

Proof (1) Let C(R) be the center and x ∈ C(R). Since R is left almost PP , x or 1 − x is a

left PP -element in R. If x is a left PP -element, then lR(x) = Re for some e = e2 ∈ R. Note

that lR(x) = Re is an ideal and lR(x) = rR(x) because x ∈ C(R). It follows that for every

r ∈ R, er = ere = re, and hence e ∈ C(R). We now prove that lC(R)(x) = C(R)e. Clearly,

lC(R)(x) = lR(x) ∩ C(R) and C(R)e ⊆ lC(R)(x). Let a ∈ lC(R)(x), then a ∈ lR(x) and so

a = ae ∩ C(R)e. Thus, lC(R)(x) ∈ C(R)e. Consequently lC(R)(x) = C(R)e. Note that 1 − x is

also in C(R), if 1−x is a left PP -element in R, then 1−x is a left PP -element in C(R) by using

the similar method above. Therefore, C(R) is also an almost PP -ring.

(2) For any 0 ̸= a ∈ eRe, a or 1 − a is left PP in R by hypothesis. Assume that a is left

PP , then lR(a) = Rf for some f2 = f ∈ R. Note that leRe(a) = lR(a)∩eRe and 1−e ∈ lR(a), so

1− e = (1− e)f and fe = efe. Write fe = g, then g2 = g ∈ eRe. So ga = fea = fa = 0. On the

other hand, for any b ∈ leRe(a), b = be = bef = befe = bg ∈ eReg. It implies leRe(a) = eReg.

If 1 − a is a left PP -element in R, then e − a is a left PP -element in eRe by using the similar

method. Thus eRe is a left almost PP -ring. �
An elementary argument using condition in Definition 2.1 shows that a direct product of

rings is left PP if and only if each factor is left PP . However, for left almost PP -rings we have

the next result.

Theorem 2.6 Let R =
∏

α∈I Rα. Then R is a left almost PP -ring if and only if there exists

α0 ∈ I, such that Rα0 is a left almost PP -ring and for each α ∈ I − α0, Rα is a left PP -ring.

Proof ⇐. Let x = (xα) ∈ R, α ∈ I. By hypothesis, xα0 or 1Rα0
− xα0 is left PP . If xα0 is a

left PP -element in Rα0
, then x is a left PP -element in R. If 1Rα0

− xα0
is a left PP -element in

Rα0 , then 1− x is a left PP -element in R. Thus, the result follows.

⇒. Assume that R is a left almost PP -ring. Then every Rα is also a left almost PP -ring.

Write R = Rα0 × S, where S =
∏

Rα, α ∈ I − α0. If neither Rα0 nor S is left PP , then we can

find non-left PP -elements r ∈ Rα0 and s ∈ S. Choose a = (1Rα0
− r, s). Then neither a nor

1− a = (r, 1S − s) is left PP in R, a contradiction. Hence, either Rα0 or S is a left PP -ring. If

S is a left PP -ring, the result follows. If S is a left almost PP -ring, by iteration of this process,

we complete the proof. �

Remark 2.7 (1) Note that the direct product of left almost PP -rings may not be a left almost

PP -ring. Clearly, Z4 and Z9 are almost PP -rings. But we claim that Z4 × Z9 is not an almost

PP -ring. Choose a = (2, 4). Then neither a nor 1− a is PP in Z4 × Z9, and we are done. The
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example also shows that the homomorphic image of a left almost PP -ring need not to be a left

almost PP -ring.

(2) By the theorem above, if R×S is a left almost PP -ring, then either R or S is left PP .

So, in general, the ring Zn of integers mod n is an almost PP -ring if and only if (pq)2 does not

divide n, where p and q are distinct primes. It is easy to see that n = 36 is the least positive

integer such that Zn is not an almost PP -ring.

Let D be a ring and C a subring of D with 1D ∈ C. We set

R[D,C] = {(d1, . . . , dn, c, c . . .) : di ∈ D, c ∈ C, n ≥ 1}

with addition and multiplication defined componentwise. Since Nicholson used R[D,C] to con-

struct rings which are semiregular but not regular, more and more algebraists use this structure

to construct various counterexamples in ring theory.

Theorem 2.8 R[D,C] is a left almost PP -ring if and only if the following hold:

(1) D is a left PP -ring.

(2) For any c ∈ C, there exists an e2 = e ∈ C such that lC(c) = Ce, lD(c) = De or

lC(1− c) = Ce, lD(1− c) = De.

Proof ⇒. For convenience, let S = R[D,C]. Assume that D is not a left PP -ring. Then there

exists a non-left PP -element x ∈ D. Choose a = (x, 1− x, 1, 1, . . .) ∈ S. By hypothesis, either a

or 1− a is left PP in S. If a is a left PP -element in S, then x is left PP in D, a contradiction.

If 1− a is left PP in S, then x is also left PP in D, a contradiction. Thus, D is a left PP -ring.

To prove condition (2), let c ∈ C and c = (c, c, . . .) ∈ S. Since S is a left almost PP -

ring, either c or 1 − c is left PP in S. Assume that c is left PP , then lS(c) = Se, where e =

(e1, . . . , em, e, e, . . .) and ei ∈ D, e ∈ C are also idempotents. Thus Ce ⊆ lC(c) and De ⊆ lD(c).

If x ∈ lC(c), let x = (x, x, . . .). Then x ∈ lS(c) = Se, and x = (a1e1, . . . , amem, be, be, . . .).

Thus, by computing the (m+ 1)th component of x, we have x = be ∈ Ce, thus lC(c) = Ce.

If s ∈ lD(c), let s = (d1, d2, . . . , dm+1, 0, . . .), where di = s for i = 1, . . . ,m + 1. Then

s ∈ lS(c) = Se, showing that s ∈ De, thus lD(c) = De.

Assume that 1− c is left PP , then we have lC(1− c) = Ce, lD(1− c) = De by the similar

argument.

⇐. Let a = (a1, . . . , an, c, c, . . .) ∈ S. For any x = (x1, . . . , xn, . . . , xm, x, x, . . .) ∈ lS(a),

we have xiai = 0 (i = 1, . . . ,m), where an+1 = · · · = am = c, and xc = 0. Note that

lD(ai) = Dei(i = 1, . . . , n). If lC(c) = Ce and lD(c) = De, where e2 = e ∈ C are also

idempotent. So xi = diei (i = 1, . . . , n), xi = die (i = n + 1, . . . ,m), x = c′e with all di ∈ D,

c′ ∈ C. Thus

x = (d1, . . . , dn, dn+1, . . . , dm, c′, c′, . . .)(e1, . . . , en, e, . . . , e, e, e, . . .) ∈ Se.

On the other hand, for any y = (y1, . . . , ym, y, y, . . .) ∈ Se, we have yi ∈ Dei (i = 1, . . . , n),

yi ∈ De (i = n+ 1, . . . ,m) and y ∈ Ce. Then yiai = 0 (i = 1, . . . , n), yic = 0 (i = n+ 1, . . . ,m)

and yc = 0. It implies that y a = 0, and hence y ∈ lS(a). Therefore, a is left PP in S.
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If lC(1− c) = Ce, lD(1− c) = De, using the similar argument above, we can prove 1− a is

left PP in S.

Therefore, S is a left almost PP -ring. �
By Theorem 2.8, we have the next corollaries immediately.

Corollary 2.9 R[D,D] is a left almost PP -ring if and only if D is a left PP -ring.

Corollary 2.10 R[D,C] is a left PP -ring if and only if D and C are left PP -rings and for any

c ∈ C, there exists an e2 = e ∈ C such that lD(c) = De.

Example 2.11 Let S = R[D,C], where D = Q and C = Z. Then S is an almost PP -ring by

Theorem 2.8. But S is not a VNL-ring in view of the argument of [4, Example 2.5].

Example 2.12 Let S = R[D,C], where D = M2(Z2) and C = {
(
a b
0 a

)
|a, b ∈ Z2}. Then S is an

almost PP -ring which is not left PP , not local.

Proof Obviously, D = M2(Z2) is a PP -ring. C = {
(
0 0
0 0

)
,
(
1 0
0 1

)
,
(
1 1
0 1

)
,
(
0 1
0 0

)
}.

If c =
(
0 0
0 0

)
, let e =

(
1 0
0 1

)
; If c =

(
1 0
0 1

)
or
(
1 1
0 1

)
, let e =

(
0 0
0 0

)
; If c =

(
0 1
0 0

)
, consider

1− c =
(
1 −1
0 1

)
, let e =

(
0 0
0 0

)
.

In either case, we have lC(c) = Ce, lD(c) = De or lC(1 − c) = Ce, lD(1 − c) = De. By

Theorem 2.8, S is a left almost PP -ring. Similarly, we can prove that S is a right almost PP -ring.

Choose c =
(
0 1
0 0

)
∈ C, Rc is not projective since lC(c) = J(C) cannot be generated by

an idempotent, then C is not a left PP -ring. Thus S is not a left PP -ring by Corollary 2.10.

Note that J(S) = R[J(D), J(D) ∩ J(C)] = 0, then S is not local, otherwise, S is regular, a

contradiction. �

3. Matrix extensions

Matrix constructions will provide new sources of examples of left almost PP -rings. In

this section, we will develop results which allows us to study when full matrices and triangular

matrices are left almost PP -rings.

Lemma 3.1 Let R be a ring and a ∈ R. Then the following are equivalent:

(1) a ∈ R is a left PP -element.

(2) α =
(
a 0
0 1

)
∈ M2(R) is a left PP -element.

(3) β =
(
1 0
0 a

)
∈ M2(R) is a left PP -element.

Proof Write S = M2(R).

(1)⇒(2). If a ∈ R is left PP , there exists an idempotent e2 = e ∈ R such that lR(a) = Re.

Hence
(
e 0
0 0

)(
a 0
0 1

)
=
(
0 0
0 0

)
and

(
e 0
0 0

)2
=
(
e 0
0 0

)
∈ lS(α). If

(
b c
m n

)
∈ lS(α),(

b c

m n

)(
a 0

0 1

)
=

(
ba c

ma n

)
=

(
0 0

0 0

)
.
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It implies that b,m ∈ lR(a) = Re, c = n = 0. Then b = r1e,m = r2e, and so(
b c

m n

)
=

(
r1 0

r2 0

)(
e 0

0 0

)
∈ S

(
e 0

0 0

)
.

We prove that lS(α) = S
(
e 0
0 0

)
.

(2)⇒(1). Assume that α =
(
a 0
0 1

)
∈ S is left PP , there exists an idempotent E =

(
a1 a2
a3 a4

)
∈ S

such that lS(α) = SE. So (
a1 a2

a3 a4

)(
a 0

0 1

)
=

(
0 0

0 0

)
,

and hence a2 = a4 = 0, a1 = a21, a3a1 = a3, a1, a3 ∈ lR(a). Conversely, if x ∈ lR(a), then(
x 0

0 0

)(
a 0

0 1

)
=

(
0 0

0 0

)
,

and hence
(
x 0
0 0

)
∈ lS(α) = SE. Thus(
x 0

0 0

)
=

(
r1 r2

r3 r4

)(
a1 0

a3 0

)
=

(
(r1 + r2a3)a1 0

r3a1 + r4a3 0

)
.

It implies that x = (r1 + r2a3)a1 ∈ Ra1. Therefore, lR(a) = Ra1, where a21 = a1 ∈ R.

(1)⇔(3) is similar to the proof of (1)⇔(2). �
Now we are in a position to prove when a matrix ring is a left almost PP -ring. The following

result is a generalization of [16, Proposition 7.63].

Theorem 3.2 Let R be a ring. Then the following are equivalent:

(1) R is a left semihereditary ring;

(2) Mn(R) is a left PP -ring for every n ≥ 1;

(3) Mn(R) is a left almost PP -ring for every n ≥ 1.

Proof (1)⇔(2) is dual to [16, Proposition 7.63]. (2)⇒(3) is trivial.

(3)⇒(2). It is enough to show that if M2(R) is left almost PP , then R is left PP . For any

a ∈ R. Choose A =
(

a a
−a 1−a

)
∈ M2(R). By hypothesis, either A ∈ M2(R) or I2 −A ∈ M2(R) is

left PP . Suppose that A ∈ M2(R) is left PP . Note that

A =

(
a 0

0 1

)(
1 0

−a 1

)(
1 1

0 1

)
,

by Remark 2.2(3),
(
a 0
0 1

)
∈ M2(R) is left PP . So a ∈ R is left PP by Lemma 3.1.

If I2 −A ∈ M2(R) is left PP , noting that

I2 −A =

(
1 0

0 a

)(
1 −a

0 1

)(
1 0

1 1

)
,

by Remark 2.2(3), we have
(
0 a
1 0

)
∈ M2(R) is left PP . So a ∈ R is left PP by Lemma 3.1 again.

�
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By the theorem above and Example 2.3, being a left almost PP -ring is not Morita invariant.

The next example shows that the definition of almost PP -rings is not left-right symmetric.

Example 3.3 Let S be a von Neumann regular ring with an ideal I such that, as a submodule

of S, I is not a direct summand. Let R = S/I and T =
(
R R
0 S

)
. By the augment of [16, Example

2.34], T is left semihereditary but not right semihereditary. Then there exists some n (n ≥ 2)

such that the matrix ring Mn(T ) is a left almost PP ring but not right almost PP .

A ring R is said to be right Kasch if every simple right R-module embeds in RR.

Proposition 3.4 If R is a right Kasch and left almost PP ring, then it is a right almost PP -

ring.

Proof For any a ∈ R, a or 1 − a is left PP in R. Assume that a is a left PP -element in R.

There exists e2 = e ∈ R such that l(a) = R(1 − e). Then a = ea, and hence aR ⊆ eR. Now

we prove that aR = eR. Otherwise, aR ⊆ M , where M is a maximal submodule of eR. Since

R is right Kasch, there exists a monomorphism f : eR/M → R by f(e +M) = b. Then eb = b

and ba = 0. So b ∈ l(a) = R(1− e), and hence b = be = 0. Since f is a monomorphism, e ∈ M ,

contradicting with the maximality of M . So aR = eR is projective. It implies that a is a right

PP -element. Assume that 1− a is a left PP -element. We can prove 1− a is a right PP -element

by the similar method. �
Let R and S be rings and RMS a bimodule. We write the generalized triangular matrix

as T =
(
R M
0 S

)
. Following [13], a left module is a PP -module if every principal submodule

is projective. Now we consider the necessary and sufficient conditions of what a generalized

triangular matrix ring is left almost PP .

Proposition 3.5 Let R and S be rings and RMS a bimodule. If the following hold:

(1) R is left PP and S is left almost PP ;

(2) If b ∈ S is a left PP -element, then lM (b) = MlS(b) and M/Mb is a left PP -module. If

b ∈ S is not a left PP -element, then lM (1−b) = MlS(1−b) and M/M(1−b) is a left PP -module.

then T =
(
R M
0 S

)
is a left almost PP -ring.

Proof For any α =
(
a m
0 b

)
∈ T . If b is left PP in S, then lS(b) = Sf with f2 = f ∈ S.

Note that lR(a) = Re1, lR(m + Mb) = Re2, where e2i = ei ∈ R, i = 1, 2. By [13, Lemma 1],

Re1 ∩Re2 = Re for e2 = e ∈ R. So e ∈ Re1, Re2, we can let em = m1b for some m1 ∈ M . Write

m2 = em1(1−f), then m2b = em, and hence β =
( e −m2

0 f

)
∈ lT (α). Conversely, if

( x y
0 s

)
∈ lT (α),

xa = 0, sb = 0, xm = −yb, and so xe = x, sf = s and (y + xm2)b = yb+ xm2b = −xm+ xem =

−xm + xm = 0. Hence y + xm2 ∈ lM (b) = MlS(b), and we have y + xm2 = (y + xm2)f . It

follows that
( x y
0 s

)
=
(
x y+xm2

0 s

)( e −m2

0 f

)
∈ Tβ. Thus α is a left PP -element in T .

If b ∈ S is not left PP -element, then 1 − b is left PP because S is a left almost PP -ring.

Using the similar method above, we can prove that 1−α =
(
1−a −m
0 1−b

)
is a left PP -element in T .

Therefore, T is left almost PP . �
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Proposition 3.6 Let R and S be rings and RMS a bimodule. If T =
(
R M
0 S

)
is a left almost

PP -ring, then one of R and S is left PP and the other is left almost PP .

Proof The result follows from Proposition 2.5(2) and Lemma 4.1 below. �

Corollary 3.7 Let Tn(R) be the rings of upper triangular matrices over R. Then the following

are equivalent:

(1) R is regular;

(2) Tn(R) is a left PP -ring for every n ≥ 1;

(3) Tn(R) is a left almost PP -ring for every n ≥ 1.

Proof It follows by [13, Theorem 4] and Proposition 3.6. �

4. Semiperfect left almost PP -rings

Now we consider the structure of semiperfect, left almost PP -rings.

Lemma 4.1 If R is a left almost PP -ring and e2 = e ∈ R, then either eRe or (1− e)R(1− e)

is a left PP -ring.

Proof We have the Pierce decomposition

R ∼=

(
eRe eR(1− e)

(1− e)Re (1− e)R(1− e)

)
.

If x ∈ eRe and y ∈ (1 − e)R(1 − e) are not left PP -elements, then neither a =
(
x 0
0 1−y

)
nor

1− a =
(
1−x 0
0 y

)
are left PP -elements. �

Recall a ring R is abelian if each idempotent in R is central. An element a of a ring R is called

an exchange element if there exists an idempotent e ∈ R such that e ∈ Ra and 1− e ∈ R(1− a).

The ring R is an exchange ring if and only if every element of R is an exchange element.

Proposition 4.2 The following are equivalent for an abelian, exchange ring R.

(1) R is an almost PP -ring;

(2) For every e2 = e ∈ R, either eRe or (1− e)R(1− e) is a left PP -ring.

Proof (1)⇒(2). It follows by Lemma 4.1.

(2)⇒(1). For any a ∈ R, as R is an exchange ring, there exists e2 = e ∈ R such that e ∈ Ra

and 1− e ∈ R(1− a). So Ra+R(1− e) = R and R(1− a) +Re = R. It implies that Rae = Re

and R(1 − a)(1 − e) = R(1 − e). Thus ae is left PP -element in Re and (1 − a)(1 − e) is left

PP -element in R(1− e).

Now if eRe = Re is left PP , then (1− a)e is a left PP -element in eRe, and hence 1− a =

(1− a)e+ (1− a)(1− e) is left PP in R. Similarly, if (1− e)R(1− e) = R(1− e) is left PP , then

a is left PP in R. Therefore, R is an almost PP -ring. �

Lemma 4.3 Let R be a local ring. Then R is a left PP -ring if and only if R is a domain.
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Proposition 4.4 Let R be a semiperfect, left almost PP -ring with 1 = e1 + e2, where e1, e2

are orthogonal local idempotents. Then R is isomorphic to one of the following:

(1) M2(D) for some domain D;

(2)
(
D1 Y
X D2

)
, where D1 is a domain, D2 is a local ring and XY ⊆ J(D1), Y X ⊆ J(D2).

In particular, if R is also abelian, then R ∼= M2(D) or R ∼= A×B, where D, A are domains and

B is a local ring.

Proof We use the Pierce decomposition

R ∼=

(
e1Re1 e1Re2

e2Re1 e2Re2

)
.

If e1R ∼= e2R, then R ∼= M2(e1Re1), where e1Re1 is a local left PP -ring by Lemma 4.1. So

e1Re1 is a domain. If e1R � e2R, then e1Re2 ⊆ J(R) and e2Re1 ⊆ J(R) by [4, Lemma 4.2]. We

assume that e1Re1 is a local left PP -ring by Lemma 4.1, and hence e1Re1 is a domain. Note

e1Re2Re1 ⊆ e1Re1 ∩ J(R) = J(e1Re1) and e2Re1Re2 ⊆ e2Re2 ∩ J(R) = J(e2Re2). So write

D1 = e1Re1, D2 = e2Re2, X = e1Re2 and Y = e2Re1, then (2) follows. �

Proposition 4.5 Let R be a semiperfect, left almost PP -ring with 1 = e1 + e2 + e3, where

e1, e2, e3 are orthogonal local idempotents. Then R is isomorphic to one of the following:

(1) M3(D) for some domain D;

(2)
(
D1 Y
X D2

)
, where D1 is a domain, D2 is a local ring and XY ⊆ J(D2), Y X ⊆ J(D1);

(3)
(
D1 Y
X D2

)
, where D1 is a prime ring, D2 is a local ring and XY ⊆ J(D2), Y X ⊆ J(D1);

(4)
(

S Y
X D

)
with S ∼=

(
D1 Y1

X1 D2

)
and D1, D2, D are domains, X1Y1 ⊆ J(D2), Y1X1 ⊆

J(D1), XY ⊆ J(D), Y X ⊆ J(S).

Proof Case 1 If eiR ∼= ejR for i, j = 1, 2, 3, then R ∼= M3(e1Re1), where e1Re1 is a local left

PP -ring by Lemma 4.1. So e1Re1 is a domain.

We now consider the the Pierce decomposition

R ∼=

(
(1− e1)R(1− e1) (1− e1)Re1

e1R(1− e1) e1Re1

)
.

Case 2 Assume that e1Re1 is local but not a left PP -ring by Lemma 4.1, then (1−e1)R(1−e1)

is a domain, and hence e2Re2 and e3Re3 are also domains. By [4, Lemma 4.2], e1Re2, e2Re1,

e1Re3 and e3Re1 are all contained in J(R). So (1−e1)Re1R(1−e1) ⊆ J(R)∩(1−e1)R(1−e1) =

J((1− e1)R(1− e1)) and e1R(1− e1)Re1 ⊆ J(R) ∩ e1Re1 = J(e1Re1). Thus R is isomorphic to

the ring in (2).

Case 3 Assume that eiRei is a domain for i = 1, 2, 3. If e1R � e2R but e2R ∼= e3R, then

(1−e1)R(1−e1) ∼= M2(D) for some domain D, and hence (1−e1)R(1−e1) is a prime ring. By [4,

Lemma 4.2], e1Re2, e2Re1, e1Re3 and e3Re1 are all contained in J(R). So (1−e1)Re1R(1−e1) ⊆
J(R)∩ (1−e1)R(1−e1) = J((1−e1)R(1−e1)) and e1R(1−e1)Re1 ⊆ J(R)∩e1Re1 = J(e1Re1).

Then (3) is done.
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Case 4 Assume that eiRei is a domain for i = 1, 2, 3 and e1R � e2R � e3R. Then

(1− e1)R(1− e1) ∼=

(
e2Re2 e2Re3

e3Re2 e3Re3

)
,

where e2Re3Re2 ⊆ J(e2Re2) and e3Re2Re3 ⊆ J(e3Re3). Note that (1 − e1)Re1R(1 − e1) ⊆
J(R)∩ (1−e1)R(1−e1) = J((1−e1)R(1−e1)). So write e2Re2 = D1, e3Re3 = D2, e3Re2 = X1,

e2Re3 = Y1, e1Re1 = D, (1− e1)Re1 = X, e1R(1− e1) = Y , then (4) is also done. �
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