A Generalization of VNL-Rings and $P P$-Rings

Yueming XIANG
Department of Mathematics and Applied Mathematics, Huaihua University, Hunan 418000, P. R. China

Abstract

Let R be a ring. An element a of R is called a left $P P$-element if $R a$ is projective. The ring R is said to be a left almost $P P$-ring provided that for any element a of R, either a or $1-a$ is left $P P$. We develop, in this paper, left almost $P P$-rings as a generalization of von Neumann local (VNL) rings and left $P P$-rings. Some properties of left almost $P P$-rings are studied and some examples are also constructed.

Keywords VNL-rings; left $P P$-rings; left almost $P P$-rings
MR(2010) Subject Classification 16E50; 16L99

1. Introduction

As a common generalization of von Neumann regular rings and local rings, Contessa in [1] called a commutative ring R von Neumann local (VNL) if for each $a \in R$, either a or $1-a$ is von Neumann regular (An element $a \in R$ is von Neumann regular provided that there exists an element $x \in R$ such that $a=a x a)$. VNL-rings are also exchange rings. Some properties of VNL-rings and SVNL-rings were investigated in [2]. Later Chen and Tong in [3] defined a noncommutative ring to be a VNL-ring. Some results on commutative VNL-rings were extended. Moreover, Grover and Khurana in [4] characterized VNL-rings in the sense of relating them to some familiar classes of rings. On the other hand, we recall that a ring R is said to be left $P P$ (see [5]) (or left Rickart) provided that every principal left ideal is projective, or equivalently the left annihilator of any element of R is a summand of R_{R}. A ring is called a $P P$-ring if it is both left and right $P P$-ring. Examples include von Neumann regular rings and domains. The $P P$-rings and their generalizations have been extensively studied by many authors [5-15].

We say that, in this paper, an element a of R is left $P P$ in R if $R a$ is projective, or equivalently, if $l_{R}(a)=R e$ for some $e^{2}=e \in R$. Obviously, R is a left $P P$-ring if and only if every element of R is left $P P$. A ring R is said to be a left almost $P P$-ring provided that for any element a of R, either a or $1-a$ is left $P P$. left almost $P P$-rings are introduced as the generalization of left $P P$-rings and VNL-rings. Some examples turn out to show that this generalization is non-trivial. In Section 2, we investigate the properties of left almost $P P$-rings. Extensions of left $P P$-rings are considered in Section 3. Some results on left $P P$-rings are

[^0]extended onto left almost $P P$-rings. Section 4 focuses on semiperfect, left almost $P P$-rings. We give the structure of this class rings.

Throughout R is an associative ring with identity and all modules are unitary. $J(R)$ will denote the Jacobson radical of $R . \mathbb{Z}_{n}$ stands for the ring of integers mod $n . M_{n}(R)$ denotes the ring of all $n \times n$ matrices over a ring R with an identity I_{n}. If X is a subset of R, the left (resp., right) annihilator of X in R is denoted by $l_{R}(X)$ (resp., $r_{R}(X)$). If $X=\{a\}$, we usually abbreviate it to $l_{R}(a)$ (resp., $\left.r_{R}(a)\right)$. For the usual notations we refer the reader to [1], [7] and [16].

2. Left almost $P P$-rings

We start this section with the definition.
Definition 2.1 Let R be a ring and $a \in R . a$ is called a left $P P$-element in R if $R a$ is projective, or equivalently, $l_{R}(a)=R e$ for some $e^{2}=e \in R$. The ring R is said to be a left almost $P P$-ring provided that for any element a of R, either a or $1-a$ is left $P P$. Similarly, right almost $P P$-rings can be defined. A ring R is called almost $P P$ if it is left and right almost $P P$.

Remark 2.2 (1) Obviously, left $P P$-rings are left almost $P P$-rings.
(2) Every VNL-ring is a left and right almost $P P$-ring.
(3) Clearly, $a \in R$ is left $P P$ if and only if $a u$ is left $P P$ for every unit element $u \in R$.

Example 2.3 (1) The ring \mathbb{Z} of integers is an almost $P P$-ring but not a VNL-ring.
(2) The ring \mathbb{Z}_{4} of integers mod 4 is an almost $P P$-ring but not a $P P$-ring.
(3) Let $R=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}_{2}\right\}$. Then $R=\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right\}$.

If $c=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, let $e=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$; If $c=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$ or $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, let $e=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$; If $c=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, consider $1-c=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$, let $e=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. In either case, we have $l_{R}(c)=R e$ or $l_{R}(1-c)=R e$. So R is a left almost $P P$-ring. choose $c=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \in R, R c$ is not projective since $l_{R}(c)=J(R)$ cannot be generated by an idempotent, then R is not a left $P P$-ring.

Example 2.4 If R is a left $P P$-ring, S is local and let ${ }_{R} M_{S}$ be bimodule, then $\left(\begin{array}{cc}R & M \\ 0 & S\end{array}\right)$ is a left almost $P P$-ring.

Proof Let $T=\left(\begin{array}{cc}R & M \\ 0 & S\end{array}\right)$. For any $\alpha=\left(\begin{array}{cc}a & m \\ 0 & b\end{array}\right) \in T$. Since S is local, b or $1_{S}-b$ is invertible. Assume that b is invertible. Note that a is a left $P P$-element in R, so there exists $e^{2}=e \in R$ such that $l_{R}(a)=R e$. Then

$$
\left(\begin{array}{cc}
e & -e m b^{-1} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
a & m \\
0 & b
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Let $\beta=\binom{e-e m b^{-1}}{0}$. Then $\beta^{2}=\beta \in T$ and $T \beta \subseteq l_{T}(\alpha)$. Now for any $\left(\begin{array}{cc}a_{1} & m_{1} \\ 0 & b_{1}\end{array}\right) \in l_{T}(\alpha)$, $\left(\begin{array}{cc}a_{1} & m_{1} \\ 0 & b_{1}\end{array}\right)\left(\begin{array}{cc}a & m \\ 0 & b\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, we have $a_{1} \in l_{R}(a)=R e, b_{1}=0$ and $m_{1}=-a_{1} m b^{-1}$. So $\left(\begin{array}{cc}a_{1} & m_{1} \\ 0 & b_{1}\end{array}\right)=$ $\left(\begin{array}{ll}r & 0 \\ 0 & 0\end{array}\right)\binom{e-e m b^{-1}}{0} \in T \beta$. This implies that α is a left $P P$-element in T.

Assume that $1_{S}-b$ is invertible. As $1_{R}-a$ is a left $P P$-element in R, there exists $f^{2}=f \in R$
such that $l_{R}\left(1_{R}-a\right)=R f$. Similarly, $1_{T}-\alpha=\left(\begin{array}{cc}1_{R} & 0 \\ 0 & 1_{S}\end{array}\right)-\left(\begin{array}{cc}a & m \\ 0 & b\end{array}\right)=\left(\begin{array}{cc}1_{R}-a & -m \\ 0 & 1_{S}-b\end{array}\right)$ is a left $P P-$ element in T. Therefore, we complete the proof.

Now we elaborate some properties of left almost $P P$-rings.
Proposition 2.5 Let R be a left almost PP-ring. Then the following results hold.
(1) The center of R is an almost $P P$-ring.
(2) For every $e^{2}=e \in R$, the corner ring $e R e$ is a left almost PP-ring.

Proof (1) Let $C(R)$ be the center and $x \in C(R)$. Since R is left almost $P P, x$ or $1-x$ is a left $P P$-element in R. If x is a left $P P$-element, then $l_{R}(x)=R e$ for some $e=e^{2} \in R$. Note that $l_{R}(x)=R e$ is an ideal and $l_{R}(x)=r_{R}(x)$ because $x \in C(R)$. It follows that for every $r \in R$, er $=$ ere $=r e$, and hence $e \in C(R)$. We now prove that $l_{C(R)}(x)=C(R) e$. Clearly, $l_{C(R)}(x)=l_{R}(x) \cap C(R)$ and $C(R) e \subseteq l_{C(R)}(x)$. Let $a \in l_{C(R)}(x)$, then $a \in l_{R}(x)$ and so $a=a e \cap C(R) e$. Thus, $l_{C(R)}(x) \in C(R) e$. Consequently $l_{C(R)}(x)=C(R) e$. Note that $1-x$ is also in $C(R)$, if $1-x$ is a left $P P$-element in R, then $1-x$ is a left $P P$-element in $C(R)$ by using the similar method above. Therefore, $C(R)$ is also an almost $P P$-ring.
(2) For any $0 \neq a \in e R e, a$ or $1-a$ is left $P P$ in R by hypothesis. Assume that a is left $P P$, then $l_{R}(a)=R f$ for some $f^{2}=f \in R$. Note that $l_{e R e}(a)=l_{R}(a) \cap e R e$ and $1-e \in l_{R}(a)$, so $1-e=(1-e) f$ and $f e=e f e$. Write $f e=g$, then $g^{2}=g \in e R e$. So $g a=f e a=f a=0$. On the other hand, for any $b \in l_{e R e}(a), b=b e=b e f=b e f e=b g \in e R e g$. It implies $l_{e R e}(a)=e R e g$. If $1-a$ is a left $P P$-element in R, then $e-a$ is a left $P P$-element in $e R e$ by using the similar method. Thus $e R e$ is a left almost $P P$-ring.

An elementary argument using condition in Definition 2.1 shows that a direct product of rings is left $P P$ if and only if each factor is left $P P$. However, for left almost $P P$-rings we have the next result.

Theorem 2.6 Let $R=\prod_{\alpha \in I} R_{\alpha}$. Then R is a left almost $P P$-ring if and only if there exists $\alpha_{0} \in I$, such that $R_{\alpha_{0}}$ is a left almost PP-ring and for each $\alpha \in I-\alpha_{0}, R_{\alpha}$ is a left PP-ring.

Proof \Leftarrow. Let $x=\left(x_{\alpha}\right) \in R, \alpha \in I$. By hypothesis, $x_{\alpha_{0}}$ or $1_{R_{\alpha_{0}}}-x_{\alpha_{0}}$ is left $P P$. If $x_{\alpha_{0}}$ is a left $P P$-element in $R_{\alpha_{0}}$, then x is a left $P P$-element in R. If $1_{R_{\alpha_{0}}}-x_{\alpha_{0}}$ is a left $P P$-element in $R_{\alpha_{0}}$, then $1-x$ is a left $P P$-element in R. Thus, the result follows.
\Rightarrow. Assume that R is a left almost $P P$-ring. Then every R_{α} is also a left almost $P P$-ring. Write $R=R_{\alpha_{0}} \times S$, where $S=\prod R_{\alpha}, \alpha \in I-\alpha_{0}$. If neither $R_{\alpha_{0}}$ nor S is left $P P$, then we can find non-left $P P$-elements $r \in R_{\alpha_{0}}$ and $s \in S$. Choose $a=\left(1_{R_{\alpha_{0}}}-r, s\right)$. Then neither a nor $1-a=\left(r, 1_{S}-s\right)$ is left $P P$ in R, a contradiction. Hence, either $R_{\alpha_{0}}$ or S is a left $P P$-ring. If S is a left $P P$-ring, the result follows. If S is a left almost $P P$-ring, by iteration of this process, we complete the proof.

Remark 2.7 (1) Note that the direct product of left almost $P P$-rings may not be a left almost $P P$-ring. Clearly, \mathbb{Z}_{4} and \mathbb{Z}_{9} are almost $P P$-rings. But we claim that $\mathbb{Z}_{4} \times \mathbb{Z}_{9}$ is not an almost $P P$-ring. Choose $a=(\overline{2}, \overline{4})$. Then neither a nor $1-a$ is $P P$ in $\mathbb{Z}_{4} \times \mathbb{Z}_{9}$, and we are done. The
example also shows that the homomorphic image of a left almost $P P$-ring need not to be a left almost PP-ring.
(2) By the theorem above, if $R \times S$ is a left almost $P P$-ring, then either R or S is left $P P$. So, in general, the ring \mathbb{Z}_{n} of integers mod n is an almost $P P$-ring if and only if $(p q)^{2}$ does not divide n, where p and q are distinct primes. It is easy to see that $n=36$ is the least positive integer such that \mathbb{Z}_{n} is not an almost $P P$-ring.

Let D be a ring and C a subring of D with $1_{D} \in C$. We set

$$
R[D, C]=\left\{\left(d_{1}, \ldots, d_{n}, c, c \ldots\right): d_{i} \in D, c \in C, n \geq 1\right\}
$$

with addition and multiplication defined componentwise. Since Nicholson used $R[D, C]$ to construct rings which are semiregular but not regular, more and more algebraists use this structure to construct various counterexamples in ring theory.

Theorem 2.8 $R[D, C]$ is a left almost PP-ring if and only if the following hold:
(1) D is a left $P P$-ring.
(2) For any $c \in C$, there exists an $e^{2}=e \in C$ such that $l_{C}(c)=C e, l_{D}(c)=D e$ or $l_{C}(1-c)=C e, l_{D}(1-c)=D e$.

Proof \Rightarrow. For convenience, let $S=R[D, C]$. Assume that D is not a left $P P$-ring. Then there exists a non-left $P P$-element $x \in D$. Choose $a=(x, 1-x, 1,1, \ldots) \in S$. By hypothesis, either a or $1-a$ is left $P P$ in S. If a is a left $P P$-element in S, then x is left $P P$ in D, a contradiction. If $1-a$ is left $P P$ in S, then x is also left $P P$ in D, a contradiction. Thus, D is a left $P P$-ring.

To prove condition (2), let $c \in C$ and $\bar{c}=(c, c, \ldots) \in S$. Since S is a left almost $P P$ ring, either \bar{c} or $\overline{1}-\bar{c}$ is left $P P$ in S. Assume that \bar{c} is left $P P$, then $l_{S}(\bar{c})=S \bar{e}$, where $\bar{e}=$ $\left(e_{1}, \ldots, e_{m}, e, e, \ldots\right)$ and $e_{i} \in D, e \in C$ are also idempotents. Thus $C e \subseteq l_{C}(c)$ and $D e \subseteq l_{D}(c)$.

If $x \in l_{C}(c)$, let $\bar{x}=(x, x, \ldots)$. Then $\bar{x} \in l_{S}(\bar{c})=S \bar{e}$, and $\bar{x}=\left(a_{1} e_{1}, \ldots, a_{m} e_{m}, b e, b e, \ldots\right)$. Thus, by computing the $(m+1)$ th component of \bar{x}, we have $x=b e \in C e$, thus $l_{C}(c)=C e$.

If $s \in l_{D}(c)$, let $\bar{s}=\left(d_{1}, d_{2}, \ldots, d_{m+1}, 0, \ldots\right)$, where $d_{i}=s$ for $i=1, \ldots, m+1$. Then $\bar{s} \in l_{S}(\bar{c})=S \bar{e}$, showing that $s \in D e$, thus $l_{D}(c)=D e$.

Assume that $\overline{1}-\bar{c}$ is left $P P$, then we have $l_{C}(1-c)=C e, l_{D}(1-c)=D e$ by the similar argument.
\Leftarrow. Let $\bar{a}=\left(a_{1}, \ldots, a_{n}, c, c, \ldots\right) \in S$. For any $\bar{x}=\left(x_{1}, \ldots, x_{n}, \ldots, x_{m}, x, x, \ldots\right) \in l_{S}(\bar{a})$, we have $x_{i} a_{i}=0(i=1, \ldots, m)$, where $a_{n+1}=\cdots=a_{m}=c$, and $x c=0$. Note that $l_{D}\left(a_{i}\right)=D e_{i}(i=1, \ldots, n)$. If $l_{C}(c)=C e$ and $l_{D}(c)=D e$, where $e^{2}=e \in C$ are also idempotent. So $x_{i}=d_{i} e_{i}(i=1, \ldots, n), x_{i}=d_{i} e(i=n+1, \ldots, m), x=c^{\prime} e$ with all $d_{i} \in D$, $c^{\prime} \in C$. Thus

$$
\bar{x}=\left(d_{1}, \ldots, d_{n}, d_{n+1}, \ldots, d_{m}, c^{\prime}, c^{\prime}, \ldots\right)\left(e_{1}, \ldots, e_{n}, e, \ldots, e, e, e, \ldots\right) \in S \bar{e}
$$

On the other hand, for any $\bar{y}=\left(y_{1}, \ldots, y_{m}, y, y, \ldots\right) \in S \bar{e}$, we have $y_{i} \in D e_{i}(i=1, \ldots, n)$, $y_{i} \in D e(i=n+1, \ldots, m)$ and $y \in C e$. Then $y_{i} a_{i}=0(i=1, \ldots, n), y_{i} c=0(i=n+1, \ldots, m)$ and $y c=0$. It implies that $\bar{y} \bar{a}=0$, and hence $\bar{y} \in l_{S}(\bar{a})$. Therefore, \bar{a} is left $P P$ in S.

If $l_{C}(1-c)=C e, l_{D}(1-c)=D e$, using the similar argument above, we can prove $\overline{1}-\bar{a}$ is left $P P$ in S.

Therefore, S is a left almost $P P$-ring.
By Theorem 2.8, we have the next corollaries immediately.
Corollary 2.9 $R[D, D]$ is a left almost PP-ring if and only if D is a left PP-ring.
Corollary $2.10 R[D, C]$ is a left $P P$-ring if and only if D and C are left $P P$-rings and for any $c \in C$, there exists an $e^{2}=e \in C$ such that $l_{D}(c)=D e$.

Example 2.11 Let $S=R[D, C]$, where $D=\mathbb{Q}$ and $C=\mathbb{Z}$. Then S is an almost $P P$-ring by Theorem 2.8. But S is not a VNL-ring in view of the argument of [4, Example 2.5].

Example 2.12 Let $S=R[D, C]$, where $D=M_{2}\left(\mathbb{Z}_{2}\right)$ and $C=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}_{2}\right\}$. Then S is an almost $P P$-ring which is not left $P P$, not local.

Proof Obviously, $D=M_{2}\left(\mathbb{Z}_{2}\right)$ is a $P P$-ring. $C=\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right\}$.
If $c=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, let $e=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$; If $c=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ or $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, let $e=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$; If $c=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, consider $1-c=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$, let $e=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.

In either case, we have $l_{C}(c)=C e, l_{D}(c)=D e$ or $l_{C}(1-c)=C e, l_{D}(1-c)=D e$. By Theorem 2.8, S is a left almost $P P$-ring. Similarly, we can prove that S is a right almost $P P$-ring.

Choose $c=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \in C, R c$ is not projective since $l_{C}(c)=J(C)$ cannot be generated by an idempotent, then C is not a left $P P$-ring. Thus S is not a left $P P$-ring by Corollary 2.10 . Note that $J(S)=R[J(D), J(D) \cap J(C)]=0$, then S is not local, otherwise, S is regular, a contradiction.

3. Matrix extensions

Matrix constructions will provide new sources of examples of left almost $P P$-rings. In this section, we will develop results which allows us to study when full matrices and triangular matrices are left almost $P P$-rings.

Lemma 3.1 Let R be a ring and $a \in R$. Then the following are equivalent:
(1) $a \in R$ is a left $P P$-element.
(2) $\alpha=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) \in M_{2}(R)$ is a left $P P$-element.
(3) $\beta=\left(\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right) \in M_{2}(R)$ is a left $P P$-element.

Proof Write $S=M_{2}(R)$.
$(1) \Rightarrow(2)$. If $a \in R$ is left $P P$, there exists an idempotent $e^{2}=e \in R$ such that $l_{R}(a)=R e$.
Hence $\left(\begin{array}{ll}e & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}e & 0 \\ 0 & 0\end{array}\right)^{2}=\left(\begin{array}{ll}e & 0 \\ 0 & 0\end{array}\right) \in l_{S}(\alpha)$. If $\left(\begin{array}{cc}b & c \\ m & n\end{array}\right) \in l_{S}(\alpha)$,

$$
\left(\begin{array}{cc}
b & c \\
m & n
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
b a & c \\
m a & n
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

It implies that $b, m \in l_{R}(a)=R e, c=n=0$. Then $b=r_{1} e, m=r_{2} e$, and so

$$
\left(\begin{array}{cc}
b & c \\
m & n
\end{array}\right)=\left(\begin{array}{ll}
r_{1} & 0 \\
r_{2} & 0
\end{array}\right)\left(\begin{array}{cc}
e & 0 \\
0 & 0
\end{array}\right) \in S\left(\begin{array}{ll}
e & 0 \\
0 & 0
\end{array}\right) .
$$

We prove that $l_{S}(\alpha)=S\left(\begin{array}{cc}e & 0 \\ 0 & 0\end{array}\right)$.
$(2) \Rightarrow(1)$. Assume that $\alpha=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) \in S$ is left $P P$, there exists an idempotent $E=\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right) \in S$ such that $l_{S}(\alpha)=S E$. So

$$
\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

and hence $a_{2}=a_{4}=0, a_{1}=a_{1}^{2}, a_{3} a_{1}=a_{3}, a_{1}, a_{3} \in l_{R}(a)$. Conversely, if $x \in l_{R}(a)$, then

$$
\left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

and hence $\left(\begin{array}{cc}x & 0 \\ 0 & 0\end{array}\right) \in l_{S}(\alpha)=S E$. Thus

$$
\left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
r_{1} & r_{2} \\
r_{3} & r_{4}
\end{array}\right)\left(\begin{array}{ll}
a_{1} & 0 \\
a_{3} & 0
\end{array}\right)=\left(\begin{array}{cc}
\left(r_{1}+r_{2} a_{3}\right) a_{1} & 0 \\
r_{3} a_{1}+r_{4} a_{3} & 0
\end{array}\right) .
$$

It implies that $x=\left(r_{1}+r_{2} a_{3}\right) a_{1} \in R a_{1}$. Therefore, $l_{R}(a)=R a_{1}$, where $a_{1}^{2}=a_{1} \in R$.
$(1) \Leftrightarrow(3)$ is similar to the proof of $(1) \Leftrightarrow(2)$.
Now we are in a position to prove when a matrix ring is a left almost $P P$-ring. The following result is a generalization of [16, Proposition 7.63].

Theorem 3.2 Let R be a ring. Then the following are equivalent:
(1) R is a left semihereditary ring;
(2) $M_{n}(R)$ is a left $P P$-ring for every $n \geq 1$;
(3) $M_{n}(R)$ is a left almost PP-ring for every $n \geq 1$.

Proof $(1) \Leftrightarrow(2)$ is dual to [16, Proposition 7.63]. $(2) \Rightarrow(3)$ is trivial.
$(3) \Rightarrow(2)$. It is enough to show that if $M_{2}(R)$ is left almost $P P$, then R is left $P P$. For any $a \in R$. Choose $A=\left(\begin{array}{cc}a & a \\ -a & 1 \\ -\end{array}\right) \in M_{2}(R)$. By hypothesis, either $A \in M_{2}(R)$ or $I_{2}-A \in M_{2}(R)$ is left $P P$. Suppose that $A \in M_{2}(R)$ is left $P P$. Note that

$$
A=\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-a & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

by Remark $2.2(3),\left(\begin{array}{cc}a & 0 \\ 0 & 1\end{array}\right) \in M_{2}(R)$ is left $P P$. So $a \in R$ is left $P P$ by Lemma 3.1.
If $I_{2}-A \in M_{2}(R)$ is left $P P$, noting that

$$
I_{2}-A=\left(\begin{array}{cc}
1 & 0 \\
0 & a
\end{array}\right)\left(\begin{array}{cc}
1 & -a \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

by Remark 2.2(3), we have $\left(\begin{array}{ll}0 & a \\ 1 & 0\end{array}\right) \in M_{2}(R)$ is left $P P$. So $a \in R$ is left $P P$ by Lemma 3.1 again.

By the theorem above and Example 2.3, being a left almost $P P$-ring is not Morita invariant. The next example shows that the definition of almost $P P$-rings is not left-right symmetric.

Example 3.3 Let S be a von Neumann regular ring with an ideal I such that, as a submodule of S, I is not a direct summand. Let $R=S / I$ and $T=\left(\begin{array}{cc}R & R \\ 0 & S\end{array}\right)$. By the augment of [16, Example 2.34], T is left semihereditary but not right semihereditary. Then there exists some $n(n \geq 2)$ such that the matrix ring $M_{n}(T)$ is a left almost $P P$ ring but not right almost $P P$.

A ring R is said to be right Kasch if every simple right R-module embeds in R_{R}.
Proposition 3.4 If R is a right Kasch and left almost $P P$ ring, then it is a right almost $P P$ ring.

Proof For any $a \in R, a$ or $1-a$ is left $P P$ in R. Assume that a is a left $P P$-element in R. There exists $e^{2}=e \in R$ such that $l(a)=R(1-e)$. Then $a=e a$, and hence $a R \subseteq e R$. Now we prove that $a R=e R$. Otherwise, $a R \subseteq M$, where M is a maximal submodule of $e R$. Since R is right Kasch, there exists a monomorphism $f: e R / M \rightarrow R$ by $f(e+M)=b$. Then $e b=b$ and $b a=0$. So $b \in l(a)=R(1-e)$, and hence $b=b e=0$. Since f is a monomorphism, $e \in M$, contradicting with the maximality of M. So $a R=e R$ is projective. It implies that a is a right $P P$-element. Assume that $1-a$ is a left $P P$-element. We can prove $1-a$ is a right $P P$-element by the similar method.

Let R and S be rings and ${ }_{R} M_{S}$ a bimodule. We write the generalized triangular matrix as $T=\left(\begin{array}{cc}R & M \\ 0 & S\end{array}\right)$. Following [13], a left module is a $P P$-module if every principal submodule is projective. Now we consider the necessary and sufficient conditions of what a generalized triangular matrix ring is left almost $P P$.

Proposition 3.5 Let R and S be rings and ${ }_{R} M_{S}$ a bimodule. If the following hold:
(1) R is left $P P$ and S is left almost $P P$;
(2) If $b \in S$ is a left $P P$-element, then $l_{M}(b)=M l_{S}(b)$ and $M / M b$ is a left $P P$-module. If $b \in S$ is not a left $P P$-element, then $l_{M}(1-b)=M l_{S}(1-b)$ and $M / M(1-b)$ is a left $P P$-module. then $T=\left(\begin{array}{cc}R & M \\ 0 & S\end{array}\right)$ is a left almost $P P$-ring.

Proof For any $\alpha=\left(\begin{array}{cc}a & m \\ 0 & b\end{array}\right) \in T$. If b is left $P P$ in S, then $l_{S}(b)=S f$ with $f^{2}=f \in S$. Note that $l_{R}(a)=R e_{1}, l_{R}(m+M b)=R e_{2}$, where $e_{i}^{2}=e_{i} \in R, i=1,2$. By [13, Lemma 1], $R e_{1} \cap R e_{2}=R e$ for $e^{2}=e \in R$. So $e \in R e_{1}, R e_{2}$, we can let $e m=m_{1} b$ for some $m_{1} \in M$. Write $m_{2}=e m_{1}(1-f)$, then $m_{2} b=e m$, and hence $\beta=\left(\begin{array}{cc}e & -m_{2} \\ 0 & f\end{array}\right) \in l_{T}(\alpha)$. Conversely, if $\left(\begin{array}{cc}x & y \\ 0 & s\end{array}\right) \in l_{T}(\alpha)$, $x a=0, s b=0, x m=-y b$, and so $x e=x, s f=s$ and $\left(y+x m_{2}\right) b=y b+x m_{2} b=-x m+x e m=$ $-x m+x m=0$. Hence $y+x m_{2} \in l_{M}(b)=M l_{S}(b)$, and we have $y+x m_{2}=\left(y+x m_{2}\right) f$. It follows that $\left(\begin{array}{ll}x & y \\ 0 & s\end{array}\right)=\left(\begin{array}{cc}x & y+x m_{2} \\ 0 & s\end{array}\right)\left(\begin{array}{cc}e & -m_{2} \\ 0 & f\end{array}\right) \in T \beta$. Thus α is a left $P P$-element in T.

If $b \in S$ is not left $P P$-element, then $1-b$ is left $P P$ because S is a left almost $P P$-ring. Using the similar method above, we can prove that $1-\alpha=\left(\begin{array}{cc}1-a & -m \\ 0 & 1-b\end{array}\right)$ is a left $P P$-element in T.

Therefore, T is left almost $P P$.

Proposition 3.6 Let R and S be rings and ${ }_{R} M_{S}$ a bimodule. If $T=\left(\begin{array}{cc}R & M \\ 0\end{array}\right)$ is a left almost $P P$-ring, then one of R and S is left $P P$ and the other is left almost $P P$.

Proof The result follows from Proposition 2.5(2) and Lemma 4.1 below.
Corollary 3.7 Let $T_{n}(R)$ be the rings of upper triangular matrices over R. Then the following are equivalent:
(1) R is regular;
(2) $T_{n}(R)$ is a left $P P$-ring for every $n \geq 1$;
(3) $T_{n}(R)$ is a left almost PP-ring for every $n \geq 1$.

Proof It follows by [13, Theorem 4] and Proposition 3.6.

4. Semiperfect left almost $P P$-rings

Now we consider the structure of semiperfect, left almost $P P$-rings.
Lemma 4.1 If R is a left almost $P P$-ring and $e^{2}=e \in R$, then either eRe or $(1-e) R(1-e)$ is a left $P P$-ring.

Proof We have the Pierce decomposition

$$
R \cong\left(\begin{array}{cc}
e R e & e R(1-e) \\
(1-e) R e & (1-e) R(1-e)
\end{array}\right)
$$

If $x \in e R e$ and $y \in(1-e) R(1-e)$ are not left $P P$-elements, then neither $a=\left(\begin{array}{cc}x & 0 \\ 0 & 1-y\end{array}\right)$ nor $1-a=\left(\begin{array}{cc}1-x & 0 \\ 0 & y\end{array}\right)$ are left $P P$-elements.

Recall a ring R is abelian if each idempotent in R is central. An element a of a ring R is called an exchange element if there exists an idempotent $e \in R$ such that $e \in R a$ and $1-e \in R(1-a)$. The ring R is an exchange ring if and only if every element of R is an exchange element.

Proposition 4.2 The following are equivalent for an abelian, exchange ring R.
(1) R is an almost $P P$-ring;
(2) For every $e^{2}=e \in R$, either e Re or $(1-e) R(1-e)$ is a left PP-ring.

Proof $(1) \Rightarrow(2)$. It follows by Lemma 4.1.
$(2) \Rightarrow(1)$. For any $a \in R$, as R is an exchange ring, there exists $e^{2}=e \in R$ such that $e \in R a$ and $1-e \in R(1-a)$. So $R a+R(1-e)=R$ and $R(1-a)+R e=R$. It implies that $R a e=R e$ and $R(1-a)(1-e)=R(1-e)$. Thus ae is left $P P$-element in $R e$ and $(1-a)(1-e)$ is left $P P$-element in $R(1-e)$.

Now if $e R e=R e$ is left $P P$, then $(1-a) e$ is a left $P P$-element in $e R e$, and hence $1-a=$ $(1-a) e+(1-a)(1-e)$ is left $P P$ in R. Similarly, if $(1-e) R(1-e)=R(1-e)$ is left $P P$, then a is left $P P$ in R. Therefore, R is an almost $P P$-ring.

Lemma 4.3 Let R be a local ring. Then R is a left $P P$-ring if and only if R is a domain.

Proposition 4.4 Let R be a semiperfect, left almost PP-ring with $1=e_{1}+e_{2}$, where e_{1}, e_{2} are orthogonal local idempotents. Then R is isomorphic to one of the following:
(1) $M_{2}(D)$ for some domain D;
(2) $\left(\begin{array}{cc}D_{1} & Y \\ X & D_{2}\end{array}\right)$, where D_{1} is a domain, D_{2} is a local ring and $X Y \subseteq J\left(D_{1}\right), Y X \subseteq J\left(D_{2}\right)$. In particular, if R is also abelian, then $R \cong M_{2}(D)$ or $R \cong A \times B$, where D, A are domains and B is a local ring.

Proof We use the Pierce decomposition

$$
R \cong\left(\begin{array}{ll}
e_{1} R e_{1} & e_{1} R e_{2} \\
e_{2} R e_{1} & e_{2} R e_{2}
\end{array}\right)
$$

If $e_{1} R \cong e_{2} R$, then $R \cong M_{2}\left(e_{1} R e_{1}\right)$, where $e_{1} R e_{1}$ is a local left $P P$-ring by Lemma 4.1. So $e_{1} R e_{1}$ is a domain. If $e_{1} R \nexists e_{2} R$, then $e_{1} R e_{2} \subseteq J(R)$ and $e_{2} R e_{1} \subseteq J(R)$ by [4, Lemma 4.2]. We assume that $e_{1} R e_{1}$ is a local left $P P$-ring by Lemma 4.1, and hence $e_{1} R e_{1}$ is a domain. Note $e_{1} R e_{2} R e_{1} \subseteq e_{1} R e_{1} \cap J(R)=J\left(e_{1} R e_{1}\right)$ and $e_{2} R e_{1} R e_{2} \subseteq e_{2} R e_{2} \cap J(R)=J\left(e_{2} R e_{2}\right)$. So write $D_{1}=e_{1} R e_{1}, D_{2}=e_{2} R e_{2}, X=e_{1} R e_{2}$ and $Y=e_{2} R e_{1}$, then (2) follows.

Proposition 4.5 Let R be a semiperfect, left almost PP-ring with $1=e_{1}+e_{2}+e_{3}$, where e_{1}, e_{2}, e_{3} are orthogonal local idempotents. Then R is isomorphic to one of the following:
(1) $M_{3}(D)$ for some domain D;
(2) $\left(\begin{array}{cc}D_{1} & Y \\ X & D_{2}\end{array}\right)$, where D_{1} is a domain, D_{2} is a local ring and $X Y \subseteq J\left(D_{2}\right), Y X \subseteq J\left(D_{1}\right)$;
(3) $\left(\begin{array}{cc}D_{1} & Y \\ X & D_{2}\end{array}\right)$, where D_{1} is a prime ring, D_{2} is a local ring and $X Y \subseteq J\left(D_{2}\right), Y X \subseteq J\left(D_{1}\right)$;
(4) $\left(\begin{array}{c}S \\ X\end{array} \underset{D}{Y}\right)$ with $S \cong\left(\begin{array}{cc}D_{1} & Y_{1} \\ X_{1} & D_{2}\end{array}\right)$ and D_{1}, D_{2}, D are domains, $X_{1} Y_{1} \subseteq J\left(D_{2}\right), Y_{1} X_{1} \subseteq$ $J\left(D_{1}\right), X Y \subseteq J(D), Y X \subseteq J(S)$.

Proof Case 1 If $e_{i} R \cong e_{j} R$ for $i, j=1,2,3$, then $R \cong M_{3}\left(e_{1} R e_{1}\right)$, where $e_{1} R e_{1}$ is a local left $P P$-ring by Lemma 4.1. So $e_{1} R e_{1}$ is a domain.

We now consider the the Pierce decomposition

$$
R \cong\left(\begin{array}{cc}
\left(1-e_{1}\right) R\left(1-e_{1}\right) & \left(1-e_{1}\right) R e_{1} \\
e_{1} R\left(1-e_{1}\right) & e_{1} R e_{1}
\end{array}\right)
$$

Case 2 Assume that $e_{1} R e_{1}$ is local but not a left $P P$-ring by Lemma 4.1, then $\left(1-e_{1}\right) R\left(1-e_{1}\right)$ is a domain, and hence $e_{2} R e_{2}$ and $e_{3} R e_{3}$ are also domains. By [4, Lemma 4.2], $e_{1} R e_{2}, e_{2} R e_{1}$, $e_{1} R e_{3}$ and $e_{3} R e_{1}$ are all contained in $J(R)$. So $\left(1-e_{1}\right) R e_{1} R\left(1-e_{1}\right) \subseteq J(R) \cap\left(1-e_{1}\right) R\left(1-e_{1}\right)=$ $J\left(\left(1-e_{1}\right) R\left(1-e_{1}\right)\right)$ and $e_{1} R\left(1-e_{1}\right) R e_{1} \subseteq J(R) \cap e_{1} R e_{1}=J\left(e_{1} R e_{1}\right)$. Thus R is isomorphic to the ring in (2).

Case 3 Assume that $e_{i} R e_{i}$ is a domain for $i=1,2,3$. If $e_{1} R \nsubseteq e_{2} R$ but $e_{2} R \cong e_{3} R$, then $\left(1-e_{1}\right) R\left(1-e_{1}\right) \cong M_{2}(D)$ for some domain D, and hence $\left(1-e_{1}\right) R\left(1-e_{1}\right)$ is a prime ring. By [4, Lemma 4.2], $e_{1} R e_{2}, e_{2} R e_{1}, e_{1} R e_{3}$ and $e_{3} R e_{1}$ are all contained in $J(R)$. So $\left(1-e_{1}\right) R e_{1} R\left(1-e_{1}\right) \subseteq$ $J(R) \cap\left(1-e_{1}\right) R\left(1-e_{1}\right)=J\left(\left(1-e_{1}\right) R\left(1-e_{1}\right)\right)$ and $e_{1} R\left(1-e_{1}\right) R e_{1} \subseteq J(R) \cap e_{1} R e_{1}=J\left(e_{1} R e_{1}\right)$. Then (3) is done.

Case 4 Assume that $e_{i} R e_{i}$ is a domain for $i=1,2,3$ and $e_{1} R \nexists e_{2} R \nexists e_{3} R$. Then

$$
\left(1-e_{1}\right) R\left(1-e_{1}\right) \cong\left(\begin{array}{cc}
e_{2} R e_{2} & e_{2} R e_{3} \\
e_{3} R e_{2} & e_{3} R e_{3}
\end{array}\right)
$$

where $e_{2} R e_{3} R e_{2} \subseteq J\left(e_{2} R e_{2}\right)$ and $e_{3} R e_{2} R e_{3} \subseteq J\left(e_{3} R e_{3}\right)$. Note that $\left(1-e_{1}\right) R e_{1} R\left(1-e_{1}\right) \subseteq$ $J(R) \cap\left(1-e_{1}\right) R\left(1-e_{1}\right)=J\left(\left(1-e_{1}\right) R\left(1-e_{1}\right)\right)$. So write $e_{2} R e_{2}=D_{1}, e_{3} R e_{3}=D_{2}, e_{3} R e_{2}=X_{1}$, $e_{2} R e_{3}=Y_{1}, e_{1} R e_{1}=D,\left(1-e_{1}\right) R e_{1}=X, e_{1} R\left(1-e_{1}\right)=Y$, then (4) is also done.

Acknowledgements The authors are indebted to the referees for their valuable comments leading to the improvement of the paper.

References

[1] M. CONTESSA. On certain classes of pm-rings. Comm. Algebra, 1984, 12(11-12): 1447-1469.
[2] E. A. OSBA, M. HENRIKSEN, O. ALKAM. Combining local and von Neumann regular rings. Comm. Algebra, 2004, 32(7): 2639-2653.
[3] Weixing CHEN, Wenting TONG. On noncommutative VNL-rings and GVNL-rings. Glasg. Math. J., 2006, 48(1): 11-17.
[4] H. K. GROVER, D. KHURANA. Some characterizations of VNL rings. Comm. Algebra, 2009, 37(9): 3288-3305.
[5] Y. HIRANO, M. HONGAN, M. ÔHORI. On right p.p. rings. Math. J. Okayama Univ., 1982, 24(2): 99-109.
[6] C. HUH, H. K. KIM, Y. LEE. p.p rings and generalized p.p. rings. J. Pure Appl. Algebra, 2002, 167(1): 37-52.
[7] I. KAPLANSKY. Rings of Operators. Benjamin, New York, 1965.
[8] Y. LEE, C. HUH. Counterexamples on p.p.-rings. Kyungpook Math. J., 1998, 38(2): 421-427.
[9] Zhongkui LIU, Renyu ZHAO. A generalization of PP-rings and p.q.-Baer rings. Glasg. Math. J., 2006, 48(2): 217-229.
[10] Lixin MAO, Nanqing DING, Wenting TONG. New characterizations and generalizations of PP rings. Vietnam J. Math., 2005, 33(1): 97-110.
[11] Lixin MAO. Generalized P-flatness and P-injectivity of modules. Hacet. J. Math. Stat., 2011, 40(1): 27-40.
[12] W. K. NICHOLSON, J. F. WATTERS. Rings with projective socle. Proc. Amer. Math. Soc., 1988, 102(3): 443-450.
[13] W. K. NICHOLSON. On PP-rings. Period. Math. Hungar., 1993, 27(2): 85-88.
[14] M. ÔHORI. On non-commutative generalized p.p. rings. Math. J. Okayama Univ., 1984, 26: 157-167.
[15] Zhong YI, Yiqiang ZHOU. Baer and quasi-Baer properties of group rings. J. Aust. Math. Soc., 2007, 83(2): 285-296.
[16] T. Y. LAM. Lectures on Modules and Rings. Springer-Verlag, New York, 1999.

[^0]: Received January 5, 2016; Accepted November 23, 2016
 Supported by the Natural Science Foundation of Hunan Province (Grant No. 2016JJ2050).
 E-mail address: xymls999@126.com

