
Journal of Mathematical Research with Applications

Mar., 2017, Vol. 37, No. 2, pp. 214–222

DOI:10.3770/j.issn:2095-2651.2017.02.010

Http://jmre.dlut.edu.cn

On the Growth Properties of Solutions for a Generalized
Bi-Axially Symmetric Schrödinger Equation

Devendra KUMAR1,∗, Payal BISHNOI2, Mohammed HARFAOUI3

1. Department of Mathematics, Faculty of Sciences Al-Baha University, P.O.Box-1988, Alaqiq,

Al-Baha-65431, Saudi Arabia, K.S.A.;

2. Department of Mathematics, M.M.H. College, Ghaziabad (U.P.), India;

3. University Hassan II-Casablanca, Laboratory of Mathematics, Cryptography and Mechanics,

F.S.T, B.O.Box 146, Mohammedia, Morocco

Abstract In this paper, we have considered the generalized bi-axially symmetric Schrödinger

equation

∂2φ

∂x2
+

∂2φ

∂y2
+

2ν

x

∂φ

∂x
+

2µ

y

∂φ

∂y
+ {K2 − V (r)}φ = 0,

where µ, ν ≥ 0, and rV (r) is an entire function of r = +(x2 + y2)1/2 corresponding to a

scattering potential V (r). Growth parameters of entire function solutions in terms of their

expansion coefficients, which are analogous to the formulas for order and type occurring in

classical function theory, have been obtained. Our results are applicable for the scattering of

particles in quantum mechanics.
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1. Introduction

In this paper we shall study the growth properties of solutions of the partial differential

equation

∂2φ

∂x2
+

∂2φ

∂y2
+

2ν

x

∂φ

∂x
+

2µ

y

∂φ

∂y
+ {K2 − V (r)}φ = 0, (1.1)

where µ, ν ≥ 0 and rV (r) is an entire function of r = +(x2 + y2)1/2.

For the purposes of motivation of the work, we should like to mention, that this study

has a bearing on the study of the scattering of particles in quantum mechanics. For the case,

when x = x1, y = (x2
2 + x2

3)
1/2 and µ = 1, ν = 0, (1.1) becomes the ordinary axially symmetric,

Schrödinger equation corresponding to a scattering potential V (r). Solutions to this equation,

which satisfy a suitable radiation condition, correspond to scattered waves and their singularities

are related to the quantum states of the scattered particles.
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Our results are the extension of the work done by Gilbert and Howard [1] and Kumar and

Singh [2] for the equation of generalized axially symmetric helmholtz equation

∂2φ

∂x2
+

∂2φ

∂y2
+

2µ

y

∂φ

∂y
+K2φ = 0, µ > 0. (1.2)

Gilbert [3–7] considered the partial differential equation

∂2φ

∂x2
+

∂2φ

∂y2
+

2µ

y

∂φ

∂y
= 0 (1.3)

and studied the various properties of solutions of (1.3). The function theoretic approaches for

(1.3) have been used by Erdélyi [8], Henrici [9–12] and Mackie [13] (Heins and MacCamy [14,15]

discussed this equation for µ = 1
2 ).

Gilbert and Howard [1] have also obtained results for the generalized, bi-axially symmetric

helmholtz equation
∂2φ

∂x2
+

∂2φ

∂y2
+

2ν

x

∂φ

∂x
+

2µ

y

∂φ

∂y
+K2φ = 0, (1.4)

which were extensions of the results studied by Gilbert [6] for the generated, bi-axially symmetric

potential equation
∂2φ

∂x2
+

∂2φ

∂y2
+

2ν

x

∂φ

∂x
+

2µ

y

∂φ

∂y
= 0. (1.5)

Equations (1.4) and (1.5) have also been investigated by Henrici [9–12] using function-

theoretic methods. Fryant [16] studied equation (1.5) by direct method.

Recently, the author [17] studied the growth estimates for entire function solutions of the

equation (1.4), in terms of their Jacobi-Bessel coefficients and ratio of these coefficients. Some

results also have been obtained for order and type (analogous to the formulas in classical function

theory) in terms of Taylor and Neumann coefficients.

These results represent an extension of the results obtained by Gilbert and Howard [1,18],

McCoy [19] and Kumar [20].

The Euler-Poisson-Darboux equation, arising in gas dynamics, is viewed in terms of equation

(1.1) for K2 − V (r) = 0 after a transformation [21, p.223] and has a variety of physical interpre-

tations. Although, bi-axially symmetric potential theory is a well developed subject with many

applications to the physical sciences it is, perhaps, not fully appreciated that certain biological

problems suggest the use of this theory. The problem of steady-state differential flow through a

cylindrical structure arises frequently. Not surprisingly, the physiological situation may provide

motivation for solving problems and seeking techniques that are different from those arising from

purely mathematical or physical considerations. Also, these potentials play an important role in

many aspects of mathematical physics, in particular to an understanding of compressible flow

in the transonic region. In this paper our study is applicable for the scattering of particles in

quantum mechanics.

The transformation of equation (1.1) in polar coordinates is, namely,

∂2φ

∂r2
+

(2[µ+ ν] + 1)

r

∂φ

∂r
+

1

r2
∂2φ

∂θ2
+
{2ν cot θ

r2
− 2µ tan θ

r2
}∂φ
∂θ

+ {K2 − V (r)}φ = 0. (1.6)
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In order to find the solutions of (1.6) by separation of variables, we consider the solutions

of the form φ(r, θ) = R(r)Θ(θ) where R(r) and Θ(θ) must satisfy, respectively, the ordinary

differential equations

r2
∂2R

∂r2
+ r(2[µ+ ν] + 1)

∂R

∂r
+ {[K2 − V (r)]r2 −∆}R = 0 (1.7)

and
∂2Θ

∂θ2
+ [2ν cot θ − 2µ tan θ]

∂Θ

∂θ
+∆Θ = 0. (1.8)

If we introduce the new independent variable ξ = cos 2θ in (1.8) and set X(ξ) = Θ(θ), then

(1.8) becomes

(1− ξ2)
∂2X

∂ξ2
+ [µ− ν − ξ(1 + µ+ ν)]

∂X

∂ξ
+

∆

4
X = 0. (1.9)

Corresponding to the separation constant ∆ = 4n(n+ µ+ ν), the regular solution of (1.9)

is X(ξ) = P
(µ− 1

2 ,ν−
1
2 )

n (ξ), which has the value
(
n+µ− 1

2
n

)
at ξ = 1, here P

(α,β)
n (ξ) are Jacobi

polynomials which may be defined uniquely by their generating function expansion

∞∑
n=0

ℑnP (α,β)
n (ξ) = 2α+βT−1(1−ℑ+ T )−α(1 + ℑ+ T )−β , (1.10)

|ℑ| < 1, Tr(1− 2ξℑ+ ℑ2)1/2 = 1 when ℑ = 0 (see [22,Vol.II, p.169]).

In this case equation (1.7) leads us to consider the function Rn(r):

r2
∂2Rn

∂r2
+ r(2[µ+ ν] + 1)

∂Rn

∂r
+ {r2[K2 − V (r)]− 4n(n+ µ+ ν)}Rn = 0. (1.11)

Set Wn(r) = rµ+νRn(r), in above equation we obtain

r2
∂2Wn(r)

∂r2
+ r

∂Wn(r)

∂r
+ {r2[K2 + V (r)]− (2n+ µ+ ν)2}Wn(r) = 0. (1.12)

For the case V (r) ≡ 0, this equation is a Bessel’s equation. If rV (r) is not equivalent to 0,

it is an entire function of the form

V (r) =
υ0
r

+

∞∑
ν=1

υνr
ν−1, with υ0 > 0, (1.13)

then the indicial equation for (1.12) is the same as in the case of Bessel’s equation, namely,

F (α) ≡ α(α− 1) + α− (2n+ µ+ ν)2 = 0, α = ±(2n+ µ+ ν).

If 2µ+ 2ν ̸= an integer, then the two independent solutions of (1.12) are of the form

Wn,1(r) = r+(2n+µ+ν)
∞∑

m=0

amrm, Wn,2(r) = r−(2n+µ+ν)
∞∑

m=0

bmrm,

where the coefficients Cm = {am, bm} may be computed by the relations

Cm =
1

F (α+m)

{m−1∑
p=0

Cpυ̃m−p

}
, υ̃m = υm (m ̸= 1), υ̃1 = −K2 + υ1,

α = +(2n + µ + ν),−(2n + µ + ν) when Cm = am, bm, respectively. The regular and irregular

solutions of (1.11) about r = 0 are locally Rn,1 ≈ r2n, Rn,2 ≈ r−2(n+µ+ν); furthermore, if rV (r)
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is entire then Rn,1(r) is also entire [23]. The local behavior of Rn,1(r) and Rn,2(r), implies that

as n → ∞
Rn,1(r) ≈ R(1)

n (r) ≈ gnr
2n. (1.14)

Let us rewrite equation (1.1) in the form

∂

∂x
(x2νy2µ

∂φ

∂x
) +

∂

∂y
(x2νy2µ

∂φ

∂y
)− x2νy2µ(V (r)−K2)φ = 0. (1.15)

Then, if either µ or ν > 1, the coefficient P (x, y) ≡ x2νy2µ(V (r) −K2) of φ is continuous in a

neighborhood of x = y = 0 in R2. If V (r) has the form (1.13) with v0 > 0, then P (x, y) ≥ 0

in the first quadrant of a sufficiently small disk about the origin, if r0 is the smallest zero of

V (r0) = K2, then our quarter-circle is given to be

Qc(r0) ≡ D(r0) ∩ {(x, y)|x ≥ 0, y ≥ 0},

where

D(r0) ≡ {(x, y)|x2 + y2 ≤ r20}.

Using uniqueness theorem for elliptic partial differential equation with continuous coeffi-

cients (Courant-Hilbert [24,Vol.II, p.321]) in this case, we see that there exists at most one

solution which is twice continuously differentiable in Qc(r0) and takes on prescribed values on

∂Qc(r0). Since the family of functions {Rn,1(r) P
(µ−1/2,ν−1/2)
n (ξ)}∞n=0 are symmetric with re-

spect to the origin, and reflections through the coordinate axes, the uniqueness theorem may

be formulated to hold for the region D(r0) with boundary data prescribed on ∂D(r0) if we also

require ∂φ
∂x = 0 on x = 0, and ∂φ

∂y = 0 on y = 0.

It should be mentioned here that we are interested in studying the growth of solutions φ(r, θ)

in the region r > r0, in the case of scattering.

The decomposition of φ(r, θ) into an everywhere-regular solution and a solution satisfying

the Sommerfield radiation condition

lim
r→∞

{
rµ+ν+1/2

(∂φ
∂r

− ikφ
)}

→ 0 (1.16)

is unique [25, p.107]. Moreover, our study of the growth properties of the class {(2)[D] has bearing

on the study of the growth properties of the scattered solutions satisfying the condition (1.16).

2. Auxiliary results

Theorem 2.1 The series

φ(r, θ) =
∞∑

n=0

anRn(r)P
(µ− 1

2 ,ν−
1
2 )

n (cos 2θ) (2.1)

converges absolutely and uniformly on compact subsets of the open disk of the convergence

|z| < ρ, where
1

ρ
= lim sup

n→∞
|an|

1
2n . (2.2)

Further, such convergence cannot be obtained on any longer disk.
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Proof Let ρ0 denote the radius of the largest disk centered at the origin in which the series

(2.1) will converge uniformly on compact subsets. Recalling the orthogonality relation for the

Jacobi polynomials [22]∫ +1

−1

(1− ξ)ν−
1
2 (1 + ξ)µ−

1
2P

(ν− 1
2 ,µ−

1
2 )

n (ξ)P
(ν− 1

2 ,µ−
1
2 )

m (ξ)dξ

= δnm
2µ+νΓ(n+ ν + 1

2 )Γ(n+ µ+ 1
2 )

(2n+ µ+ ν)n!Γ(n+ µ+ ν)
,

and the bound |P (α,β)
n (ξ)| ≤

(
n+q−1

n

)
, where q = max(α, β) (see [22,Vol.2, p.206]), in the relation

[23]

f(ℑ) =
∫ +1

ϑ−1

[ (1− ξ)ν−
1
2 (1 + ξ)µ−

1
2

2µ+ν

∞∑
n=0

(2n+ µ+ ν)n!Γ(n+ µ+ ν)

Γ(n+ ν + 1
2 )Γ(n+ µ+ 1

2 )

ℑn

Rn(r)
P

(ν− 1
2 ,µ−

1
2 )

n (ξ)
]
φ(r, ξ)dξ,

where ϑ ≡ {ξ| − 1 ≤ ξ ≤ +1|}, f(ℑ) =
∑∞

n=0 anℑn and ℑn

Rn(r)
≈ ℑnr−2n, then by termwise

integration we get

2µ+νΓ(n+ ν + 1
2 )Γ(n+ µ+ 1

2 )

(2n+ µ+ ν)Γ(n+ 1)Γ(n+ µ+ ν)
anRn(r)

=

∫ 1

−1

(1− ξ)ν−
1
2 (1 + ξ)µ+

1
2P

(ν− 1
2 ,µ−

1
2 )

n (ξ)φ(r, φ)dξ

= 2

∫ π/2

0

(1− cos 2θ)ν−
1
2 (1 + cos 2θ)µ+

1
2P

(ν− 1
2 ,µ−

1
2 )

n (cos 2θ)φ(r, φ) sin 2θdθ.

Thus, using the Schwartz inequality yields

|an| ≤
[ (2n+ µ+ ν)Γ(ν + 1

2 )Γ(µ+ 1
2 )Γ(n+ 1)Γ(n+ µ+ ν)

Γ(µ+ ν + 1)Γ(n+ ν + 1
2 )Γ(n+ µ+ 1

2 )

]1/2 · M(r, φ)

r2n
, (2.3)

where M(r, φ) = maxx2+y2=ρ2 |φ(x, y)|, r2 ≤ ρ(m−1
m ).

Now for all sufficiently large n, we have

Γ(n+ 1)Γ(n+ µ+ ν)

Γ(n+ ν + 1
2 )

≈
(n+ µ

n

)ν− 1
2 ≈ 1,

this yields lim supn→∞ |an|1/2n ≤ 1
r , and since the choice of r < ρ0 was arbitrary,

lim sup
n→∞

|an|
1
2n ≤ 1

ρ0
.

On the other hand, suppose

lim sup
n→∞

|an|
1
2n =

1

ρ
, (2.4)

then the series (2.1) is dominated by

∞∑
n=0

|an||Rn(r)|
(
n+ q − 1

n

)
Thus (2.4) implies the series (2.1) converges absolutely and uniformly on compact subsets

of the disk centered at the origin of radius ρ and hence the theorem follows.
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In particular, the solution φ(r, θ) is entire if and only if its series representation (2.1) has

an infinite radius if convergence, if and only if

ρ =
(
lim sup
n→∞

|an|1/2n
)−1 → ∞.

Now, we introduce the idea of the growth parameters order ρ∗ and type T ∗ of an entire

function solution φ(r, θ) following the usual function theoretic definitions [26, p.3]:

ρ∗ = lim sup
r→∞

log logM(r, φ)

log ρ
(2.5)

and

T ∗ = lim sup
r→∞

logM(r, φ)

ρρ∗ (2.6)

3. Main results

In this section we characterize ρ∗ and T ∗ in terms of coefficients {an} occurring in series

development (2.1) of φ(r, θ).

Theorem 3.1 Let φ(r, θ) be a solution of (1.1) with a series development (2.1). Furthermore,

let φ(r, θ) be an entire function solution of order ρ∗. Then

ρ∗(φ) = lim sup
n→∞

n log n

− log |an|
, (3.1)

where {an} are the coefficients occurring in series development (2.1) of φ(r, θ).

Proof We have [23, p.69]:

φ(r, θ) =
1

2πi

∫
ϑ

f(ℑ)
( ∞∑

n=0

ℑ−nRn(r)P
(µ− 1

2 ,ν−
1
2 )

n (ξ)
)dℑ
ℑ

(3.2)

where |r2ℑ| < 1, f(ℑ) =
∑∞

n=0 anℑn and ϑ ≡ {|ℑ||ℑ| = (r + ε)2, ε > 0 arbitrary small}.
Now first we estimate

∞∑
n=0

ℑ−nRn(r)P
(µ− 1

2 ,ν−
1
2 )

n (ξ)

=

N∑
n=0

ℑ−n(Rn(r)− r2n)P
(µ− 1

2 ,ν−
1
2 )

n (ξ) +
(
1 + 0

( 1

N

))
{
2µ+ν−1T−1

(
1− r2

ℑ
+ T

)−µ+ 1
2
(
1 +

r2

ℑ
+ T

)−ν+ 1
2
}
,

for n sufficiently large, where T = (1− 2ξ(r2/ℑ) + r4/ℑ2)1/2, and T = 1 when r2

ℑ = 0.

Suppose, since the Rn(r) are entire functions of complex r, that

M1(r, ε
′) = max

|ℑ|=r2+ε′
−1≤ξ≤+1

{∣∣∣ ∞∑
n=0

ℑ−nRn(r)P
(µ− 1

2 ,ν−
1
2 )

n (ξ)
∣∣∣},

and

M2(r, ε
′) = max

|ℑ|=r2+ε′
−1≤ξ≤+1

{ 1

|T |
}
,
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then ∣∣∣ ∞∑
n=0

ℑ−nRn(r)P
(µ− 1

2 ,ν−
1
2 )

n (ξ)
∣∣∣ ≤ M1(r, ε

′) + 2µ+ν(M2(r, ε
′))µ+ν ,

r2

|ℑ|
< 1.

We see that M1(r, ε
′) < ∞ for N < ∞, |ℑ| = r2 + ε′, −1 ≤ ξ ≤ +1.

In order to estimate M2(r, ε
′) we set ℑ = (r2 + ε′)e−iθ in T and consider the extrema of

|T |. We conclude that |T | assumes its minimum over the domain 0 ≤ θ ≤ 2π,−1 ≤ ξ ≤ +1 for

cos θ = 1 and for ξ = r2

(r2+ε′) . Hence, the minimum value of T is greater than (ε′)2(r2 + ε′)−2.

Consequently, for ε′ sufficiently small, we have∣∣∣ ∞∑
n=0

ℑ−nRn(r)P
(µ− 1

2 ,ν−
1
2 )

n (ξ)
∣∣∣ ≤ M1(r, ε

′) + [2(ε′)−2(r2 + ε′)2]µ+ν

≤ 2M1(r, 0) + [2(ε′)−2(r2 + ε′)2]µ+ν . (3.3)

Using (3.3) in (3.2), we get

|φ(r, θ)| ≤ {2M1(r, 0) + [2(ε′)−2(r2 + ε′)2]µ+ν}|f(ℑ)|, for |ℑ| ≤ r20 + ε′. (3.4)

Recalling that associate of φ(r, θ) must also be entire and has the same coefficients {an}.
The formula expressing the order of an entire function of a single complex variable in terms of

its Taylor coefficients [26, p.4] yields

ρ∗(φ) ≤ lim sup
n→∞

n log n

log |an|−1
= ρ∗(f). (3.5)

In view of (2.3) and the definition (2.5) of order, we have for sufficiently large ρ and finite r

|an| ≤
[ (2n+ µ+ ν)Γ(ν + 1

2 )Γ(µ+ 1
2 )Γ(n+ 1)Γ(n+ µ+ ν)

Γ(µ|ν + 1)Γ(n+ ν + 1
2 )Γ(n+ µ+ 1

2 )

]1/2 exp(ρ(ρ∗+ε))

r2n
.

Since r2 ≤ ρ[ (m−1)
m ], the minimum value of r−2n exp(ρ(ρ

∗+ε)) is attained when

ρ =
( n

ρ∗(φ) + ε

) 1
(ρ∗(φ)+ε) .

Thus, for n sufficiently large,

|an| ≤
[ (2n+ µ+ ν)Γ(ν + 1

2 )Γ(µ+ 1
2 )Γ(n+ 1)Γ(n+ µ+ ν)

Γ(µ+ ν + 1)Γ(n+ ν + 1
2 )Γ(n+ µ+ 1

2 )

]1/2×
[ (ρ∗(φ) + ε)e

n(m−1
m )

] n
(ρ∗(φ)+ε) ,

now one easily computes

ρ∗(φ) + ε ≥ log n

log |an|−1/n
= ρ∗(f). (3.6)

Combining (3.5) and (3.6), the proof is completed. �

Theorem 3.2 Let φ(r, θ) be a solution of (1.1) with a series development (2.1). Furthermore,

let φ(r, θ) be an entire function solution of order ρ∗ and type T ∗. Then

T ∗(φ) =
1

eρ∗
lim sup
n→∞

n|an|ρ
∗/n,
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where {an} are the coefficients occurring in series development (2.1) of φ(r, θ).

Proof By the result of Theorem 3.1 and the expression of the order of an entire function in

terms of its Taylor coefficients, it follows that the order of φ(r, θ) equals the order of f(ℑ). Thus
inequality (3.4) implies T ∗(φ) ≤ T ∗(f). Using the expression giving for the type of an entire

function in terms of its Taylor coefficients [26, p.4], we have

T ∗(φ) ≤ T ∗(f) =
1

eρ∗(f)
lim supn|an|

ρ∗(f)
n . (3.7)

Using (2.3) and the definition (2.6) of type, we have for sufficiently large ρ and finite r

|an| ≤
[ (2n+ µ+ ν)Γ(ν + 1

2 )Γ(µ+ 1
2 )Γ(n+ 1)Γ(n+ µ+ ν)

Γ(µ+ ν + 1)Γ(n+ ν + 1
2 )Γ(n+ µ+ 1

2 )

]1/2×
exp[(T ∗(φ) + ε)ρρ

∗(φ)]

r2n
.

The minimum value of r−2n exp[(T ∗ + ε)ρρ
∗(φ)] attains at

ρ =
[ n

(T ∗(φ) + ε)ρ∗(φ)

] 1
ρ∗(φ) .

For sufficiently large n,

|an| ≤
[ (2n+ µ+ ν)Γ(ν + 1

2 )Γ(µ+ 1
2 )Γ(n+ 1)Γ(n+ µ+ ν)

Γ(µ+ ν + 1)Γ(n+ ν + 1
2 )Γ(n+ µ+ 1

2 )

]1/2×
[ (T ∗(φ) + ε)eρ∗(φ)

n(m−1
m )

] n
ρ∗(φ) ,

it gives
1

eρ∗(φ)
lim sup
n→∞

n|an|
ρ∗(φ)

n ≤ T ∗(φ). (3.8)

Since ρ∗(f) = ρ∗(φ), (3.7) and (3.8) together completes the proof. �
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Zürich, 1953.



222 Devendra KUMAR, Payal BISHNOI and Mohammed HARFAOUI

[10] P. HENRICI. Bergman’s Integral operator erster Art and Riemannsche Funktion. Z. Angew. Math. Phys.,

1952, 3: 228–232.

[11] P. HENRICI. A survey of I. N. Vekua’s theory of elliptic partial differential equations with analytic coeffi-

cients. Z. Angew. Math. Phys., 1957, 8: 169–203.

[12] P. HENRICI. Complete Systems of Solutions for a Class of Singular Elliptic Partial Differential Equations.

Univ. of Wisconsin Press, Madison

[13] A. G. MACKIE. Contour integral solutions of a class of differential equations. J. Rational Mech. Anal.,

1955, 4: 733–750.

[14] A. HEINS, R. C. MACCAMY. On the scattering of waves by a disk. Z. Angew. Math. Phys., 1960, 11:

249–264.

[15] A. HEINS, R. C. MACCAMY. Integral representations of axially symmetric potential functions. Arch.

Rational Mech. Anal., 1963, 13: 371–385.

[16] A. J. FRYANT. Growth and complete sequences of generalized bi-axially symmetric potentials. J. Differential

Equations, 1979, 31(2): 155–164.

[17] D. KUMAR. Growth estimates of entire function solutions of generalized bi-axially symmetric Helmholtz

equation. Sao Paulo J. Math. Sci. to appear.

[18] R. P. GILBERT, H. C. HOWARD. On solutions of the generalized axially symmetric wave equation repre-

sented by Bergman operators. Proc. London Math. Soc. (3), 1965, 15: 346–360.

[19] P. A. MCCOY. Polynomial approximation of generalized biaxisymmetric potentials. J. Approx. Theory,

1979, 25(2): 153–168.

[20] D. KUMAR. On the (p, q)-growth of entire function solutions of Helmholtz equation. J. Nonlinear Sci. Appl.,

2011, 4(1): 5–14.

[21] R. P. GILBERT, R. G. NEWTON. Analytic Methods in Mathematical Physics. Gordon and Breach Science

Publishers, New York-London-Paris, 1970.
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