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Abstract In this paper, we consider a discrete Nicholson’s blowflies model with delay. By

constructing suitable Lyapunov functional, a sufficient condition for the permanence and global

attractivity of the system is obtained. An example together with its numerical simulation

shows the feasibility of our main results.
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1. Introduction

One of the most popular population models is the well known Nicholson’s blowflies model

x′(t) = −αx(t) + βx(t− τ)e−γx(t−τ), (1.1)

which was proposed by Gurney et al. [1]. Here x(t) is the size of the population at time t, β is

the maximum per capita daily egg production, (1/γ) is the size at which the blowfly population

reproduces at its maximum rate, α is the pair capita daily adult death rate and τ is the generation

time. For more background of model (1.1), please see [2–4].

Though lots has been done for population models described by differential equations, it has

been found that the dynamics of their discrete analogues is rather complex and richer than those

of continuous ones. In addition, discrete time models can also provide efficient computational

models of continuous time models for numerical simulations. It is reasonable to study discrete

time models governed by difference equations. For similar work in this direction, we refer the

reader to [5–11] and the references cited therein.

[12,13] studied the dynamic behavior of the following autonomous discrete differential equa-

tion

x(n+ 1)− x(n) = −αx(n) + βx(n− τ)e−γx(n−τ). (1.2)

They obtained sufficient conditions for the global attractivity of all positive solutions about the

positive equilibrium. The oscillation about the positive equilibrium was also discussed. Multiple

stability results for autonomous model are well known, however there are only a few results for
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the global stability of non-autonomous equations. It has been found that the non-autonomous

discrete systems can demonstrate quite rich and complicated dynamics. Recently, some scholars

[14–16] paid attention to the non-autonomous discrete models, since such kind of model could

be more appropriate. However, few papers have been published on the global attractivity of the

Nicholson’s blowflies model with discrete delay. This is the main motivation of this paper.

In this paper, we consider a discrete Nicholson’s blowflies with delay:

x(n+ 1)− x(n) = −α(n)x(n) + β(n)x(n− τ)e−γ(n)x(n−τ). (1.3)

We consider system (1.3) with the following initial conditions:

x(θ) = φ(θ) > 0, θ ∈ N [−τ, 0] = −τ,−τ + 1, . . . , 0. (1.4)

Our main purpose is to establish a series of sufficient conditions for the boundedness, per-

manence and global attrativity of solutions of model (1.3) and (1.4) by developing the research

method given in [6] for a class of discrete logistic equation. To the best of our knowledge, this

is the first paper to study the global attractivity of a discrete Nicholson’s blowflies model by

developing some new analysis technique. Compared with some earlier works on the discrete

Nicholson’s blowflies models, our approach is novel. The result of this paper is completely new

and improves some existing results in the literature.

2. Preliminaries

Throughout this paper, we assume that

(H1) {α(n)}, {β(n)} and {γ(n)} are all bounded nonnegative sequences such that

0 < αl < αu < 1, 0 < βl < βu, 0 < γl < γu.

Here, for any bounded sequence {h(n)}, hu = supn∈N h(n) and hl = infn∈N h(n).

It is not difficult to see that solutions of (1.3) are all well defined for all n ≥ 0 and satisfy

x(n) > 0.

Lemma 2.1 ([17]) Assume that A > 0 and y(0) > 0, and further suppose that

(1) y(n+ 1) ≤ Ay(n) +B(n), n = 1, 2, . . . . Then for any integer k ≤ n,

y(n) ≤ Aky(n− k) +
k−1∑
i=0

AiB(n− i− 1).

Especially, if A < 1 and B is bounded above with respect to M , then

lim sup
n→∞

y(n) ≤ M

1−A
.

(2) y(n+ 1) ≥ Ay(n) +B(n), n = 1, 2, . . . . Then for any integer k ≤ n,

y(n) ≥ Aky(n− k) +
k−1∑
i=0

AiB(n− i− 1).
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Especially, if A < 1 and B is bounded below with respect to m, then

lim sup
n→∞

y(n) ≥ m

1−A
.

Lemma 2.2 Let x{n} be a solution of (1.3) with the initial condition (1.4). Then

lim sup
n→∞

x(n) ≤ M, where M =
βu

αlγle
.

Proof Let x{n} be an arbitrary solution of system (1.3). From system (1.3), it follows that

x(n+ 1) = (1− α(n))x(n) + β(n)x(n− τ)e−γ(n)x(n−τ)

≤ (1− αl)x(n) + βux(n− τ)e−γlx(n−τ). (2.1)

It follows from (2.1) and the fact that supu≥0 ue
−γu = 1

γe , we have

x(n+ 1) ≤ (1− αl)x(n) +
βu

γle
. (2.2)

By applying Lemma 2.1 to (2.2), it immediately follows that

lim sup
n→∞

x(n) ≤ βu

αlγle

def
= M.

This completes the proof of Lemma 2.2. �

3. Main results

Following we will state and prove the main results of this paper.

Theorem 3.1 Assume that (H1) holds; assume further that

(H2) βl > αu holds, then system (1.3) with the initial condition (1.4) is permanent. That

is, there exist positive constants M , m, which are independent of the solution of the system,

such that any positive solution x(n) of system (1.3) and (1.4) satisfies

m ≤ lim inf
n→∞

x(n) ≤ lim sup
n→∞

x(n) ≤ M.

Proof From Lemma 2.2, we obtain that

lim sup
n→∞

x(n) ≤ M =
βu

αlγle
.

Now we first prove that any positive solution x(n) of system (1.3) and (1.4) satisfies

lim inf
n→∞

x(n) > 0. (3.1)

Suppose, for the sake of contradiction, lim infn→∞ x(n) = 0. We define

t(n) = max{s : s ≤ n, x(s) = min
0≤ξ≤n

x(ξ)}.

Observe that t(n) → ∞ as n → ∞ and

lim
n→∞

x(t(n)) = 0. (3.2)

However, x(t(n)) = min0≤ξ≤n x(ξ), so x(t(n+ 1))− x(t(n)) ≤ 0, which implies that

0 ≥ x(t(n+ 1))− x(t(n)) = −α(t(n))x(t(n)) + β(t(n))x(t(n)− τ)e−γ(t(n))x(t(n)−τ)
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≥ −αux(t(n)) + βlx(t(n)− τ)e−γux(t(n)−τ).

Therefore,

0 = lim
n→∞

αux(t(n)) ≥ lim
n→∞

βlx(t(n)− τ)e−γux(t(n)−τ). (3.3)

Hence, limn→∞ x(t(n)− τ) = 0. This, together with (3.3) and the definition of t(n), we have

αu ≥ lim inf
n→∞

βlx(t(n)− τ)

x(t(n))
e−γux(t(n)−τ) ≥ lim inf

n→∞
βle−γux(t(n)−τ) = βl,

which contradicts (H2). Hence (3.1) holds.

Next we prove that there exists a positive constant m such that lim infn→∞ x(n) ≥ m.

Define

η = lim inf
n→∞

x(n), h = min{g(η), g(M)} where g(x) = xe−γux.

This combining with system (1.3) and 0 < αu < 1 leads to

η = lim inf
n→∞

x(n) ≥ lim inf
n→∞

[
(x(0)− βlh

αu
)(αu − 1)n +

βlh

αu

]
=

βlh

αu
. (3.4)

If h = g(η), then η ≥ βl

αu ηe
−γuη. So we have η ≥ 1

γu ln βl

αu . If h = g(M), it follows from (3.4)

that η ≥ βl

αuMe−αuM . The above inequality leads to

lim inf
n→∞

x(n) ≥ min{ 1

γu
ln

βl

αu
,
βl

αu
Me−αuM} def

= m. (3.5)

This completes the proof of Theorem 3.1. �

Theorem 3.2 Assume that (H1) and (H2) hold; assume further that

(H3) γl ·m > 1 and

(H4) e4αl(2− αu) > 2e2(1− αl)βu + 2e2ταuβu + (2τ + 1)βu hold, then system (1.3) with

the initial condition (1.4) is globally attractive. That is, for any positive solutions x(n) and y(n)

of system (1.3), we have limn→∞(x(n)− y(n)) = 0.

Proof For any solutions x(n) and y(n) of system (1.3), it follows from Theorem 3.1 that

m ≤ lim inf
n→∞

x(n) ≤ lim sup
n→∞

x(n) ≤ M, m ≤ lim inf
n→∞

y(n) ≤ lim sup
n→∞

y(n) ≤ M.

For any positive constant ε > 0 small enough, there exists an integer n0 such that for all n ≥ n0,

m ≤ x(n), y(n) ≤ M. (3.6)

Using the mean value theorem, we get

x(n)e−x(n) − y(n)e−y(n) = (1− θ(n))e−θ(n)
(
x(n)− y(n)

)
, (3.7)

where θ(n) lies between x(n) and y(n). Let

W1(n) = x(n)− y(n) +
n−1∑

s=n−τ

β(s+ τ)
(
x(s)e−γ(s+τ)x(s) − y(s)e−γ(s+τ)y(s)

)
.

Then, from system (1.3), we obtain

W1(n+ 1) =
(
1− α(n)

)(
x(n)− y(n)

)
+ β(n)

(
x(n− τ)e−γ(n)x(n−τ) − y(n− τ)e−γ(n)y(n−τ)

)
+
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n∑
s=n+1−τ

β(s+ τ)
(
x(s)e−γ(s+τ)x(s) − y(s)e−γ(s+τ)y(s)

)
.

So, we have

∆W1(n) =W1(n+ 1)−W1(n)

=− α(n)
(
x(n)− y(n)

)
+ β(n+ τ)

(
x(n)e−γ(n+τ)x(n) − y(n)e−γ(n+τ)y(n)

)
.

Define V1(n) = W 2
1 (n). Therefore

∆V1(n) = W 2
1 (n+ 1)−W 2

1 (n) = ∆W1(n)
(
W1(n+ 1) +W1(n)

)(
− α(n)

(
x(n)− y(n)

)
+ β(n+ τ)

(
x(n)e−γ(n+τ)x(n) − y(n)e−γ(n+τ)y(n)

))
·((

2− α(n)
)(
x(n)− y(n)

)
+ β(n+ τ)

(
x(n)e−γ(n+τ)x(n) − y(n)e−γ(n+τ)y(n)

)
+

2
n−1∑

s=n−τ

β(s+ τ)
(
x(s)e−γ(s+τ)x(s) − y(s)e−γ(s+τ)y(s)

))
= −α(n)(2− α(n))

(
x(n)− y(n)

)2
+

2(1− α(n))
(
x(n)− y(n)

)(β(n+ τ)

γ(n+ τ)

(
γ(n+ τ)x(n)e−γ(n+τ)x(n) − γ(n+ τ)y(n)e−γ(n+τ)y(n)

))
−

2α(n)
(
x(n)− y(n)

) n−1∑
s=n−τ

β(s+ τ)

γ(s+ τ)

(
γ(s+ τ)x(s)e−γ(s+τ)x(s) − γ(s+ τ)y(s)e−γ(s+τ)y(s)

)
+

(β(n+ τ)

γ(n+ τ)

(
γ(n+ τ)x(n)e−γ(n+τ)x(n) − γ(n+ τ)y(n)e−γ(n+τ)y(n)

))2

+

2
β(n+ τ)

γ(n+ τ)

(
γ(n+ τ)x(n)e−γ(n+τ)x(n) − γ(n+ τ)y(n)e−γ(n+τ)y(n)

)
·

( n−1∑
s=n−τ

β(s+ τ)

γ(s+ τ)

(
γ(s+ τ)x(s)e−γ(s+τ)x(s) − γ(s+ τ)y(s)e−γ(s+τ)y(s)

))
. (3.8)

By applying (3.7) to (3.8), we have

∆V1(n) =− α(n)(2− α(n))
(
x(n)− y(n)

)2
+

2(1− α(n))β(n+ τ)
(
1− θ(n)γ(n+ τ)

)
e−θ(n)γ(n+τ)

(
x(n)− y(n)

)2−
2α(n)

(
x(n)− y(n)

) n−1∑
s=n−τ

β(s+ τ)
(
1− θ(s)γ(s+ τ)

)
e−θ(s)γ(s+τ)

(
x(s)− y(s)

)
+

(
β(n+ τ)

(
1− θ(n)γ(n+ τ)

)
e−θ(n)γ(n+τ)

(
x(n)− y(n)

))2

+

2β(n+ τ)
(
1− θ(n)γ(n+ τ)

)
e−θ(n)γ(n+τ)

(
x(n)− y(n)

)
·( n−1∑

s=n−τ

β(s+ τ)
(
1− θ(s)γ(s+ τ)

)
e−θ(s)γ(s+τ)

(
x(s)− y(s)

))
. (3.9)

Hence, applying the fact that 2ab ≤ a2 + b2 to (3.9), we obtain

∆V1(n) ≤− α(n)(2− α(n))
(
x(n)− y(n)

)2
+

2(1− α(n))β(n+ τ)
(
1− θ(n)γ(n+ τ)

)
e−θ(n)γ(n+τ)

(
x(n)− y(n)

)2
+
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α(n)
n−1∑

s=n−τ

β(s+ τ)
(
1− θ(s)γ(s+ τ)

)
e−θ(s)γ(s+τ)

(
x(n)− y(n)

)2
+

α(n)
n−1∑

s=n−τ

β(s+ τ)
(
1− θ(s)γ(s+ τ)

)
e−θ(s)γ(s+τ)

(
x(s)− y(s)

)2
+

(
β(n+ τ)

(
1− θ(n)γ(n+ τ)

)
e−θ(n)γ(n+τ)

(
x(n)− y(n)

))2

+

β(n+ τ)
(
1− θ(n)γ(n+ τ)

)
e−θ(n)γ(n+τ)·

n−1∑
s=n−τ

β(s+ τ)
(
1− θ(s)γ(s+ τ)

)
e−θ(s)γ(s+τ)

(
x(n)− y(n)

)2
+

β(n+ τ)
(
1− θ(n)γ(n+ τ)

)
e−θ(n)γ(n+τ)·

n−1∑
s=n−τ

β(s+ τ)
(
1− θ(s)γ(s+ τ)

)
e−θ(s)γ(s+τ)

(
x(s)− y(s)

)2
. (3.10)

According to (H3), (3.6) and the fact that maxx∈[1,+∞](1− x)e−x = 1
e2 , for n ≥ n0, we have

∆V1(n) ≤− α(n)(2− α(n))
(
x(n)− y(n)

)2
+

2

e2
(1− α(n))β(n+ τ)

(
x(n)− y(n)

)2
+

1

e2
α(n)

n−1∑
s=n−τ

β(s+ τ)
(
x(n)− y(n)

)2
+

1

e2
α(n)

n−1∑
s=n−τ

β(s+ τ)
(
x(s)− y(s)

)2
+

1

e4

(
β(n+ τ)

(
x(n)− y(n)

))2

+
1

e4
β(n+ τ)

n−1∑
s=n−τ

β(s+ τ)
(
x(n)− y(n)

)2
+

1

e4
β(n+ τ)

n−1∑
s=n−τ

β(s+ τ)
(
x(s)− y(s)

)2
. (3.11)

Let

V2(n) =
n−1+τ∑
u=n

α(u)
n−1∑

s=u−τ

β(s+ τ)
(
x(s)− y(s)

)2
.

Then

∆V2(n) = V2(n+ 1)− V2(n)

=
n+τ∑

u=n+1

α(u)β(n+ τ)
(
x(n)− y(n)

)2 − α(n)
n−1∑

s=n−τ

β(s+ τ)
(
x(s)− y(s)

)2
. (3.12)

Let

V3(n) =
n−1+τ∑
u=n

β(u+ τ)
n−1∑

s=u−τ

β(s+ τ)
(
x(s)− y(s)

)2
.

Then

∆V3(n) = V3(n+ 1)− V3(n)

=
n+τ∑

u=n+1

β(u+ τ)β(n+ τ)
(
x(n)− y(n)

)2 − β(n+ τ)
n−1∑

s=n−τ

β(s+ τ)
(
x(s)− y(s)

)2
.

(3.13)
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Define

V (n) = V1(n) +
1

e2
V2(n) +

1

e4
V3(n).

Then it follows from (3.12) and (3.13) that

∆V (n) ≤− α(n)(2− α(n))
(
x(n)− y(n)

)2
+

2

e2
(1− α(n))β(n+ τ)

(
x(n)− y(n)

)2
+

1

e2
α(n)

n−1∑
s=n−τ

β(s+ τ)
(
x(n)− y(n)

)2
+

1

e2

n+τ∑
u=n+1

α(u)β(n+ τ)
(
x(n)− y(n)

)2
+

1

e4

(
β(n+ τ)

(
x(n)− y(n)

))2

+
1

e4
β(n+ τ)

n−1∑
s=n−τ

β(s+ τ)
(
x(n)− y(n)

)2
+

1

e4

n+τ∑
u=n+1

β(u+ τ)β(n+ τ)
(
x(n)− y(n)

)2
=− α(n)(2− α(n))

(
x(n)− y(n)

)2
+

2

e2
(1− α(n))β(n+ τ)

(
x(n)− y(n)

)2
+

1

e2
α(n)

n−1∑
s=n−τ

β(s+ τ)
(
x(n)− y(n)

)2
+

1

e2

n+τ∑
u=n+1

α(u)β(n+ τ)
(
x(n)− y(n)

)2
+

1

e4
β(n+ τ)

n−1∑
s=n−τ

β(s+ τ)
(
x(n)− y(n)

)2
+

1

e4

n+τ∑
u=n

β(u+ τ)β(n+ τ)
(
x(n)− y(n)

)2
.

(3.14)

From condition (H4), we can choose a δ > 0 small enough such that

αl(2− αu)−
( 2

e2
(1− αl)βu +

2τ

e2
αuβu +

2τ + 1

e4
βu

)
> δ. (3.15)

From (3.14) and (3.15), we obain

∆V (n) ≤− αl(2− αu)
(
x(n)− y(n)

)2
+

2

e2
(1− αl)βu

(
x(n)− y(n)

)2
+

1

e2
αuβuτ

(
x(n)− y(n)

)2
+

1

e2
αuβuτ

(
x(n)− y(n)

)2
+

1

e4
βuβuτ

(
x(n)− y(n)

)2
+

1

e4
βuβu(τ + 1)

(
x(n)− y(n)

)2
=−

(
αl(2− αu)−

( 2

e2
(1− αl)βu +

2τ

e2
αuβu +

2τ + 1

e4
βu

))(
x(n)− y(n)

)2
≤− δ

(
x(n)− y(n)

)2
. (3.16)

Summating both sides of the above inequalities from n0 + τ to n, we have
n∑

s=n0+τ

(
V (s+ 1)− V (s)

)
≤ −δ

n∑
s=n0+τ

(
x(s)− y(s)

)2
,

which implies

V (n+ 1) + δ
n∑

s=n0+τ

(
x(s)− y(s)

)2 ≤ V (n0 + τ),

that is
n∑

s=n0+τ

(
x(s)− y(s)

)2 ≤ V (n0 + τ)

δ
.
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It follows from (3.6) that Vi(n0 + τ), i = 1, 2, 3 are all bounded. Hence

n∑
s=n0+τ

(
x(s)− y(s)

)2 ≤ V (n0 + τ)

δ
< +∞,

which means that
+∞∑

s=n0+τ

(
x(s)− y(s)

)2 ≤ V (n0 + τ)

δ
< +∞.

This implies that limn→∞(x(n)− y(n))2 = 0, or limn→∞(x(n)− y(n)) = 0. This completes the

proof of Theorem 3.2. �

4. Example

The following example shows the feasibility of our main result.

Example 4.1 Consider the following equation

x(n+ 1)− x(n) =−
(
0.8 + 0.01 sin(

√
2n)

)
x(n) +

(
2.79 + 0.01 sin(

√
3n)

)
·

x(n− 1)e−
(
0.72+0.01 sinn

)
x(n−1). (4.1)

It is easy to calculate that M ≈ 1.8365, m ≈ 1.424, αu = 0.81, αl = 0.79, βu = 2.8,

βl = 2.78, γu = 0.73, γl = 0.71, γlm ≈ 1.0111 > 1, e4αl(2 − αu) ≈ 51.3277, 2e2(1 − αl)βu +

2e2ταuβu + (2τ + 1)βu ≈ 50.6063. Clearly, conditions (H1)–(H4) are satisfied. It follows from

Theorem 3.2 that system (4.1) is globally attractive (see Figure 1).

0 10 20 30 40 50 60
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

time n

x(
n)

 x(n)

Figure 1 Dynamic behavior of the solution x(n) of system (4.1) with the initial conditions

φ(θ) = 1.2, 1.5, and 1.8 for θ = −1, 0, respectively.
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