Journal of Mathematical Research with Applications May, 2017, Vol. 37, No. 3, pp. 267–273 DOI:10.3770/j.issn:2095-2651.2017.03.003 Http://jmre.dlut.edu.cn

Commutative L^* -Rings

Jingjing MA^{1,*}, Yuehui ZHANG²

- Department of Mathematics and Statistics, University of Houston-Clear Lake, Houston TX 77058, USA
- Department of Mathematics, School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Abstract We show that for an integral domain or a commutative local ring, it is an L^* -ring if and only if it is an O^* -ring. Some general conditions are also proved for a commutative ring that cannot be L^* .

Keywords division closed; lattice order; partial order; total order; F^* -ring; O^* -ring

MR(2010) Subject Classification 06F25

1. Introduction

In this paper, all rings are commutative and torsion-free as a group. A ring is called *unital* if it has an identity element. We review a few definitions and the reader is referred to [1,2] for more information on partially ordered rings and lattice-ordered rings (ℓ -rings). For a partially ordered ring R, the positive cone is defined as $R^+ = \{r \in R \mid r \geq 0\}$. Let \leq and \leq' be two partial orders on a ring R. We say that the partial order \leq' extends the partial order \leq , if for any $a, b \in R$, $a \leq b$ implies that $a \leq' b$. Let P and P' be the positive cones of \leq and \leq' . Then \leq' extends \leq just means $P \subseteq P'$.

A ring R is called an L^* -ring (O^* -ring), if each partial on R can be extended to a lattice order (total order) on R. A ring R is called a dir- L^* -ring (dir- O^* -ring) if each directed partial order on R can be extended to a lattice order (total order) [3]. Clearly an O^* -ring is L^* and dir- L^* . For a characterization of O^* -rings, the reader is referred to [4].

A partially ordered ring R is called division closed if for any $a,b \in R$, ab > 0 and a > 0 implies that b > 0. Each totally ordered ring is clearly division closed. In [3], a ring is defined to be consistently L^* if every partial order that is division closed can be extended to a lattice order that is division closed, and a ring is consistently O^* if each partial order that is division closed can be extended to a total order. A partially ordered ring R is called regular division closed if for any $a,b \in R$, ab > 0 and a > 0 is a regular element implies that b > 0. If a partially ordered ring is a domain, then clearly division closed and regular division closed are equivalent.

Received June 16, 2016; Accepted November 2, 2016

Supported by the National Natural Science Foundation of China (Grant No. 11271275) and the Natural Science Foundation of Shanghai Municipal (Grant No. 13ZR1422500).

E-mail address: ma@uhcl.edu (Jingjing MA); zyh@sjtu.edu.cn (Yuehui ZHANG)

^{*} Corresponding author

Recently it is proved that a field is O^* if and only if it is L^* , if and only if it is consistently L^* , and a field is dir- O^* if and only if it is dir- L^* (see [5, Theorems 6,7]). In this paper, we continue the study on L^* -rings.

2. Main results

Let R be a commutative partially ordered ring with the positive cone that contains regular elements of R. Recall that an element a of R is called a regular element if ab = 0 implies that b = 0 for any $b \in R$. Define

$$P = \{a \in R \mid \exists \text{ a regular element } a_1 \in R^+ \text{ such that } a_1 a \in R^+ \}.$$

Theorem 2.1 Let R be a commutative partially ordered ring with R^+ containing regular element. The P defined above is a partial order on R to make R a partially ordered ring that is regular division closed, and P extends R^+ .

Proof It is clear that $P + P \subseteq P$, $PP \subseteq P$. Suppose that $a \in P \cap P$. Then $a_1a \in R^+$ and $a_2(-a) \in R^+$ for some regular elements $a_1, a_2 \in R^+$, so $a_1a_2a = 0$. Thus a = 0 since a_1 and a_2 are regular. Hence $P \cap P = \{0\}$. Therefore P is a partial order on R.

Suppose that ab > 0 and a > 0 with respect to P, and a is regular. Then $b_1(ab) = c \in R^+$ and $a_1a = d \in R^+$ for some regular elements $a_1, b_1 \in R^+$, and hence $(b_1d)b = b_1(ab)a_1 = ca_1 \in R^+$. Since a_1 and a are regular, d is regular, so $b_1d \in R^+$ is regular. Thus $b \in P$. Therefore P is regular division closed.

Let $z \in R^+$ be a regular element. For each $a \in R^+$, $za \in R^+$ implies that $a \in P$, so $R^+ \subseteq P$. \square

Recall that R is called a domain if for any $a, b \in R$, ab = 0 implies that a = 0 or b = 0. The following result is an immediate consequence of Theorem 2.1.

Corollary 2.2 Let R be a commutative domain and a partially ordered ring with $R^+ \neq \{0\}$. Then R^+ can be extended to a partial order on R that is division closed.

Theorem 2.3 Let R be an integral domain.

- (1) R is consistently L^* if and only if R is O^* , and hence R is L^* if and only if R is O^* .
- (2) R is dir- L^* if and only if R is dir- O^* .

Proof We first notice that a unital ℓ -ring that is division closed must be an almost f-ring [2, Theorem 4.22].

(1) Suppose that R is consistently L^* and P is the positive cone of a partial order on R. Define $P_1 = \mathbb{Z}^+1 + P$, where \mathbb{Z}^+ is the set of all nonnegative integers. Then P_1 is a partial order on R, $P \subseteq P_1$ and $1 \in P_1$. We leave the verification of those facts to the reader. By Corollary 2.2, P_1 is extended to a partial order P_2 on R that is division closed. Thus P_2 is extended to a lattice order P' that is division closed by the assumption. Then (R, P') is a totally ordered ring. So R is O^* .

Now suppose that R is L^* . We show that R is consistently L^* . Then R is O^* by previous

Commutative L^* -rings 269

paragraph. Let P be the positive cone of a partial order on R that is division closed. By Zorn's Lemma, P is contained in a maximal partial order P_M . Certainly $1 \in P_M$. By Corollary 2.2, P_M is division closed, and P_M is a lattice order since R is L^* . Thus R is consistently L^* .

(2) The proof is similar to (1) and hence omitted. \Box We look at an example.

Example 2.4 Let F be an integral domain and $R = F[x_1, ..., x_n]$ be the polynomial ring over F with n variables. Then R is not an L^* -ring. Otherwise R is O^* by Theorem 2.3, so by [6] each element in R is algebraic over \mathbb{Z} , where \mathbb{Z} is the ring of integers, a contradiction.

Actually any integral domain that contains an element which is not algebraic over \mathbb{Z} is not L^* since it is not O^* .

Let R be an ℓ -ring. Recall that an element $a \in R^+$ is called an f-element (d-element) if for any $x, y \in R$, $x \wedge y = 0$ implies that $ax \wedge y = 0$ ($ax \wedge ay = 0$). An ℓ -ring is called an f-ring (d-ring) if each positive element is an f-element (d-element). A ring R is called F^* if each partial order can be extended to a lattice order to make R into an f-ring.

A *d*-ring must be regular division closed. In fact, if ab > 0 and a > 0 is regular in a *d*-ring, then ab = |ab| = a|b| implies that b = |b| > 0.

Theorem 2.5 Let R be a unital commutative local ring and an ℓ -ring. Then R is regular division closed if and only if R is a d-ring.

Proof Assume that R is regular division closed and M is the unique maximal ideal of R. We first notice that R^+ must contain a unit, otherwise $1 = 1^+ - 1^- \in M$. As a consequence, 1 > 0. Take $a \in R^+$. If $a \notin M$, then a is a unit, so $aa^{-1} = 1 > 0$ implies that $a^{-1} > 0$ since R is regular division closed. Then a is a d-element by [2, Theorem 1.2]. If $a \in M$, $1 + a \notin M$, so 1 + a is a d-element. It follows that a is a d-element since $0 \le a \le 1 + a$. Therefore each positive element is a d-element and R is a d-ring. \square

Corollary 2.6 Let R be a unital commutative local ring.

- (1) R is L^* if and only if it is O^* .
- (2) R is consistently L^* if and only if R is O^* .
- (3) R is dir- L^* if and only if R is dir- O^* .

Proof (1) Suppose that R is a unital commutative local ring that is L^* . Let P be a maximal partial order on R. Then $1 \in P$ and P is a lattice order. By Theorem 2.1, P is regular division closed, so by Theorem 2.5, (R, P) is a d-ring. It is well-known that a unital d-ring must be an f-ring, and hence (R, P) is an f-ring. Thus each partial order on R can be extended to a lattice order on R to make it into an f-ring, that is, R is an F^* -ring. By [7], each F^* -ring is O^* . Therefore R is O^* .

The proof of (2) and (3) is similar to that of (1). We omit the detail and leave it to the reader. \Box

Example 2.7 (1) Let F be a field and F[[x,y]] be the power series ring. Take I=(xy), the

ideal generated by xy, and then R = F[[x,y]]/I is a reduced local ring with the unique maximal ideal $M = (\bar{x}, \bar{y})$, the ideal generated by $\bar{x} = x + I$ and $\bar{y} = y + I$. Then by Corollary 2.6, R is not L^* since R is not O^* .

(2) Let $R = \{a + bx \mid a, b \in \mathbb{Q}, x^2 = 0\}$. Then R is also a local ring with the unique maximal ideal $M = \mathbb{Q}x$. Then R is L^* since R is O^* (see [4]).

Theorem 2.8 Let R be a finite direct product of unital rings R_1, \ldots, R_k with $k \geq 1$. If R is L^* , then each R_i is L^* , $i = 1, \ldots, k$.

Proof Let $R = R_1 \times R_2 \times \cdots \times R_k$ and R is L^* . Let us just show that R_1 is L^* . Take a maximal partial order P_1 on R_1 . We need to show that P_1 is a lattice order on R_1 . Take a maximal partial order P_i on R_i for $i = 2, \ldots, k$. Then clearly $P = P_1 \times P_2 \times \cdots \times P_k$ is a partial order on R, and hence $P \subseteq P^*$, where P^* is a maximal partial order on R, so P^* is a lattice order since R is L^* .

Define $Q_1 = \{a \in R_1 | (a, 0, \dots, 0) \in P^*\}$. Clearly Q_1 is a partial order on R_1 . If $x \in P_1$, then $(x, 0, \dots, 0) \in P \subseteq P^*$, so $x \in Q_1$. Thus $P_1 \subseteq Q_1$, and hence $P_1 = Q_1$. We claim that Q_1 is a lattice order on R_1 . Let $z \in R_1$ and

$$(z,0,\ldots,0) \vee_{P^*} 0 = (s_1,s_2,\ldots,s_k),$$

where \vee_{P^*} is the sup with respect to the lattice order P^* . We show that s_1 is the least upper bound of z and 0 with respect to Q_1 . From $(z,0,\ldots,0), 0 \leq_{P^*} (s_1,s_2,\ldots,s_k)$ and $(1,0,\ldots,0) \in P \subseteq P^*$, we have

$$(z,0,\ldots,0), 0 \leq_{P^*} (s_1,s_2,\ldots,s_k)(1,0,\ldots,0) = (s_1,0,\ldots,0),$$

so $(s_1, s_2, \ldots, s_k) \leq_{P^*} (s_1, 0, \ldots, 0)$. Since $(0, 1, \ldots, 1) \in P \subseteq P^*$, by multiplying it to the previous inequality, we obtain

$$(s_1, s_2, \dots, s_k)(0, 1, \dots, 1) = (0, s_2, \dots, s_k) \leq_{P^*} (s_1, 0, \dots, 0)(0, 1, \dots, 1) = 0,$$

and hence $s_2 = \cdots = s_k = 0$. Then $(z,0,\ldots,0), 0 \leq_{P^*} (s_1,0,\ldots,0)$ implies that $s_1 \in Q_1$ and $(s_1-z) \in Q_1$, that is, $z,0 \leq_{Q_1} s_1$. Suppose that $s \in R_1$ such that $z,0 \leq_{Q_1} s$. Then $(z,0,\ldots,0), 0 \leq_{P^*} (s,0,\ldots,0)$, so $(s_1,0,\ldots,0) \leq_{P^*} (s,0,\ldots,0)$. Therefore $s_1 \leq_{Q_1} s$. It follows that s_1 is the least upper bound of z and 0 with respect to Q_1 , that is, $z \vee_{Q_1} 0 = s_1$. This completes the proof that Q_1 is a lattice order on R_1 , so R_1 is L^* . Similarly each R_i is L^* . \square

A finite direct product of more than one unital ring cannot be O^* . In fact, it cannot even be a totally ordered ring since a unital totally ordered ring only has two idempotent elements 1 and 0. A finite direct product of unital commutative L^* -ring may not be L^* . This is a consequence of the following result that is motivated by [3, Proposition 2.2].

Theorem 2.9 Let $S \neq \{0\}$ be a reduced commutative ring and $T \neq \{0\}$ be a commutative domain. Then the direct product $S \times T$ is not an L^* -ring.

Proof We first show that T has a nontrivial partial order, namely a partial order with a nonzero positive cone. If T is unital, then \mathbb{Z}^+1 is a partial order on T with 1 > 0. Suppose that T is not

 $Commutative\ L^*$ -rings 271

unital. Take $0 \neq t \in T$. If there are positive integers n_1, \ldots, n_k such that $n_1 t^{a_1} + \cdots + n_k t^{a_k} = 0$ for k > 1 and $0 < a_1 < \cdots < a_k$, where a_i are positive integers, then T is a domain implies that for any $r \in R$, $n_1 r = z r$, where $z = -n_2 t^{(a_2 - a_1)} - \cdots - n_k t^{(a_k - a_1)}$. Hence $\mathbb{Z}^+ z$ is a nontrivial partial order. If t is not algebraic over \mathbb{Z}^+ , then the set of all polynomials in t with no constant term in which each coefficient is a nonnegative integer is a nontrivial partial order on T. We leave the verification of this fact to the reader. Therefore T has a nontrivial maximal partial order, and we denote the positive cone of this partial order by T^+ . By Corollary 2.2, T^+ is division closed.

Let $R = S \times T = \{(s,t) | s \in S, t \in T\}$ be the ring direct product of S and T. Define a positive cone P on R as follows

$$P = \{(s,t) \mid s \in S, 0 \neq t \in T^+\} \cup \{(0,0)\}.$$

It is clear that $P + P \subseteq P$, and $P \cap -P = \{0\}$. Since T is a domain, $PP \subseteq P$. Thus (R, P) is a partially ordered ring.

We claim that P is a maximal partial order on R. Suppose that $P \subseteq P^*$ and P^* is a maximal partial order on R. We show that $P = P^*$. Define

$$A = \{x \in T \mid (0, x) \in P^*\} \subseteq T.$$

Then $A + A \subseteq A$, $AA \subseteq A$, and $A \cap -A = \{0\}$, that is, A is a partial order on T. Since $P \subseteq P^*$, $T^+ \subseteq A$, and hence $T^+ = A$ since T^+ is a maximal partial order on T.

We show $P^* \subseteq P$. Take $0 \neq t \in T^+$, for $(w, z) \in P^*$. $(w, z)(0, t) = (0, zt) \in P^*$, so $zt \in A = T^+$. If $z \neq 0$, then $z \in T^+$ since T^+ is division closed, so $(w, z) \in P$ by the definition of P. If z = 0, then $(w, 0) \in P^*$. Since $(0, 0) \leq^* (w, 0) \leq^* (0, t)$, where \leq^* is the partial order on R with the positive cone P^* , we have

$$(0,0) \le^* (w,0)^2 \le^* (w,0)(0,t) = (0,0),$$

so $(w^2,0)=(0,0)$. Thus $w^2=0$ and w=0 since S is reduced. Hence z=0 implies that $(w,z)=(0,0)\in P$. Therefore $P=P^*$ is a maximal partial order on R.

We finally show that P is not a lattice order. Suppose that P is a lattice order on R. We derive a contradiction. Assume that $(x,0)\vee(0,0)=(u,v)$, where $0\neq x\in S$. If (u,v)=(0,0), then $(x,0)\leq(0,0)$, a contradiction. Then $(u,v)\neq(0,0)$, so $0\neq v\in T^+$. Then we have $(x,0),(0,0)\leq(u+x,v)$, so $(u,v)\leq(u+x,v)$ since (u,v) is the least supper bound of (u,0),(0,0). It follows that $(x,0)\in P$, a contradiction. \square

Here are some examples using Theorem 2.9.

Example 2.10 (1) Let \mathbb{C} be the field of complex numbers. Then $\mathbb{C} \times \mathbb{C}$ is not L^* .

- (2) Let F be a field and $G = \{1, e\}$ be a cyclic group of order 2. Then the group ring R = F[G] is not L^* . In fact, I = (1 + e)F and J = (1 e)F are two ideals of R with R = I + J and $I \cap J = \{0\}$, now by Theorem 2.9, R is not L^* .
- (3) A finite direct product of more than one unital integral domain is not L^* , for instance, a reduced commutative Artinian ring is not L^* .

Following result shows that under certain conditions, reduced unital commutative rings are not L^* . The proof is similar to that of Theorem 2.9.

Theorem 2.11 Let R be a reduced unital commutative algebra over a field F and I_1, I_2, \ldots, I_k be nonzero ideals of R with $k \geq 2$. Suppose that I_1 admits a nontrivial partial order to make it into a partially ordered ring. If following conditions are satisfied, then R cannot be an L^* -ring.

- (1) $I_1I_i = \{0\}, i = 2, \dots, k;$
- (2) $R = F1 + I_1 + \cdots + I_k$;
- (3) $K = F1 + I_1$ is a domain.

Proof Take a maximal partial order P on K that contains the given nontrivial partial order on I_1 . By Corollary 2.2, P is division closed and there is an nonzero element $x \in P \cap I_1$. Define

$$P^* = \{a+b \mid a \in P, a \neq 0 \& b \in I_2 + \dots + I_k\} \cup \{0\}.$$

Clearly $P^* + P^* \subseteq P^*$, $P^* \cap -P^* = \{0\}$. Since K is a domain, $P^*P^* \subseteq P^*$. Thus P^* is a partial order on R.

We first show that P^* is a maximal partial order on R. Suppose that $P^* \subseteq Q$, where Q is a maximal partial order on R. Let $P_1 = Q \cap K$. Then P_1 is a partial order on K. If $w \in P$, then $w \in P^* \subseteq Q$, so $w \in P_1$. Hence $P \subseteq P_1$, so $P = P_1$ since P is a maximal partial order on K. Assume that $w + z \in Q$ with $w \in K$ and $z \in I_2 + \cdots + I_k$. Since $0 \neq x \in P \subseteq P^* \subseteq Q$, we have $wx = (w+z)x \in Q$ since zx = 0, so $wx \in Q \cap K = P_1 = P$. If $w \neq 0$, then that (K, P) is division closed implies w > 0 with respect to P in P0, so P1. If P2, if P3, where P3 and that P3 is the partial order with respect to P4, implies that P3 is a maximal partial order on P4. Therefore in any cases, we have P4, so P5 is a maximal partial order on P6.

We claim that P^* is not a lattice order on R. Suppose that P^* is a lattice order on R and we get a contradiction. Take $0 \neq w \in I_2 + \cdots + I_k$ and suppose that $w \vee^* 0 = a + b$, where $a \in K, b \in I_2 + \cdots + I_k$, and the lattice order \vee^* is with respect to P^* . If a + b = 0, then $w <^* 0$, where \leq^* is the partial order with respect to P^* , a contradiction. Then $a + b \neq 0$, so $0 \neq a \in P$. It follows that $w, 0 \leq^* a + (b + w)$ and hence $a + b \leq^* a + (b + w)$, so $0 \leq^* w$, a contradiction. Therefore P^* is not a lattice order. \square

Example 2.12 Let F be a field and $A = F[x_1, \ldots, x_k]$ be the polynomial ring over F with $k \geq 2$. Suppose that I is the ideal generated by $\{x_i x_j | 1 \leq i, j \leq k, i \neq j\}$. Consider the ring R = A/I. Let $\overline{x_i} = x_i + I$, $i = 1, \ldots, k$ in R. Then $R = F1 + \overline{x_1}R + \cdots + \overline{x_k}R$, $(\overline{x_1}R)(\overline{x_i}R) = \{0\}$, for $i = 2, \ldots, k$, and $F1 + \overline{x_1}R$ is a domain. Thus R cannot be L^* by Theorem 2.11.

An important property of O^* -ring is that each nilpotent element has index at most two [6]. It is not known if this is true for an L^* -ring. In the following, we prove a similar result on L^* -ring. A unital partially ordered ring is called ℓ -unital if the identity element is positive.

Lemma 2.13 Let R be an ℓ -unital commutative partially ordered ring that is regular division closed. If a is a positive nilpotent element, then a < 1.

Commutative L^* -rings 273

Proof We prove the result by the induction on the index of nilpotency. If $a^2 = 0$, then (1-a)(1+a) = 1 and regular division closed property implies that 1-a > 0, that is, a < 1. Now suppose it is true for index less than or equal to n and suppose $a^{n+1} = 0$. Then a^2 has the index less than or equal to n, so $a^2 < 1$. Thus $(1-a)(1+a) = 1-a^2 > 0$ and regular division closed property gives us 1-a > 0, and hence a < 1. \square

For an element $a \in R$, Ann(a) denotes the annihilator of a, that is, Ann $(a) = \{w \in R | aw = 0\}$. Define $f(R) = \{a \in R | |a| \text{ is an } f\text{-element}\}$. Then f(R) is an f-ring.

Theorem 2.14 Let R be a unital commutative ring and $N = \{x \in R | x \text{ is nilpotent}\}$. Suppose there exists $a \in R$ such that $a^k = 0$ for some integer $k \geq 3$ and $Ann(a^{k-1}) \subseteq N$. Then R is not an L^* -ring.

Proof Suppose that R is an L^* -ring. We derive a contradiction.

(1) First assume that k is odd. Let $b = -a^{k-1}$. Then $b^2 = 0$ and hence \mathbb{Z}^+b is a partial order on R. By Zorn's Lemma, $\mathbb{Z}^+b \subseteq P$, where P is a maximal partial order on R, and hence P is a lattice order on R since R is L^* . Thus by Theorem 2.1, P is a regular division closed lattice order on R.

By Lemma 2.13, b is an f-element since $0 \le b < 1$. Then $(a \lor 0)b = (ab \lor 0) = 0$, so $(a \lor 0) \in \text{Ann}(a^{k-1}) \subseteq N$. Since $a \lor 0 \in N$, $|a| \in N$, so |a| is nilpotent. By Lemma 2.13 again, |a| < 1, so $a \in f(R)$. It follows $a^{k-1} \ge 0$ since f(R) is an f-ring and k-1 is even, a contradiction with $b = -a^{k-1} \ge 0$.

(2) Now assume that k is even, so $k \geq 4$. Let $b_1 = -a^{k-1}$ and $b_2 = -a^{k-2}$. Then $b_1^2 = b_1b_2 = b_2^2 = 0$, so $\mathbb{Z}^+b_1 + \mathbb{Z}^+b_2$ is a partial order on R. Similar to the proof in (1), $\mathbb{Z}^+b_1 + \mathbb{Z}^+b_2 \subseteq P$, where P is a lattice order that is regular division closed. Also by the same proof in (1), $a \in f(R)$ and hence $a^{k-2} > 0$, which contradicts with $b_2 = -a^{k-2} > 0$.

Therefore R cannot be an L^* -ring. \square

Example 2.15 Let F be a field and F[x] be the polynomial ring over F and $n \ge 3$. Suppose (x^n) is the ideal generated by x^n and $R = F[x]/(x^n)$. Let $\bar{x} = x + (x^n)$ in R. Then $\bar{x}^{n-1} \ne 0$ and $Ann(\bar{x}^{n-1}) = N$. Thus R is not L^* .

References

- [1] G. BIRKHOFF, R. S. PIERCE. Lattice-ordered rings. An. Acad. Brasil. Ci., 1956, 28: 41-69.
- [2] Jingjing MA. Lecture Notes on Algebraic Structure of Lattice-Ordered Rings. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014.
- [3] P. WOJCIECHOWSKI, V. KREINOVICH. On lattice extensions of partial orders of rings. Comm. Algebra, 1997, 25(3): 935–941.
- [4] S. STEINBERG. A characterization od rings in which each partial order is contained in a total order. Proceedings AMS, 1997, 125: 2555-2558.
- [5] Jingjing MA. Division closed lattice-ordered rings. Order, 2016, doi:10.1007/s11083-016-9406-z.
- [6] V. KREINOVICH. If a polynomial identity guarantees that every partial order on a ring can be extended, then this identity is true only for a zero-ring. Algebra Universalis, 1995, 33(2): 237–242.
- [7] Jingjing MA, P. WOJCIECHOWSKI. F^* -rings are O^* . Order, 2000, 17(2): 125–128.