
Journal of Mathematical Research with Applications

May, 2017, Vol. 37, No. 3, pp. 267–273

DOI:10.3770/j.issn:2095-2651.2017.03.003

Http://jmre.dlut.edu.cn

Commutative L∗-Rings

Jingjing MA1,∗, Yuehui ZHANG2

1. Department of Mathematics and Statistics, University of Houston-Clear Lake,

Houston TX 77058, USA

2. Department of Mathematics, School of Mathematical Sciences, Shanghai Jiao Tong University,

Shanghai 200240, P. R. China

Abstract We show that for an integral domain or a commutative local ring, it is an L∗-ring

if and only if it is an O∗-ring. Some general conditions are also proved for a commutative ring
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1. Introduction

In this paper, all rings are commutative and torsion-free as a group. A ring is called unital

if it has an identity element. We review a few definitions and the reader is referred to [1,2] for

more information on partially ordered rings and lattice-ordered rings (ℓ-rings). For a partially

ordered ring R, the positive cone is defined as R+ = {r ∈ R | r ≥ 0}. Let ≤ and ≤′ be two

partial orders on a ring R. We say that the partial order ≤′ extends the partial order ≤, if for

any a, b ∈ R, a ≤ b implies that a ≤′ b. Let P and P ′ be the positive cones of ≤ and ≤′. Then

≤′ extends ≤ just means P ⊆ P ′.

A ring R is called an L∗-ring (O∗-ring), if each partial on R can be extended to a lattice

order (total order) on R. A ring R is called a dir-L∗-ring (dir-O∗-ring) if each directed partial

order on R can be extended to a lattice order (total order) [3]. Clearly an O∗-ring is L∗ and

dir-L∗. For a characterization of O∗-rings, the reader is referred to [4].

A partially ordered ring R is called division closed if for any a, b ∈ R, ab > 0 and a > 0

implies that b > 0. Each totally ordered ring is clearly division closed. In [3], a ring is defined to

be consistently L∗ if every partial order that is division closed can be extended to a lattice order

that is division closed, and a ring is consistently O∗ if each partial order that is division closed

can be extended to a total order. A partially ordered ring R is called regular division closed if

for any a, b ∈ R, ab > 0 and a > 0 is a regular element implies that b > 0. If a partially ordered

ring is a domain, then clearly division closed and regular division closed are equivalent.
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Recently it is proved that a field is O∗ if and only if it is L∗, if and only if it is consistently

L∗, and a field is dir-O∗ if and only if it is dir-L∗ (see [5, Theorems 6,7]). In this paper, we

continue the study on L∗-rings.

2. Main results

Let R be a commutative partially ordered ring with the positive cone that contains regular

elements of R. Recall that an element a of R is called a regular element if ab = 0 implies that

b = 0 for any b ∈ R. Define

P = {a ∈ R | ∃ a regular element a1 ∈ R+ such that a1a ∈ R+}.

Theorem 2.1 Let R be a commutative partially ordered ring with R+ containing regular

element. The P defined above is a partial order on R to make R a partially ordered ring that is

regular division closed, and P extends R+.

Proof It is clear that P + P ⊆ P , PP ⊆ P . Suppose that a ∈ P ∩ −P . Then a1a ∈ R+ and

a2(−a) ∈ R+ for some regular elements a1, a2 ∈ R+, so a1a2a = 0. Thus a = 0 since a1 and a2

are regular. Hence P ∩ −P = {0}. Therefore P is a partial order on R.

Suppose that ab > 0 and a > 0 with respect to P , and a is regular. Then b1(ab) = c ∈ R+ and

a1a = d ∈ R+ for some regular elements a1, b1 ∈ R+, and hence (b1d)b = b1(ab)a1 = ca1 ∈ R+.

Since a1 and a are regular, d is regular, so b1d ∈ R+ is regular. Thus b ∈ P . Therefore P is

regular division closed.

Let z ∈ R+ be a regular element. For each a ∈ R+, za ∈ R+ implies that a ∈ P , so

R+ ⊆ P . �
Recall that R is called a domain if for any a, b ∈ R, ab = 0 implies that a = 0 or b = 0. The

following result is an immediate consequence of Theorem 2.1.

Corollary 2.2 Let R be a commutative domain and a partially ordered ring with R+ ̸= {0}.
Then R+ can be extended to a partial order on R that is division closed.

Theorem 2.3 Let R be an integral domain.

(1) R is consistently L∗ if and only if R is O∗, and hence R is L∗ if and only if R is O∗.

(2) R is dir-L∗ if and only if R is dir-O∗.

Proof We first notice that a unital ℓ-ring that is division closed must be an almost f -ring [2,

Theorem 4.22].

(1) Suppose that R is consistently L∗ and P is the positive cone of a partial order on R.

Define P1 = Z+1+P , where Z+ is the set of all nonnegative integers. Then P1 is a partial order

on R, P ⊆ P1 and 1 ∈ P1. We leave the verification of those facts to the reader. By Corollary

2.2, P1 is extended to a partial order P2 on R that is division closed. Thus P2 is extended to a

lattice order P ′ that is division closed by the assumption. Then (R,P ′) is a totally ordered ring.

So R is O∗.

Now suppose that R is L∗. We show that R is consistently L∗. Then R is O∗ by previous
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paragraph. Let P be the positive cone of a partial order on R that is division closed. By Zorn’s

Lemma, P is contained in a maximal partial order PM . Certainly 1 ∈ PM . By Corollary 2.2,

PM is division closed, and PM is a lattice order since R is L∗. Thus R is consistently L∗.

(2) The proof is similar to (1) and hence omitted. �
We look at an example.

Example 2.4 Let F be an integral domain and R = F [x1, ..., xn] be the polynomial ring over

F with n variables. Then R is not an L∗-ring. Otherwise R is O∗ by Theorem 2.3, so by [6] each

element in R is algebraic over Z, where Z is the ring of integers, a contradiction.

Actually any integral domain that contains an element which is not algebraic over Z is not

L∗ since it is not O∗.

Let R be an ℓ-ring. Recall that an element a ∈ R+ is called an f -element (d-element) if for

any x, y ∈ R, x ∧ y = 0 implies that ax ∧ y = 0 (ax ∧ ay = 0). An ℓ-ring is called an f -ring

(d-ring) if each positive element is an f -element (d-element). A ring R is called F ∗ if each partial

order can be extended to a lattice order to make R into an f -ring.

A d-ring must be regular division closed. In fact, if ab > 0 and a > 0 is regular in a d-ring,

then ab = |ab| = a|b| implies that b = |b| > 0.

Theorem 2.5 Let R be a unital commutative local ring and an ℓ-ring. Then R is regular

division closed if and only if R is a d-ring.

Proof Assume that R is regular division closed and M is the unique maximal ideal of R. We

first notice that R+ must contain a unit, otherwise 1 = 1+ − 1− ∈ M . As a consequence, 1 > 0.

Take a ∈ R+. If a ̸∈ M , then a is a unit, so aa−1 = 1 > 0 implies that a−1 > 0 since R is regular

division closed. Then a is a d-element by [2, Theorem 1.2]. If a ∈ M , 1 + a ̸∈ M , so 1 + a is a

d-element. It follows that a is a d-element since 0 ≤ a ≤ 1 + a. Therefore each positive element

is a d-element and R is a d-ring. �

Corollary 2.6 Let R be a unital commutative local ring.

(1) R is L∗ if and only if it is O∗.

(2) R is consistently L∗ if and only if R is O∗.

(3) R is dir-L∗ if and only if R is dir-O∗.

Proof (1) Suppose that R is a unital commutative local ring that is L∗. Let P be a maximal

partial order on R. Then 1 ∈ P and P is a lattice order. By Theorem 2.1, P is regular division

closed, so by Theorem 2.5, (R,P ) is a d-ring. It is well-known that a unital d-ring must be

an f -ring, and hence (R,P ) is an f -ring. Thus each partial order on R can be extended to a

lattice order on R to make it into an f -ring, that is, R is an F ∗-ring. By [7], each F ∗-ring is O∗.

Therefore R is O∗.

The proof of (2) and (3) is similar to that of (1). We omit the detail and leave it to the

reader. �

Example 2.7 (1) Let F be a field and F [[x, y]] be the power series ring. Take I = (xy), the
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ideal generated by xy, and then R = F [[x, y]]/I is a reduced local ring with the unique maximal

ideal M = (x̄, ȳ), the ideal generated by x̄ = x + I and ȳ = y + I. Then by Corollary 2.6, R is

not L∗ since R is not O∗.

(2) Let R = {a+ bx | a, b ∈ Q, x2 = 0}. Then R is also a local ring with the unique maximal

ideal M = Qx. Then R is L∗ since R is O∗ (see [4]).

Theorem 2.8 Let R be a finite direct product of unital rings R1, . . . , Rk with k ≥ 1. If R is

L∗, then each Ri is L
∗, i = 1, . . . , k.

Proof Let R = R1×R2×· · ·×Rk and R is L∗. Let us just show that R1 is L∗. Take a maximal

partial order P1 on R1. We need to show that P1 is a lattice order on R1. Take a maximal

partial order Pi on Ri for i = 2, . . . , k. Then clearly P = P1 × P2 × · · · × Pk is a partial order on

R, and hence P ⊆ P ∗, where P ∗ is a maximal partial order on R, so P ∗ is a lattice order since

R is L∗.

Define Q1 = {a ∈ R1|(a, 0, . . . , 0) ∈ P ∗}. Clearly Q1 is a partial order on R1. If x ∈ P1, then

(x, 0, . . . , 0) ∈ P ⊆ P ∗, so x ∈ Q1. Thus P1 ⊆ Q1, and hence P1 = Q1. We claim that Q1 is a

lattice order on R1. Let z ∈ R1 and

(z, 0, . . . , 0) ∨P∗ 0 = (s1, s2, . . . , sk),

where ∨P∗ is the sup with respect to the lattice order P ∗. We show that s1 is the least upper

bound of z and 0 with respect to Q1. From (z, 0, . . . , 0), 0 ≤P∗ (s1, s2, . . . , sk) and (1, 0, . . . , 0) ∈
P ⊆ P ∗, we have

(z, 0, . . . , 0), 0 ≤P∗ (s1, s2, . . . , sk)(1, 0, . . . , 0) = (s1, 0, . . . , 0),

so (s1, s2, . . . , sk) ≤P∗ (s1, 0, . . . , 0). Since (0, 1, . . . , 1) ∈ P ⊆ P ∗, by multiplying it to the

previous inequality, we obtain

(s1, s2, . . . , sk)(0, 1, . . . , 1) = (0, s2, . . . , sk) ≤P∗ (s1, 0, . . . , 0)(0, 1, . . . , 1) = 0,

and hence s2 = · · · = sk = 0. Then (z, 0, . . . , 0), 0 ≤P∗ (s1, 0, . . . , 0) implies that s1 ∈ Q1

and (s1 − z) ∈ Q1, that is, z, 0 ≤Q1 s1. Suppose that s ∈ R1 such that z, 0 ≤Q1 s. Then

(z, 0, . . . , 0), 0 ≤P∗ (s, 0, . . . , 0), so (s1, 0, . . . , 0) ≤P∗ (s, 0, . . . , 0). Therefore s1 ≤Q1 s. It follows

that s1 is the least upper bound of z and 0 with respect to Q1, that is, z ∨Q1 0 = s1. This

completes the proof that Q1 is a lattice order on R1, so R1 is L∗. Similarly each Ri is L
∗. �

A finite direct product of more than one unital ring cannot be O∗. In fact, it cannot even be

a totally ordered ring since a unital totally ordered ring only has two idempotent elements 1 and

0. A finite direct product of unital commutative L∗-ring may not be L∗. This is a consequence

of the following result that is motivated by [3, Proposition 2.2].

Theorem 2.9 Let S ̸= {0} be a reduced commutative ring and T ̸= {0} be a commutative

domain. Then the direct product S × T is not an L∗-ring.

Proof We first show that T has a nontrivial partial order, namely a partial order with a nonzero

positive cone. If T is unital, then Z+1 is a partial order on T with 1 > 0. Suppose that T is not
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unital. Take 0 ̸= t ∈ T . If there are positive integers n1, . . . , nk such that n1t
a1 + · · ·+nkt

ak = 0

for k > 1 and 0 < a1 < · · · < ak, where ai are positive integers, then T is a domain implies that

for any r ∈ R, n1r = zr, where z = −n2t
(a2−a1) − · · · − nkt

(ak−a1). Hence Z+z is a nontrivial

partial order. If t is not algebraic over Z+, then the set of all polynomials in t with no constant

term in which each coefficient is a nonnegative integer is a nontrivial partial order on T . We

leave the verification of this fact to the reader. Therefore T has a nontrivial maximal partial

order, and we denote the positive cone of this partial order by T+. By Corollary 2.2, T+ is

division closed.

Let R = S×T = {(s, t)|s ∈ S, t ∈ T} be the ring direct product of S and T . Define a positive

cone P on R as follows

P = {(s, t) | s ∈ S, 0 ̸= t ∈ T+} ∪ {(0, 0)}.

It is clear that P + P ⊆ P , and P ∩−P = {0}. Since T is a domain, PP ⊆ P . Thus (R,P ) is a

partially ordered ring.

We claim that P is a maximal partial order on R. Suppose that P ⊆ P ∗ and P ∗ is a maximal

partial order on R. We show that P = P ∗. Define

A = {x ∈ T | (0, x) ∈ P ∗} ⊆ T.

Then A+A ⊆ A, AA ⊆ A, and A∩−A = {0}, that is, A is a partial order on T . Since P ⊆ P ∗,

T+ ⊆ A, and hence T+ = A since T+ is a maximal partial order on T .

We show P ∗ ⊆ P . Take 0 ̸= t ∈ T+, for (w, z) ∈ P ∗. (w, z)(0, t) = (0, zt) ∈ P ∗, so

zt ∈ A = T+. If z ̸= 0, then z ∈ T+ since T+ is division closed, so (w, z) ∈ P by the definition

of P . If z = 0, then (w, 0) ∈ P ∗. Since (0, 0) ≤∗ (w, 0) ≤∗ (0, t), where ≤∗ is the partial order

on R with the positive cone P ∗, we have

(0, 0) ≤∗ (w, 0)2 ≤∗ (w, 0)(0, t) = (0, 0),

so (w2, 0) = (0, 0). Thus w2 = 0 and w = 0 since S is reduced. Hence z = 0 implies that

(w, z) = (0, 0) ∈ P . Therefore P = P ∗ is a maximal partial order on R.

We finally show that P is not a lattice order. Suppose that P is a lattice order on R. We

derive a contradiction. Assume that (x, 0) ∨ (0, 0) = (u, v), where 0 ̸= x ∈ S. If (u, v) = (0, 0),

then (x, 0) ≤ (0, 0), a contradiction. Then (u, v) ̸= (0, 0), so 0 ̸= v ∈ T+. Then we have

(x, 0), (0, 0) ≤ (u+x, v), so (u, v) ≤ (u+x, v) since (u, v) is the least supper bound of (u, 0), (0, 0).

It follows that (x, 0) ∈ P , a contradiction. �
Here are some examples using Theorem 2.9.

Example 2.10 (1) Let C be the field of complex numbers. Then C× C is not L∗.

(2) Let F be a field and G = {1, e} be a cyclic group of order 2. Then the group ring

R = F [G] is not L∗. In fact, I = (1 + e)F and J = (1− e)F are two ideals of R with R = I + J

and I ∩ J = {0}, now by Theorem 2.9, R is not L∗.

(3) A finite direct product of more than one unital integral domain is not L∗, for instance,

a reduced commutative Artinian ring is not L∗.
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Following result shows that under certain conditions, reduced unital commutative rings are

not L∗. The proof is similiar to that of Theorem 2.9.

Theorem 2.11 Let R be a reduced unital commutative algebra over a field F and I1, I2, . . . , Ik

be nonzero ideals of R with k ≥ 2. Suppose that I1 admits a nontrivial partial order to make it

into a partially ordered ring. If following conditions are satisfied, then R cannot be an L∗-ring.

(1) I1Ii = {0}, i = 2, . . . , k;

(2) R = F1 + I1 + · · ·+ Ik;

(3) K = F1 + I1 is a domain.

Proof Take a maximal partial order P on K that contains the given nontrivial partial order on

I1. By Corollary 2.2, P is division closed and there is an nonzero element x ∈ P ∩ I1. Define

P ∗ = {a+ b | a ∈ P, a ̸= 0 & b ∈ I2 + · · ·+ Ik} ∪ {0}.

Clearly P ∗+P ∗ ⊆ P ∗, P ∗ ∩−P ∗ = {0}. Since K is a domain, P ∗P ∗ ⊆ P ∗. Thus P ∗ is a partial

order on R.

We first show that P ∗ is a maximal partial order on R. Suppose that P ∗ ⊆ Q, where Q is a

maximal partial order on R. Let P1 = Q ∩K. Then P1 is a partial order on K. If w ∈ P , then

w ∈ P ∗ ⊆ Q, so w ∈ P1. Hence P ⊆ P1, so P = P1 since P is a maximal partial order on K.

Assume that w + z ∈ Q with w ∈ K and z ∈ I2 + · · ·+ Ik. Since 0 ̸= x ∈ P ⊆ P ∗ ⊆ Q, we have

wx = (w+z)x ∈ Q since zx = 0, so wx ∈ Q∩K = P1 = P . If w ̸= 0, then that (K,P ) is division

closed implies w > 0 with respect to P in K, so w + z ∈ P ∗. If w = 0, then z ∈ Q and that

0 ≤Q z ≤Q x, where ≤Q is the partial order with respect to Q, implies that 0 ≤Q z2 ≤Q zx = 0.

Thus z2 = 0 and hence z = 0, so w + z = 0 ∈ P ∗. Therefore in any cases, we have w + z ∈ P ∗,

so P ∗ = Q, that is, P ∗ is a maximal partial order on R.

We claim that P ∗ is not a lattice order on R. Suppose that P ∗ is a lattice order on R and

we get a contradiction. Take 0 ̸= w ∈ I2 + · · · + Ik and suppose that w ∨∗ 0 = a + b, where

a ∈ K, b ∈ I2+ · · ·+ Ik, and the lattice order ∨∗ is with respect to P ∗. If a+ b = 0, then w <∗ 0,

where ≤∗ is the partial order with respect to P ∗, a contradiction. Then a+ b ̸= 0, so 0 ̸= a ∈ P .

It follows that w, 0 ≤∗ a + (b + w) and hence a + b ≤∗ a + (b + w), so 0 ≤∗ w, a contradiction.

Therefore P ∗ is not a lattice order. �

Example 2.12 Let F be a field and A = F [x1, . . . , xk] be the polynomial ring over F with

k ≥ 2. Suppose that I is the ideal generated by {xixj |1 ≤ i, j ≤ k, i ̸= j}. Consider the ring

R = A/I. Let xi = xi+I, i = 1, . . . , k in R. Then R = F1+x1R+ · · ·+xkR, (x1R)(xiR) = {0},
for i = 2, . . . , k, and F1 + x1R is a domain. Thus R cannot be L∗ by Theorem 2.11.

An important property of O∗-ring is that each nilpotent element has index at most two [6]. It

is not known if this is true for an L∗-ring. In the following, we prove a similar result on L∗-ring.

A unital partially ordered ring is called ℓ-unital if the identity element is positive.

Lemma 2.13 Let R be an ℓ-unital commutative partially ordered ring that is regular division

closed. If a is a positive nilpotent element, then a < 1.
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Proof We prove the result by the induction on the index of nilpotency. If a2 = 0, then

(1 − a)(1 + a) = 1 and regular division closed property implies that 1 − a > 0, that is, a < 1.

Now suppose it is true for index less than or equal to n and suppose an+1 = 0. Then a2 has the

index less than or equal to n, so a2 < 1. Thus (1− a)(1 + a) = 1− a2 > 0 and regular division

closed property gives us 1− a > 0, and hence a < 1. �
For an element a ∈ R, Ann(a) denotes the annihilator of a, that is, Ann(a) = {w ∈ R|aw =

0}. Define f(R) = {a ∈ R||a| is an f -element}. Then f(R) is an f -ring.

Theorem 2.14 Let R be a unital commutative ring and N = {x ∈ R|x is nilpotent}. Suppose
there exists a ∈ R such that ak = 0 for some integer k ≥ 3 and Ann(ak−1) ⊆ N . Then R is not

an L∗-ring.

Proof Suppose that R is an L∗-ring. We derive a contradiction.

(1) First assume that k is odd. Let b = −ak−1. Then b2 = 0 and hence Z+b is a partial

order on R. By Zorn’s Lemma, Z+b ⊆ P , where P is a maximal partial order on R, and hence P

is a lattice order on R since R is L∗. Thus by Theorem 2.1, P is a regular division closed lattice

order on R.

By Lemma 2.13, b is an f -element since 0 ≤ b < 1. Then (a∨ 0)b = (ab∨ 0) = 0, so (a∨ 0) ∈
Ann(ak−1) ⊆ N . Since a ∨ 0 ∈ N , |a| ∈ N , so |a| is nilpotent. By Lemma 2.13 again, |a| < 1,

so a ∈ f(R). It follows ak−1 ≥ 0 since f(R) is an f -ring and k − 1 is even, a contradiction with

b = −ak−1 ≥ 0.

(2) Now assume that k is even, so k ≥ 4. Let b1 = −ak−1 and b2 = −ak−2. Then

b21 = b1b2 = b22 = 0, so Z+b1 + Z+b2 is a partial order on R. Similar to the proof in (1),

Z+b1 + Z+b2 ⊆ P , where P is a lattice order that is regular division closed. Also by the same

proof in (1), a ∈ f(R) and hence ak−2 > 0, which contradicts with b2 = −ak−2 > 0.

Therefore R cannot be an L∗-ring. �

Example 2.15 Let F be a field and F [x] be the polynomial ring over F and n ≥ 3. Suppose

(xn) is the ideal generated by xn and R = F [x]/(xn). Let x̄ = x + (xn) in R. Then x̄n−1 ̸= 0

and Ann(x̄n−1) = N . Thus R is not L∗.
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