Coefficient Bounds for a New Subclass of Bi-Univalent Functions Defined by Salagean Operator

Fan CHEN ${ }^{1}$, Xiaofei $\mathbf{L I}^{2,3, *}$

1. College of Engineering and Technology, Yangtze University, Hubei 434000, P. R. China;
2. School of Information and Mathematics, Yangtze University, Hubei 434000, P. R. China;
3. Department of Mathematics, University of Macau, Macau 999078, P. R. China

Abstract

In this paper, a new subclass $\mathcal{N}_{\Sigma}^{h, p}(m, \lambda, \mu)$ of analytic and bi-univalent functions in the open unit disk \mathbb{U} is defined by salagean operator. We obtain coefficients bounds $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions of the class. Moreover, we verify Brannan and Clunie's conjecture $\left|a_{2}\right| \leq \sqrt{2}$ for some of our classes. The results in this paper extend many results recently researched by many authors.

Keywords analytic functions; univalent functions; bi-univalent functions; coefficient bounds; Salagean operator
MR(2010) Subject Classification 30C45

1. Introduction

In this paper, we denote by \mathcal{A} the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{k+1} z^{k+1} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. Let \mathcal{S} denote the class of functions in class \mathcal{A} which are univalent in \mathbb{U}. For $f(z) \in \mathcal{A}$, Salagean operator is defined by

$$
\begin{aligned}
& \quad D^{0} f(z)=f(z) \\
& D^{1} f(z)= D f(z)=z f^{\prime}(z) \\
& \ldots \\
& D^{m} f(z)= D\left(D^{m-1} f(z)\right), \quad m \in \mathbb{N}=\{1,2, \ldots\} .
\end{aligned}
$$

If $f(z) \in \mathcal{A}$ is given by (1.1), then we see that

$$
D^{m} f(z)=z+\sum_{n=1}^{\infty}(1+n)^{m} a_{n+1} z^{n+1}, \quad m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}
$$

It is well known that every function $f \in \mathcal{S}$ has an inverse $g=f^{-1}$, which is defined by

$$
f^{-1}(f(z))=z, \quad z \in \mathbb{U}
$$

[^0]$$
f\left(f^{-1}(w)\right)=w, \quad|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}
$$

In fact, the inverse function f^{-1} is given by

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{S}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. We denote by Σ the class of all bi-univalent functions in \mathbb{U} given by (1.1). In 1967, Lewin [1] first introduced the class Σ of bi-univalent functions and showed that $\left|a_{2}\right| \leq 1.51$ for every $f \in \Sigma$. Subsequently, Brannan and Clunie [2] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$ for $f \in \Sigma$. Later, Netanyahu [3] proved that $\max \left|a_{2}\right|=\frac{4}{3}$ for $f \in \Sigma$. In 2010, Srivastava et al. [4] introduced subclasses of bi-univalent function $\mathcal{H}_{\Sigma}(\alpha)$ and $\mathcal{H}_{\Sigma}(\beta)$, and obtained non-sharp estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$.

Definition 1.1 ([4]) A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{H}_{\Sigma}(\alpha)$ if the following conditions are satisfied:

$$
\begin{gathered}
f \in \Sigma \text { and }\left|\arg f^{\prime}(z)\right|<\frac{\alpha \pi}{2}, \quad 0<\alpha \leq 1 ; z \in \mathbb{U} \\
\left|\arg g^{\prime}(w)\right|<\frac{\alpha \pi}{2}, \quad 0<\alpha \leq 1 ; w \in \mathbb{U}
\end{gathered}
$$

where the function g is defined by (1.2).
Definition 1.2 ([4]) A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{H}_{\Sigma}(\beta)$ if the following conditions are satisfied:

$$
\begin{gathered}
f \in \Sigma, \quad \text { and } \Re\left(f^{\prime}(z)\right)>\beta, \quad 0 \leq \beta<1 ; z \in \mathbb{U}, \\
\Re\left(g^{\prime}(w)\right)>\beta, \quad 0 \leq \beta<1 ; w \in \mathbb{U},
\end{gathered}
$$

where the function g is defined by (1.2).
Frasin and Aouf [5] introduced the following subclasses of the bi-univalent function class Σ and obtained non-sharp estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$.

Definition 1.3 ([5]) A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{B}_{\Sigma}(\alpha, \lambda)$ if the following conditions are satisfied:

$$
\begin{gathered}
f \in \Sigma \text { and }\left|\arg \left((1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)\right)\right|<\frac{\alpha \pi}{2}, \quad 0<\alpha \leq 1 ; \lambda \geq 1 ; z \in \mathbb{U}, \\
\left|\arg \left((1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)\right)\right|<\frac{\alpha \pi}{2}, \quad 0<\alpha \leq 1 ; \lambda \geq 1 ; w \in \mathbb{U}
\end{gathered}
$$

where the function g is defined by (1.2).
Definition 1.4 ([5]) A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{N}_{\Sigma}^{\mu}(\beta, \lambda)$ if the following conditions are satisfied:

$$
\begin{aligned}
& f \in \Sigma \text { and } \Re\left((1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)\right)>\beta, \quad 0 \leq \beta<1 ; \lambda \geq 1 ; z \in \mathbb{U} \\
& \left.\Re\left((1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)\right)\right)>\beta, \quad 0 \leq \beta<1 ; \lambda \geq 1 ; \mu \geq 0 ; w \in \mathbb{U}
\end{aligned}
$$

where the function g is defined by (1.2).
Xu et al. [6] introduced an interesting general subclass $\mathcal{B}_{\Sigma}^{h, p}(\lambda)$ of the analytic function class \mathcal{A}, and obtained the coefficients estimates on $\left|a_{2}\right|,\left|a_{3}\right|$ given by (1.1).

Definition 1.5 ([6]) Let the functions $h, p: \mathbb{U} \rightarrow \mathbb{C}$ be so constrained that

$$
\min \{\Re(h(z)), \Re(p(z))\}>0, \quad z \in \mathbb{U} \text { and } h(0)=p(0)=1 .
$$

A function $f(z)$, defined by (1.1), is said to be in the class $\mathcal{B}_{\Sigma}^{h, p}(\lambda)$ if the following conditions are satisfied:

$$
\begin{gathered}
f \in \Sigma \text { and }(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z) \in h(\mathbb{U}), \quad z \in \mathbb{U}, \\
\quad(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w) \in p(\mathbb{U}), \quad w \in \mathbb{U},
\end{gathered}
$$

where the function g is defined by (1.2).
Recently, Çağlar et al. [7] introduced the following two subclasses of the bi-univalent function class Σ and obtained non-sharp estimates on coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$.

Definition 1.6 ([7]) A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{N}_{\Sigma}^{\mu}(\alpha, \lambda)$ if the following conditions are satisfied:
$f \in \Sigma$ and $\left|\arg \left((1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right)\right|<\frac{\alpha \pi}{2}, \quad 0<\alpha \leq 1 ; \lambda \geq 1 ; \mu \geq 0 ; z \in \mathbb{U}$,

$$
\left|\arg \left((1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right)\right|<\frac{\alpha \pi}{2}, \quad 0<\alpha \leq 1 ; \lambda \geq 1 ; \mu \geq 0 ; w \in \mathbb{U}
$$

where the function g is defined by (1.2).
Definition $1.7([7])$ A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{N}_{\Sigma}^{\mu}(\beta, \lambda)$ if the following conditions are satisfied:

$$
\begin{gathered}
f \in \Sigma \text { and } \Re\left((1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right)>\beta, \quad 0 \leq \beta<1 ; \lambda \geq 1 ; \mu \geq 0 ; z \in \mathbb{U}, \\
\Re\left((1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right)>\beta, \quad 0 \leq \beta<1 ; \lambda \geq 1 ; \mu \geq 0 ; w \in \mathbb{U},
\end{gathered}
$$

where the function g is defined by (1.2).
Following Çağlar et al.' work, Srivastava et al. [8] introduced the following subclasses of the bi-univalent function class Σ and also obtained non-sharp estimates on $\left|a_{2}\right|$ and $\left|a_{3}\right|$.

Definition 1.8 ([8]) Let the functions $h, p: \mathbb{U} \rightarrow \mathbb{C}$ be so constrained that

$$
\min \{\Re(h(z)), \Re(p(z))\}>0, \quad z \in \mathbb{U} \text { and } h(0)=p(0)=1 .
$$

A function $f(z)$, defined by (1.1), is said to be in the class $\mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu)(\lambda \geq 1 ; \mu \geq 0)$ if the following conditions are satisfied:

$$
\begin{gathered}
f \in \Sigma \text { and }(1-\lambda)\left(\frac{f(z)}{z}\right)^{\mu}+\lambda f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1} \in h(\mathbb{U}), \quad z \in \mathbb{U}, \\
(1-\lambda)\left(\frac{g(w)}{w}\right)^{\mu}+\lambda g^{\prime}(w)\left(\frac{g(w)}{w}\right)^{\mu-1} \in p(\mathbb{U}), \quad w \in \mathbb{U}
\end{gathered}
$$

where the function g is defined by (1.2).
Motivated by these papers, we introduce and investigate certain new subclass $\mathcal{N}_{\Sigma}^{h, p}(m, \lambda, \mu)$ of the analytic function class \mathcal{A} defined by Salagean operator. Further we verify Brannan and Clunie's conjecture $\left|a_{2}\right| \leq \sqrt{2}$ for some of the subclass.

Definition 1.9 Let the functions $h, p: \mathbb{U} \rightarrow \mathbb{C}$ be so constrained that

$$
\min \{\Re(h(z)), \Re(p(z))\}>0, \quad z \in \mathbb{U} \text { and } h(0)=p(0)=1 .
$$

A function $f(z)$, defined by (1.1), is said to be in the class $\mathcal{N}_{\Sigma}^{h, p}(m, \lambda, \mu)$ if the following conditions are satisfied:

$$
\begin{gather*}
f \in \Sigma \text { and }(1-\lambda)\left(\frac{D^{m} f(z)}{z}\right)^{\mu}+\lambda\left(\frac{D^{m+1} f(z)}{D^{m} f(z)}\right)\left(\frac{D^{m} f(z)}{z}\right)^{\mu} \in h(\mathbb{U}), \quad z \in \mathbb{U}, \tag{1.3}\\
\quad(1-\lambda)\left(\frac{D^{m} g(w)}{w}\right)^{\mu}+\lambda\left(\frac{D^{m+1} g(w)}{D^{m} g(w)}\right)\left(\frac{D^{m} g(w)}{w}\right)^{\mu} \in p(\mathbb{U}), \quad w \in \mathbb{U} \tag{1.4}
\end{gather*}
$$

where $m \in \mathbb{N}_{0}, \lambda \geq 1, \mu \geq 0$ and the function g is defined by (1.2).
Remark 1.10 If we let $h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}(0<\alpha \leq 1)$, then the class $\mathcal{N}_{\Sigma}^{h, p}(m, \lambda, \mu)$ reduces to the new class denoted by $\mathcal{N}_{\Sigma}(m, \lambda, \mu, \alpha)$ which is the subclass of the functions $f(z) \in \Sigma$ satisfying

$$
\begin{gathered}
\left|\arg \left((1-\lambda)\left(\frac{D^{m} f(z)}{z}\right)^{\mu}+\lambda\left(\frac{D^{m+1} f(z)}{D^{m} f(z)}\right)\left(\frac{D^{m} f(z)}{z}\right)^{\mu}\right)\right|<\frac{\alpha \pi}{2} \\
0<\alpha \leq 1 ; \lambda \geq 1 ; \mu \geq 0 ; z \in \mathbb{U} \\
\left.\left\lvert\, \arg (1-\lambda)\left(\frac{D^{m} g(w)}{w}\right)^{\mu}+\lambda\left(\frac{D^{m+1} g(w)}{D^{m} g(w)}\right)\left(\frac{D^{m} g(w)}{w}\right)^{\mu}\right.\right) \left\lvert\,<\frac{\alpha \pi}{2}\right. \\
0<\alpha \leq 1 ; \lambda \geq 1 ; \quad \mu \geq 0 ; w \in \mathbb{U}
\end{gathered}
$$

where the function g is defined by (1.2).
(i) For $\mu=1, \lambda=1, m=0$, the class reduces to $\mathcal{H}_{\Sigma}(\alpha)$.
(ii) For $\mu=1, m=0$, the class reduces to $\mathcal{B}_{\Sigma}(\alpha, \lambda)$.
(iii) For $m=0$, the class reduces to $\mathcal{N}_{\Sigma}^{\mu}(\alpha, \lambda)$.

Remark 1.11 If we let $h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z}(0 \leq \beta<1)$, then the class $\mathcal{N}_{\Sigma}^{h, p}(m, \lambda, \mu)$ reduces to the new class denoted by $\mathcal{N}_{\Sigma}(m, \lambda, \mu, \beta)$ which is the subclass of the functions $f(z) \in \Sigma$ satisfying

$$
\begin{gathered}
\Re\left((1-\lambda)\left(\frac{D^{m} f(z)}{z}\right)^{\mu}+\lambda\left(\frac{D^{m+1} f(z)}{D^{m} f(z)}\right)\left(\frac{D^{m} f(z)}{z}\right)^{\mu}\right)>\beta, \\
0 \leq \beta<1 ; \lambda \geq 1 ; \mu \geq 0 ; z \in \mathbb{U}, \\
\Re\left((1-\lambda)\left(\frac{D^{m} g(w)}{w}\right)^{\mu}+\lambda\left(\frac{D^{m+1} g(w)}{D^{m} g(w)}\right)\left(\frac{D^{m} g(w)}{w}\right)^{\mu}\right)>\beta, \\
0 \leq \beta<1 ; \lambda \geq 1 ; \mu \geq 0 ; w \in \mathbb{U},
\end{gathered}
$$

where the function g is defined by (1.2).
(i) For $\mu=1, \lambda=1, m=0$, the class reduces to $\mathcal{H}_{\Sigma}(\beta)$.
(ii) For $\mu=1, m=0$, the class reduces to $\mathcal{B}_{\Sigma}(\beta, \lambda)$.
(iii) For $m=0$, the class reduces to $\mathcal{N}_{\Sigma}^{\mu}(\beta, \lambda)$.

In order to derive our main results, we shall need the following lemma.
Lemma 1.12 ([9]) If the function $h(z) \in \mathcal{P}$, then $\left|c_{k}\right| \leq 2$ for each k, where \mathcal{P} is the family of all functions h, analytic in \mathbb{U}, for which $\Re\{h(z)\}>0$, where

$$
h(z)=1+c_{1} z+c_{2} z^{2}+\cdots+c_{k} z^{k}+\cdots, c_{k}=\frac{h^{(k)}(0)}{k!}, \quad z \in \mathbb{U} .
$$

2. Coefficient estimates

In this section, we state and prove our general results involving the bi-univalent function class $\mathcal{N}_{\Sigma}^{h, p}(m, \lambda, \mu)$ given by Definition 1.4.

Theorem 2.1 Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the function class $\mathcal{N}_{\Sigma}^{h, p}(m, \lambda, \mu)$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2^{2 m+1}(\mu+\lambda)^{2}}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{2(\mu+2 \lambda)\left|2^{2 m}(\mu-1)+2 \cdot 3^{m}\right|}}\right\} \tag{2.1}\\
\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2^{2 m+1}(\mu+\lambda)^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4 \cdot 3^{m}(\mu+2 \lambda)}\right. \\
 \tag{2.2}\\
\left.\frac{\left|2^{2 m}(\mu-1)+4 \cdot 3^{m}\right|\left|h^{\prime \prime}(0)\right|+2^{2 m}|\mu-1|\left|p^{\prime \prime}(0)\right|}{4 \cdot 3^{m}(\mu+2 \lambda)\left|2^{2 m}(\mu-1)+2 \cdot 3^{m}\right|}\right\}
\end{gather*}
$$

Proof First of all, we write the argument inequalities in (1.5) and (1.6) in their equivalent forms as follows:

$$
\begin{align*}
& (1-\lambda)\left(\frac{D^{m} f(z)}{z}\right)^{\mu}+\lambda\left(\frac{D^{m+1} f(z)}{D^{m} f(z)}\right)\left(\frac{D^{m} f(z)}{z}\right)^{\mu}=h(z), \quad z \in \mathbb{U} \tag{2.3}\\
& (1-\lambda)\left(\frac{D^{m} g(w)}{w}\right)^{\mu}+\lambda\left(\frac{D^{m+1} g(w)}{D^{m} g(w)}\right)\left(\frac{D^{m} g(w)}{w}\right)^{\mu}=p(w), \quad w \in \mathbb{U} \tag{2.4}
\end{align*}
$$

respectively, where $h(z)$ and $p(w)$ satisfy the conditions of Definition 1.9. Furthermore, the functions $h(z)$ and $p(w)$ have the following Taylor-Maclaurin series expansions:

$$
\begin{align*}
& h(z)=1+h_{1} z+h_{2} z^{2}+\cdots \tag{2.5}\\
& p(w)=1+p_{1} w+p_{2} w^{2}+\cdots \tag{2.6}
\end{align*}
$$

respectively. Now, equating the coefficients in (2.3) and (2.4) with (1.4), (2.5), (2.6), we have

$$
\begin{gather*}
2^{m}(\mu+\lambda) a_{2}=h_{1}, \tag{2.7}\\
3^{m}(\mu+2 \lambda) a_{3}+2^{2 m-1}(\mu-1)(\mu+2 \lambda) a_{2}^{2}=h_{2}, \tag{2.8}\\
-2^{m}(\mu+\lambda) a_{2}=p_{1}, \tag{2.9}\\
-3^{m}(\mu+2 \lambda) a_{3}+(\mu+2 \lambda)\left[2 \cdot 3^{m}+\frac{1}{2} \cdot 3^{2 m}(\mu-1)\right] a_{2}^{2}=p_{2} . \tag{2.10}
\end{gather*}
$$

From (2.7) and (2.9), we obtain

$$
\begin{gather*}
h_{1}=-p_{1} \tag{2.11}\\
2^{2 m+1}(\mu+\lambda)^{2} a_{2}^{2}=h_{1}^{2}+p_{1}^{2} . \tag{2.12}
\end{gather*}
$$

From (2.8) and (2.10), we find that

$$
\begin{equation*}
(\mu+2 \lambda)\left[2^{2 m}(\mu-1)+2 \cdot 3^{m}\right] a_{2}^{2}=h_{2}+p_{2} \tag{2.13}
\end{equation*}
$$

Therefore, we find from the equations (2.12) and (2.13) that

$$
\begin{gather*}
\left|a_{2}\right|=\sqrt{\frac{h_{1}^{2}+p_{1}^{2}}{2^{2 m+1}(\mu+\lambda)^{2}}} \leq \sqrt{\frac{\left|h^{\prime}(0)^{2}\right|+\mid p^{\prime}(0)^{2}}{2^{2 m+1}(\mu+\lambda)^{2}}}, \tag{2.14}\\
\left|a_{2}\right|=\sqrt{\frac{\left|h_{2}+p_{2}\right|}{(\mu+2 \lambda)\left|2^{2 m}(\mu-1)+2 \cdot 3^{m}\right|}} \leq \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{2(\mu+2 \lambda)\left|2^{2 m}(\mu-1)+2 \cdot 3^{m}\right|}}, \tag{2.15}
\end{gather*}
$$

respectively. So we get the desired estimate on the coefficient $\left|a_{2}\right|$ as asserted in (2.1).
Next, in order to find the bound on the coefficient $\left|a_{3}\right|$, we subtract (2.10) from (2.8). We get

$$
\begin{equation*}
2 \cdot 3^{m}(\mu+2 \lambda) a_{3}-2 \cdot 3^{m}(\mu+2 \lambda) a_{2}^{2}=h_{2}-p_{2} \tag{2.16}
\end{equation*}
$$

Upon substituting the value of a_{2}^{2} from (2.12) into (2.16), it follows that

$$
a_{3}=\frac{h_{1}^{2}+p_{1}^{2}}{2^{2 m+1}(\mu+\lambda)^{2}}+\frac{h_{2}-p_{2}}{2 \cdot 3^{m}(\mu+2 \lambda)}
$$

We thus find that

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2^{2 m+1}(\mu+\lambda)^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4 \cdot 3^{m}(\mu+2 \lambda)} . \tag{2.17}
\end{equation*}
$$

On the other hand, upon substituting the value of a_{2}^{2} from (2.13) into (2.16), it follows that

$$
\begin{aligned}
a_{3} & =\frac{h_{2}+p_{2}}{(\mu+2 \lambda)\left[2^{2 m}(\mu-1)+2 \cdot 3^{m}\right]}+\frac{h_{2}-p_{2}}{2 \cdot 3^{m}(\mu+2 \lambda)} \\
& =\frac{\left[2^{2 m}(\mu-1)+4 \cdot 3^{m}\right] h_{2}-2^{2 m}(\mu-1) p_{2}}{2 \cdot 3^{m}(\mu+2 \lambda)\left[2^{2 m}(\mu-1)+2 \cdot 3^{m}\right]}
\end{aligned}
$$

Consequently, we have

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|2^{2 m}(\mu-1)+4 \cdot 3^{m}\right|\left|h^{\prime \prime}(0)\right|+2^{2 m}|\mu-1|\left|p^{\prime \prime}(0)\right|}{4 \cdot 3^{m}(\mu+2 \lambda)\left|2^{2 m}(\mu-1)+2 \cdot 3^{m}\right|} . \tag{2.18}
\end{equation*}
$$

This evidently completes the proof of Theorem 2.1.
We note that for $h(z) \in \mathcal{P}$, it is easy to obtain that

$$
\left|h^{\prime}(0)\right| \leq 2, \quad\left|p^{\prime}(0)\right| \leq 2
$$

from Lemma 1.12. So if we let $\mu+\lambda \geq \sqrt{2}$, we can easily obtain the following Corollary 2.2 from Theorem 2.1.

Corollary 2.2 If f given by (1.1) is in the class $\mathcal{N}_{\Sigma}^{h, p}(m, \lambda, \mu)$ for $\mu+\lambda \geq \sqrt{2}$, then $\left|a_{2}\right| \leq \sqrt{2}$.

Proof For $\mu+\lambda \geq \sqrt{2}$, relation (2.1) indicates that

$$
\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2^{2 m+1}(\mu+\lambda)^{2}}} \leq \sqrt{\frac{8}{2^{2 m+1}(\mu+\lambda)^{2}}} \leq \frac{1}{2^{m-1}(\mu+\lambda)} \leq \sqrt{2}
$$

Therefore, we complete the proof.
From Corollary 2.2, we verify Brannan and Clunie's conjecture $\left|a_{2}\right| \leq \sqrt{2}$ for some of our class which satisfies the condition $\mu+\lambda \geq \sqrt{2}$.

If we let $h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}(0<\alpha \leq 1)$ or $h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z}(0 \leq \beta<1)$, then we can obtain Theorems 2.3 and 2.4.

Theorem 2.3 Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the function class $\mathcal{N}_{\Sigma}(m, \lambda, \mu, \alpha)$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \min \left\{\frac{2 \alpha}{2^{m}(\mu+\lambda)}, \sqrt{\frac{4 \alpha^{2}}{(\mu+2 \lambda)\left|2^{2 m}(\mu-1)+2 \cdot 3^{m}\right|}}\right\} \tag{2.19}\\
\left|a_{3}\right| \leq \min \left\{\frac{4 \alpha^{2}}{2^{2 m}(\mu+\lambda)^{2}}+\frac{2 \alpha^{2}}{3^{m}(\mu+2 \lambda)}, \frac{\left[\left|2^{2 m}(\mu-1)+4 \cdot 3^{m}\right|+2^{2 m}|\mu-1|\right] \alpha^{2}}{3^{m}(\mu+2 \lambda)\left|2^{2 m}(\mu-1)+2 \cdot 3^{m}\right|}\right\} . \tag{2.20}
\end{gather*}
$$

Theorem 2.4 Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the function class $\mathcal{N}_{\Sigma}(m, \lambda, \mu, \beta)$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\beta)}{2^{m}(\mu+\lambda)}, \sqrt{\frac{4(1-\beta)}{(\mu+2 \lambda)\left|2^{2 m}(\mu-1)+2 \cdot 3^{m}\right|}}\right\}, \tag{2.21}\\
\left|a_{3}\right| \leq \min \left\{\frac{4(1-\beta)^{2}}{2^{2 m}(\mu+\lambda)^{2}}+\frac{2(1-\beta)}{3^{m}(\mu+2 \lambda)}, \frac{\left[\left|2^{2 m}(\mu-1)+4 \cdot 3^{m}\right|+2^{2 m}|\mu-1|\right](1-\beta)}{3^{m}(\mu+2 \lambda)\left|2^{2 m}(\mu-1)+2 \cdot 3^{m}\right|}\right\} . \tag{2.22}
\end{gather*}
$$

3. Corollaries and consequences

By setting $m=0$, in Theorem 2.1, we get Corollary 3.1 below.
Corollary 3.1 ([8]) Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the bi-univalent function class $\mathcal{N}_{\Sigma}^{h, p}(\lambda, \mu)$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(\mu+\lambda)^{2}}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{2(\mu+2 \lambda)(\mu+1)}}\right\}, \tag{3.1}\\
\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2(\mu+\lambda)^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4(\mu+2 \lambda)}, \frac{(\mu+3)\left|h^{\prime \prime}(0)\right|+|\mu-1|\left|p^{\prime \prime}(0)\right|}{4(\mu+2 \lambda)(\mu+1)}\right\} . \tag{3.2}
\end{gather*}
$$

There are many results generated by Corollary 3.1, for detail, see [4,6,7,10-12].
If $m=0$ in Theorems 2.3 and 2.4, we get Corollaries 3.2 and 3.3 below.
Corollary 3.2 Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the bi-univalent function class $\mathcal{N}_{\Sigma}^{\mu}(\alpha, \lambda)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\frac{2 \alpha}{\mu+\lambda}, \sqrt{\frac{4 \alpha^{2}}{(\mu+2 \lambda)(\mu+1)}}\right\} \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\frac{4 \alpha^{2}}{(\mu+\lambda)^{2}}+\frac{2 \alpha^{2}}{\mu+2 \lambda}, \frac{(\mu+3+|\mu-1|) \alpha^{2}}{(\mu+2 \lambda)(\mu+1)}\right\} \tag{3.4}
\end{equation*}
$$

Corollary 3.3 Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the bi-univalent function class $\mathcal{N}_{\Sigma}^{\mu}(\beta, \lambda)$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\beta)}{\mu+\lambda}, \sqrt{\frac{4(1-\beta)}{(\mu+2 \lambda)(\mu+1)}}\right\} \tag{3.5}\\
\left|a_{3}\right| \leq \min \left\{\frac{4(1-\beta)^{2}}{(\mu+\lambda)^{2}}+\frac{2(1-\beta)}{(\mu+2 \lambda)}, \frac{(\mu+3+|\mu-1|)(1-\beta)}{(\mu+2 \lambda)(\mu+1)}\right\} \tag{3.6}
\end{gather*}
$$

If $m=0, \mu=1$ in Theorems 2.2 and 2.3, we get Corollaries 3.4 and 3.5 below.
Corollary 3.4 Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the bi-univalent function class $\mathcal{B}_{\Sigma}(\alpha, \lambda)$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \min \left\{\frac{2 \alpha}{1+\lambda}, \sqrt{\frac{2 \alpha^{2}}{1+2 \lambda}}\right\} \tag{3.7}\\
\left|a_{3}\right| \leq \frac{2 \alpha^{2}}{1+2 \lambda} \tag{3.8}
\end{gather*}
$$

Corollary 3.5 Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the bi-univalent function class $\mathcal{B}_{\Sigma}(\beta, \lambda)$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\beta)}{1+\lambda}, \sqrt{\frac{4(1-\beta)}{2(1+2 \lambda)}}\right\} \tag{3.9}\\
\left|a_{3}\right| \leq \frac{2(1-\beta)}{1+2 \lambda} \tag{3.10}
\end{gather*}
$$

If $m=0, \mu=1, \lambda=1$ in Theorems 2.2 and 2.3, we get Corollaries 3.6 and 3.7 below.
Corollary 3.6 Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the bi-univalent function class $\mathcal{H}_{\Sigma}(\alpha)$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \min \left\{\alpha, \sqrt{\frac{2}{3}} \alpha\right\}, \tag{3.11}\\
\left|a_{3}\right| \leq \frac{2 \alpha^{2}}{3} \tag{3.12}
\end{gather*}
$$

Corollary 3.7 Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (1.1) be in the bi-univalent function class $\mathcal{H}_{\Sigma}(\beta)$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \min \left\{1-\beta, \sqrt{\frac{2(1-\beta)}{3}}\right\} \tag{3.13}\\
\left|a_{3}\right| \leq \frac{2(1-\beta)}{3} \tag{3.14}
\end{gather*}
$$

4. Conclusions

In this paper, a general subclass $\mathcal{N}_{\Sigma}^{h, p}(m, \lambda, \mu)$ of the analytic function class \mathcal{A} involving Salagean operator D^{m} in the open unit disk \mathbb{U} was introduced. The class extends many familiar
subclasses of bi-univalent functions. We have derived estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|,\left|a_{3}\right|$ for functions belonging to the class. Moreover, we verify Brannan and Clunie's conjecture $\left|a_{2}\right| \leq \sqrt{2}$ for some of our class. The results in our paper are more accurate than those in any other papers [$4,7,10$].

Acknowledgements We thank all the referees for their time and comments to improve this paper. We also thank the editors for handling this paper.

References

[1] M. LEWIN. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc., 1967, 18: 63-68.
[2] D. A. BRANNAN, J. G. CLUNIE. Aspects of Contemporary Complex Analysis. Academic Press, Inc., London-New York, 1980.
[3] E. NETANYAHU. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$. Arch. Ration. Mech. Anal., 1969, 32: 100-112.
[4] H. M. SRIVASTAVA, A. K. MISHRA, P. GOCHHAYAT. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett., 2010, 23(10): 1188-1192.
[5] B. A. FRASIN, M. K. AOUF. New subclasses of bi-univalent functions. Appl. Math. Lett., 2011, 24(9): 1569-1573.
[6] Qinghua XU, Haigen XIAO, H. M. SRIVASTAVA. A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Appl. Math. Comput., 2012, 218(23): 11461-11465.
[7] M. ÇAĞLAR, H. ORHAN, N. YAGMUR. Coefficient bounds for new subclasses of bi-univalent functions. Filomat, 2013, 27(7): 1165-1171.
[8] H. M. SRIVASTAVA, S. BULUT, M. CAGLAR, et al. Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat, 2013, 27(5): 831-842.
[9] C. POMMERENKE. Univalent Functions. Vandenhoeck Ruprecht, Gottingen, 1975.
[10] S. BULUT. Coefficient estimates for a class of analytic and bi-univalent functions. Novi Sad J. Math., 2013, 43(2): 59-65.
[11] Zhigang PENG, Qiuqiu HAN. On the coefficients of several classes of bi-univalent functions. Acta Math. Sci., 2014, 34(1): 228-240.
[12] Qinghua XU, Yingchun GUI, H. M. SRIVASTAVA. Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl. Math. Lett., 2012, 25: 990-994.

[^0]: Received July 29, 2016; Accepted September 7, 2016
 Supported by the National Natural Science Foundation of China (Grant No. 11401186) and the Research Fund from Engineering and Technology College Yangtze University (Grant No. 15J0802).

 * Corresponding author

 E-mail address: fanchen20160725@163.com (Fan CHEN); lxfei0828@163.com (Xiaofei LI)

