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Abstract By using the Nevanlinna value distribution theory, we will mainly investigate the

form of entire solutions with finite order on a type of system of differential-difference equations

and a type of differential-difference equations, two interesting results are obtained. And it

extends some results concerning complex differential (difference) equations to the systems of

differential-difference equations.
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1. Introduction

As we all know, the complex difference equation theory is an important topic in complex

analysis. Some results can be found in [1], where Nevanlinna theory is an effective research tool.

Let C be the complex plane and f(z) be a meromorphic function on C. For a meromorphic func-

tion f(z), we assume that the reader is familiar with the standard notations and results, such as

m(r, f(z)), n(r, f(z)), N(r, f(z)) and T (r, f(z)) denote the proximity function, the non-integrated

counting function, the counting function and the characteristic function of f(z), respectively. E-

specially, for the integrated counting function for distinct poles of f(z) we use the notations

N(r, f(z)), the growth order of meromorphic function f(z) is denoted by ρ(f(z)).

Let h(z) be another meromorphic function. If T (r, h(z)) = S(r, f), the meromorphic func-

tion h(z) is said to be a small function of f(z), where S(r, f) is used to denote any quantity that

satisfies S(r, f) = o(T (r, f)) as r → ∞, possibly outside of a set of finite logarithmic measure in

R+.

In the complex differential equation theory, Nevanlinna value distribution theory of mero-

morphic functions plays an important role, it has been extensively applied to resolve growth,

value distribution [1], and solvability of meromorphic solutions of linear and nonlinear differen-

tial equations [2].

In 2004, Yang and Li [3] discussed the form of solutions of the following equation

f(z)2 + (L(f))2 = a(z),
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where n is a positive integer, a(z), b0(z), b1(z), . . . , bn(z) are polynomials, and bn(z) is a nonzero

constant, a(z) ̸≡ 0, L(f) =
∑n

k=0 bk(z)f
(k)(z). They obtained

Theorem 1.1 ([3]) A transcendental meromorphic solution of the above equation must have

the form

f(z) =
1

2
(P (z)eR(z) +Q(z)e−R(z)),

where P (z), Q(z), R(z) are polynomials, and P (z)Q(z) = a(z).

Recently, some authors pay high attention to dealing with the existence or the growth of

meromorphic solutions of difference equations and many results on meromorphic solutions of

complex difference equations are rapidly obtained, such as [4–11] and so on.

In 2012, Liu et al. [10] considered Fermat type differential-difference equation

f ′(z)2 + f(z + c)2 = 1, (1.1)

and the following result is obtained.

Theorem 1.2 ([10]) The transcendental entire solutions with finite order of the differential-

difference equation (1.1) must satisfy f(z) = sin(z ± iB), where B is a constant and c = 2kπ or

c = 2kπ + π, k is an integer.

It is natural to ask what we can know about the solutions of the differential-difference

equations of the following form

(w′′(z)− w(z))2 + w(z + c)2 = 1. (1.2)

Corresponding to the question, this paper first is devoted to considering the form of entire

solutions of the above differential-difference equation.

For (1.2), we can obtain

Theorem 1.3 Let w(z) be transcendental entire solutions with ρ(w(z)) < ∞ of the differential-

difference equation (1.2). Then w(z) must satisfy

w(z) =
e
√
2z+b + e−

√
2z−b

2
or w(z) =

e−
√
2z+b + e

√
2z−b

2
,

where b is a constant, c = ±
πi
2 +2kπi√

2
, k is an integer.

We state some remarks below.

Remark 1.4 The following Example 1.5 shows that it satisfies Theorem 1.3.

Example 1.5 w(z) = e
√

2z+πi+e−
√

2z−πi

2 is a transcendental entire solution of the complex

differential-difference equation of the form

(w′′(z)− w(z))2 + w(z − πi

2
√
2
)2 = 1,

where a =
√
2, b = πi, c = − πi

2
√
2
.

Compared with difference equation, we know that the system of difference equations is

essentially different from single difference equation. The form of systems of difference equations
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is more complex and the research of them is more difficult. Thus, we must improve the method

to solve different situations in the process of the theorem’s proof.

A number of recent papers had discussed the existence or growth of some types of systems of

complex difference equations, and obtained some results [12–15]. In the following, our additional

aim is to investigate entire solutions with finite order of the system of differential-difference

equations of the form {
(w′′

1 (z)− w1(z))
2 + w2(z + c)2 = 1,

(w′′
2 (z)− w2(z))

2 + w1(z + c)2 = 1,
(1.3)

here c is a nonzero constant.

The growth order of meromorphic solutions (w1, w2) of the system (1.3) is defined by

ρ = ρ(w1, w2) = max{ρ(w1), ρ(w2)},

ρ(wk) = lim sup
r→∞

log+ T (r, wk)

log r
, k = 1, 2.

We obtain the main result as follows:

Theorem 1.6 Let (w1(z), w2(z)) be transcendental entire solutions with ρ(w1, w2) < ∞ of the

system of differential-difference equations (1.3). Then (w1(z), w2(z)) have the form of

(w1(z), w2(z)) = (
e
√
2z+b1 + e−

√
2z−b1

2
,
e
√
2z+b2 + e−

√
2z−b2

2
),

or

(w1(z), w2(z)) = (
e−

√
2z+b1 + e

√
2z−b1

2
,
e−

√
2z+b2 + e

√
2z−b2

2
),

where b1, b2 are constants, c = ±πi+2kπi
2
√
2

, k is an integer.

Remark 1.7 The following Example 1.8 shows that it satisfies Theorem 1.6.

Example 1.8 (w1(z), w2(z)) = ( e
√

2z−πi+e−
√

2z+πi

2 , e
√

2z+πi+e−
√

2z−πi

2 ) is a transcendental entire

solution of the system of complex differential-difference equations of the form{
(w′′

1 (z)− w1(z))
2 + w2(z − πi

2
√
2
)2 = 1,

(w′′
2 (z)− w2(z))

2 + w1(z − πi
2
√
2
)2 = 1,

where a =
√
2, c = − πi

2
√
2
, b1 = −πi, b2 = πi.

2. Some lemmas

We will use the following Lemmas in our proofs of the above Theorems.

Lemma 2.1 ([1]) Let fj(z) be meromorphic function. fk(z) (k = 1, 2, . . . , n−1) are nonconstant,

satisfying
∑n

j=1 fj = 1 and n ≥ 3. If fn(z) ̸≡ 0 and

n∑
j=1

N(r,
1

fj
) + (n− 1)

n∑
j=1

N(r, fj) < (λ+ o(1))T (r, fk),



302 Manli LIU and Lingyun GAO

where λ < 1 and k = 1, 2, . . . , n− 1, then fn ≡ 1.

Lemma 2.2 ([1]) (Hadamard’s factorization theorem) Let f be an entire function of finite order

ρ(f) with zeros {z1, z2, . . .} ⊂ C\{0} and a k-fold zero at the origin. Then

f(z) = zkP (z)eQ(z),

where P (z) is the canonical product of f formed with the non-null zeros of f , and Q(z) is a

polynomial of degree ≤ ρ(f).

3. Proof of Theorem 1.3

With the aid of the Lemmas above, first we give the proof of Theorem 1.3.

Proof Suppose that (1.2) has a transcendental entire solution w(z) with ρ(w(z)) < ∞.

We rewrite (1.2) as the following form

((w′′(z)− w(z)) + iw(z + c))((w′′(z)− w(z))− iw(z + c)) = 1.

Then

(w′′(z)− w(z)) + iw(z + c), (w′′(z)− w(z))− iw(z + c)

have no zeros. By Lemma 2.2, we can assume that{
(w′′(z)− w(z)) + iw(z + c) = ep(z),

(w′′(z)− w(z))− iw(z + c) = e−p(z),
(3.1)

where p(z) is a nonzero polynomial.

From (3.1), we get

w′′(z)− w(z) =
ep(z) + e−p(z)

2
, (3.2)

w(z + c) =
ep(z) − e−p(z)

2i
. (3.3)

Combining (3.2) with (3.3), we have

i

p′′(z)− p′(z)2 + 1
ep(z+c)+p(z) +

i

p′′(z)− p′(z)2 + 1
ep(z)−p(z+c) − p′′(z) + p′(z)2 − 1

p′′(z)− p′(z)2 + 1
e2p(z) = 1.

(3.4)

(i) If −p′′(z)+p′(z)2−1
p′′(z)−p′(z)2+1e

2p(z) ≡ d1, we have p(z) is also a constant, by (3.3), then we can get

w(z) is a constant, which is in contradiction with w(z) being a transcendental entire function.

(ii) If both

i

p′′(z)− p′(z)2 + 1
ep(z+c)+p(z) ≡ d2 and

i

p′′(z)− p′(z)2 + 1
ep(z)−p(z+c) ≡ d3

are constants, then ep(z)+p(z+c)

ep(z)−p(z+c) ≡ d, we obtain e2p(z+c) ≡ d. Therefore, p(z) is a constant, by

(3.3), we also get a contradiction with w(z) being a transcendental entire function.

Thus, we can get that i
p′′(z)−p′(z)2+1e

p(z)+p(z+c) is a non-constant.
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Combining the above cases (i) and (ii), we can obtain

−p′′(z) + p′(z)2 − 1

p′′(z)− p′(z)2 + 1
e2p(z),

i

p′′(z)− p′(z)2 + 1
ep(z)+p(z+c)

should be non-constants.

According to Lemma 2.1, we obtain

i

p′′(z)− p′(z)2 + 1
ep(z)−p(z+c) ≡ 1

which shows that p′′(z) − p′(z)2 + 1 has no zeros, p(z) is a polynomial with deg p(z) = 1. Let

p(z) = az + b, where a ̸= 0, b be constants. Thus, we get

i

p′′(z)− p′(z)2 + 1
ep(z)−p(z+c) =

i

−a2 + 1
e−ac ≡ 1. (3.5)

From (3.5), we obtain

e−ac = i(a2 − 1), c = − ln(i(a2 − 1)) + 2kπi

a
. (3.6)

Since e−ac = i(a2 − 1), from (3.2), we have

w′′(z + c)− w(z + c) =
eaz+ac+b1 + e−az−ac−b1

2
=

1
i(a2−1)e

az+b1 + i(a2 − 1)e−az−b1

2
. (3.7)

Again, by (3.3), we can obtain

w′′(z + c)− w(z + c) =
(a2 − 1)eaz+b2 − (a2 − 1)e−az−b2

2i
. (3.8)

Combining (3.7) and (3.8), we have

1
i(a2−1)e

az+b1 + i(a2 − 1)e−az−b1

2
=

(a2 − 1)eaz+b2 − (a2 − 1)e−az−b2

2i
,

i.e.,
1

a2 − 1
= a2 − 1. (3.9)

Since a ̸= 0, from (3.9), we obtain a = ±
√
2. If a =

√
2, then c = −

πi
2 +2kπi√

2
and

w(z) =
e
√
2z+b + e−

√
2z−b

2
.

If a = −
√
2, then c =

πi
2 +2kπi√

2
and w(z) = e−

√
2z+b+e

√
2z−b

2 , where b is a constant.

Thus, the proof of Theorem 1.3 is completed. �

4. Proof of Theorem 1.6

In the following, we give the proof of Theorem 1.6 further.

Proof Suppose that (1.3) has a transcendental entire solution (w1(z), w2(z)) with ρ(w1, w2) <

∞.
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We rewrite (1.3) as the following form{
((w′′

1 (z)− w1(z)) + iw2(z + c))((w′′
1 (z)− w1(z))− iw2(z + c)) = 1,

((w′′
2 (z)− w2(z)) + iw1(z + c))((w′′

2 (z)− w2(z))− iw1(z + c)) = 1.

Then

(w′′
1 (z)− w1(z)) + iw2(z + c), (w′′

1 (z)− w1(z))− iw2(z + c),

(w′′
2 (z)− w2(z)) + iw1(z + c), (w′′

2 (z)− w2(z))− iw1(z + c)

have no zeros. By Lemma 2.2, we can assume that
(w′′

1 (z)− w1(z)) + iw2(z + c) = ep(z),

(w′′
1 (z)− w1(z))− iw2(z + c) = e−p(z),

(w′′
2 (z)− w2(z)) + iw1(z + c) = eq(z),

(w′′
2 (z)− w2(z))− iw1(z + c) = e−q(z),

(4.1)

where p(z), q(z) are nonzero polynomials.

From(4.1), we get

w′′
1 (z)− w1(z) =

ep(z) + e−p(z)

2
, (4.2)

w2(z + c) =
ep(z) − e−p(z)

2i
, (4.3)

w′′
2 (z)− w2(z) =

eq(z) + e−q(z)

2
, (4.4)

w1(z + c) =
eq(z) − e−q(z)

2i
. (4.5)

Combining (4.2) with (4.5), (4.3) with (4.4), respectively, we have{
w′′

1 (z)− w1(z) =
ep(z)+e−p(z)

2 ,

w1(z + c) = eq(z)−e−q(z)

2i ,
(4.6)

{
w′′

2 (z)− w2(z) =
eq(z)+e−q(z)

2 ,

w2(z + c) = ep(z)−e−p(z)

2i .
(4.7)

By (4.6) and (4.7), we obtain

i

q′′(z)− q′(z)2 + 1
ep(z+c)+q(z)+

i

q′′(z)− q′(z)2 + 1
eq(z)−p(z+c)−

q′′(z) + q′(z)2 − 1

q′′(z)− q′(z)2 + 1
e2q(z) = 1, (4.8)

i

p′′(z)− p′(z)2 + 1
eq(z+c)+p(z)+

i

p′′(z)− p′(z)2 + 1
ep(z)−q(z+c)−

p′′(z) + p′(z)2 − 1

p′′(z)− p′(z)2 + 1
e2p(z) = 1. (4.9)

(i) If − q′′(z)+q′(z)2−1
q′′(z)−q′(z)2+1e

2q(z) or −p′′(z)+p′(z)2−1
p′′(z)−p′(z)2+1e

2p(z) is a constant, we have q(z) or p(z) is

also a constant, by the second equation of (4.6) or (4.7), we can get w1(z) or w2(z) is a constant,

a contradiction.
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(ii) If both

i

q′′(z)− q′(z)2 + 1
ep(z+c)+q(z) ≡ d̂3 and

i

q′′(z)− q′(z)2 + 1
eq(z)−p(z+c) ≡ d̂4

are constants, then eq(z)+p(z+c)

eq(z)−p(z+c) ≡ d, we obtain e2p(z+c) ≡ d. Therefore, p(z) is a constant,

similarly, we can get a contradiction with w2(z) being a transcendental entire function.

Thus, we can assume that i
q′′(z)−q′(z)2+1e

q(z)+p(z+c) is a non-constant.

Similarly, we can also assume that i
p′′(z)−p′(z)2+1e

q(z+c)+p(z) is a non-constant.

Combining the above cases (i) and (ii), we can have

−q′′(z) + q′(z)2 − 1

q′′(z)− q′(z)2 + 1
e2q(z), −p′′(z) + p′(z)2 − 1

p′′(z)− p′(z)2 + 1
e2p(z),

i

q′′(z)− q′(z)2 + 1
eq(z)+p(z+c),

i

p′′(z)− p′(z)2 + 1
eq(z+c)+p(z)

should be non-constants.

According to Lemma 2.1, we obtain

i

q′′(z)− q′(z)2 + 1
eq(z)−p(z+c) ≡ 1,

i

p′′(z)− p′(z)2 + 1
ep(z)−q(z+c) ≡ 1

which shows that both q′′(z) − q′(z)2 + 1 and p′′(z) − p′(z)2 + 1 have no zeros, p(z) and q(z)

are polynomials with deg p(z) = 1, deg q(z) = 1. Let p(z) = az + b1, q(z) = az + b2, where

a ̸= 0, b1, b2 be constants. Thus, we get

i

q′′(z)− q′(z)2 + 1
eq(z)−p(z+c) =

i

−a2 + 1
eb2−b1−ac = 1, (4.10)

i

p′′(z)− p′(z)2 + 1
ep(z)−q(z+c) =

i

−a2 + 1
eb1−b2−ac = 1. (4.11)

From (4.10) and (4.11) we obtain

eb2−b1−ac = i(a2 − 1), eb1−b2−ac = i(a2 − 1). (4.12)

Hence, e−2ac = −(a2 − 1)2, c = − ln(−(a2−1)2)+2kπi
2a .

From the first equation of (4.6), we get

w′′
1 (z + c)− w1(z + c) =

eaz+ac+b1 + e−az−ac−b1

2
=

1
i(a2−1)e

az+b2 + i(a2 − 1)e−az−b2

2
. (4.13)

By the second equation of (4.6), we immediately have

w′′
1 (z + c)− w1(z + c) =

(a2 − 1)eaz+b2 − (a2 − 1)e−az−b2

2i
. (4.14)

Combining (4.13) and (4.14), we have

1
i(a2−1)e

az+b2 + i(a2 − 1)e−az−b2

2
=

(a2 − 1)eaz+b2 − (a2 − 1)e−az−b2

2i
.

i.e.,
1

a2 − 1
= a2 − 1. (4.15)
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Since a ̸= 0, from (4.15), we obtain

a = ±
√
2.

If a =
√
2, then c = −πi+2kπi

2
√
2

and

(w1(z), w2(z)) = (
e
√
2z+b1 + e−

√
2z−b1

2
,
e
√
2z+b2 + e−

√
2z−b2

2
).

If a = −
√
2, then c = πi+2kπi

2
√
2

and

(w1(z), w2(z)) = (
e−

√
2z+b1 + e

√
2z−b1

2
,
e−

√
2z+b2 + e

√
2z−b2

2
),

where b1, b2 are constants.

Thus, the proof of Theorem 1.6 is completed. �
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