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Abstract In this paper we study a class of multivariate Hermite interpolation problem on

2d nodes with dimension d ≥ 2 which can be seen as a generalization of two classical Hermite

interpolation problems of d = 2. Two combinatorial identities are firstly given and then the

regularity of the proposed interpolation problem is proved.
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1. Introduction

Let n, d be nonnegative integers and Πd
n be the space of polynomials of total degree at most

n. Let X = {X1, X2, . . . , Xm} be a set of pairwise distinct points in Rd and p = {t1, t2, . . . , tm}
be a set of m nonnegative integers. The Hermite interpolation problem to be considered in this

paper is described as follows: For given real values {ci,α, 1 ≤ i ≤ m, 0 ≤ |α| ≤ ti}, find a

polynomial f ∈ Πd
n satisfying

Dαf(Xi) = ci,α, 1 ≤ i ≤ m, 0 ≤ |α| ≤ ti, (1)

where α = (α1, α2, . . . , αd), |α| = α1 + · · ·+ αd,

Dα =
∂|α|

∂xα1
1 . . . ∂xαd

d

and the numbers ti and n are assumed to satisfy(
n+ d

d

)
=

m∑
i=1

(
ti + d

d

)
. (2)

The interpolation problem (p,X ) is called regular if the above equation has a unique

solution for each choice of values {ci,α}. Otherwise, the interpolation problem is singular. If

(p,X ) is regular for almost all X ⊂ Rd, then we say that (p,X ) is almost regular. In fact, if the

interpolation problem is regular for some X ⊂ Rd, then it is also regular for almost all X ⊂ Rd

(see [1]). Thus we also say that (p,X ) is almost regular if it is regular for some X ⊂ Rd.
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The research on the regularity of multivariate Hermite interpolation is very difficult because

Eq. (2) does not hold in many cases. For m ≤ d+ 1, all interpolation schemes are singular [1,2].

For m ≤ d+ 3, a complete description for the regularity of the interpolation problem was given

in [3]. For m ≤ d(d+ 3)/2, authors [4] presented many regular interpolation schemes. For more

results of multivariate Hermite interpolation, one can refer to [5–10] and the references therein.

Especially, the following theorem is classical in the theory of multivariate Hermite interpolation,

which has been widely used in multivariate splines and finite element theory.

Theorem 1.1 ([1]) Let d = 2. Interpolating the value of a function and all of its partial

derivatives of order up to p at each of the three vertices of a triangle as well as the value of the

function and all of its derivatives of order up to p+ 1/p− 1 at a fourth point lying anywhere in

the interior of the triangle by polynomials from Π2
2p+2/Π

2
2p+1 is regular.

In [4], the result in Theorem 1.1 was extended to d = 3.

Theorem 1.2 ([4]) Let X = {X1 = (1, 1, 1)T , X2 = (1, 0, 0)T , X3 = (0, 1, 0)T , X4 = (0, 0, 1)T , X5 =

(1, 1, 0)T , X6 = (1, 0, 1)T , X7 = (0, 1, 1)T , X8 = (0, 0, 0)T }, and p = {t − 1, t, t, t, t, t, t, t + 1} or

p = {t− 1, t− 1, t− 1, t− 1, t, t, t, t} (t ≥ 1). Then (p,X ) is regular.

The purpose of this paper is to generalize Theorems 1.1 and 1.2 to higher dimension.

2. Main results

Eq. (2) is a necessary condition to study whether the interpolation problem is regular. So,

we first present a lemma with n, d and p. For convenience, let
(
N
M

)
= 0 if N < M .

Lemma 2.1 Suppose t ∈ Z. Then(
t+ 1 + d

d

)
+

[(d−1)/2]∑
i=0

(
d+ 1

2i+ 2

)(
t− i+ d

d

)
=

(
2t+ 2 + d

d

)
, (3)

[d/2]∑
i=0

(
d+ 1

2i+ 1

)(
t− i+ d

d

)
=

(
2t+ 1 + d

d

)
, (4)

where [·] denotes the integral part.

Proof The proof is by induction. For d = 2, it is easy to get(
t+ 1 + 2

2

)
+ 3

(
t+ 2

2

)
=

(
2t+ 2 + 2

2

)
,

3

(
t+ 2

2

)
+

(
t+ 1

2

)
=

(
2t+ 1 + 2

2

)
,

which implies that Eqs. (3) and (4) hold.

Suppose that Eqs. (3) and (4) hold for d = m, and we will show that they also hold for
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d = m+ 1. If m is an even number, adding Eq. (3) to Eq. (4) will give(
t+ 1 +m

m

)
+

m/2−1∑
i=0

[(
m+ 1

2i+ 2

)
+

(
m+ 1

2i+ 1

)](
t− i+m

m

)
+

(
t−m/2 +m

m

)

=

(
t+ 1 +m

m

)
+

m/2−1∑
i=0

(
m+ 2

2i+ 2

)(
t− i+m

m

)
+

(
t−m/2 +m

m

)
=

(
2t+ 2 +m

m

)
+

(
2t+ 1 +m

m

)
,

which holds for any t ∈ Z. Substituting j for t and taking the summation with respect to j on

the both sides of the equation, we can get

t∑
j=−1

(
j + 1 +m

m

)
+

t∑
j=−1

m/2−1∑
i=0

(
m+ 2

2i+ 2

)(
j − i+m

m

)
+

t∑
j=−1

(
j −m/2 +m

m

)

=

t∑
j=−1

(
2j + 2 +m

m

)
+

t∑
j=−1

(
2j + 1 +m

m

)
. (5)

By simple computation, we have

t∑
j=−1

(
j + 1 +m

m

)
=

(
t+ 2 +m

m+ 1

)
,

t∑
j=−1

(
j − i+m

m

)
=

(
t− i+m+ 1

m+ 1

)
,

t∑
j=−1

(
j −m/2 +m

m

)
=

(
t−m/2 +m+ 1

m+ 1

)
,

t∑
j=−1

[(
2j + 1 +m

m

)
+

(
2j + 2 +m

m

)]
=

(
2t+ 2 +m+ 1

m+ 1

)
.

Substituting these equalities into Eq. (5) yields(
t+ 2 +m

m+ 1

)
+

m/2−1∑
i=0

(
m+ 2

2i+ 2

)(
t− i+m+ 1

m+ 1

)
+

(
t−m/2 +m+ 1

m+ 1

)

=

(
t+ 1 +m+ 1

m+ 1

)
+

m/2∑
i=0

(
m+ 1 + 1

2i+ 2

)(
t− i+m+ 1

m+ 1

)
=

(
2t+ 2 +m+ 1

m+ 1

)
,

which implies that Eq. (3) holds for d = m+ 1.

Replacing t with t− 1 in Eq. (3), we have(
t+m

m

)
+

m/2−1∑
i=0

(
m+ 1

2i+ 2

)(
t− 1− i+m

m

)
=

(
2t+m

m

)
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i.e., (
t+m

m

)
+

m/2∑
i=1

(
m+ 1

2i

)(
t− i+m

m

)
=

(
2t+m

m

)
.

Adding this equation to (4) yields

m/2∑
i=0

[(
m+ 1

2i

)
+

(
m+ 1

2i+ 1

)](
t− i+m

m

)
=

(
2t+m

m

)
+

(
2t+ 1 +m

m

)
,

i.e.,
m/2∑
i=0

(
m+ 2

2i+ 1

)(
t− i+m

m

)
=

(
2t+m

m

)
+

(
2t+ 1 +m

m

)
.

It holds for any t ∈ Z. Substituting j for t and taking the summation with respect to j on the

both sides of the equation, we can get

t∑
j=0

m/2∑
i=0

(
m+ 2

2i+ 1

)(
j − i+m

m

)
=

t∑
j=0

[(
2j +m

m

)
+

(
2j + 1 +m

m

)]
.

By further calculation, it is easy to obtain

m/2∑
i=0

(
m+ 2

2i+ 1

)(
t− i+m+ 1

m+ 1

)
=

(
2t+ 1 +m+ 1

m+ 1

)
.

Since m is an even number, the above equality can be rewritten as

[(m+1)/2]∑
i=0

(
m+ 1 + 1

2i+ 1

)(
t− i+m+ 1

m+ 1

)
=

(
2t+ 1 +m+ 1

m+ 1

)
.

Therefore, Eq. (4) holds for d = m+ 1.

Similarly, if m is an odd number, Eqs.(3) and (4) also hold for d = m+1. By induction, we

complete the proof. �
Next, we consider the corresponding interpolation problems when Eqs. (3) and (4) hold.

Noting that

1 +

[(d−1)/2]∑
i=0

(
d+ 1

2i+ 2

)
= 1 +

[(d−1)/2]∑
i=0

[(
d

2i+ 1

)
+

(
d

2i+ 2

)]
=

d∑
i=0

(
d

i

)
= 2d,

[d/2]∑
i=0

(
d+ 1

2i+ 1

)
=

[d/2]∑
i=0

[(
d

2i

)
+

(
d

2i+ 1

)]
= 2d,

the number of interpolation nodes is 2d and the interpolation nodes can be selected as follows.

Suppose that K = [0, 1]d denotes the d dimensional hypercube. Obviously, it denotes unit

rectangle or unit cube for d = 2 or 3, respectively. Define

Xk = {X ∈ X : |X| = k}, k = 0, 1, 2, . . . , d.

Then the number of the points in Xk is

|Xk| =
(
d

k

)
, k = 0, 1, 2, . . . , d,
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and obviously X = ∪d
k=0Xk. And let

p0 = t+ 1, p1 = t, p2 = t, . . . , pi = t− [(i− 1)/2], . . . , pd = t− [(d− 1)/2]

q0 = t, q1 = t, q2 = t− 1, . . . , qk = t− [k/2], . . . , qd = t− [d/2].

Then we have the following theorem.

Theorem 2.2 (i) If f ∈ Πd
2t+2 satisfies

Dαf(Xi) = 0, Xi ∈ Xk, 0 ≤ |α| ≤ pk, k = 0, 1, . . . , d, (6)

then f ≡ 0.

(ii) If f ∈ Πd
2t+1 satisfies

Dαf(Xi) = 0, Xi ∈ Xk, 0 ≤ |α| ≤ qk, k = 0, 1, . . . , d, (7)

then f ≡ 0.

Proof The proof is by induction with respect to the dimension d. For d = 2, 3, the results are

true and given by [1,3]. Suppose two statements hold for any dimension less than d and we will

show that they also hold for d. We prove the first result firstly.

Again we prove it by induction about t. For t = 0, the result is the same as [3, Theorem

15] and is correct. Assume that the result is correct for any integer less than t.

Any polynomial of order 2t+ 2 can be written as

f(x1, x2, . . . , xd) = x1f1(x1, x2, . . . , xd) + r1(x2, x3, . . . , xd),

where f1 is a polynomial with deg(f1) ≤ 2t+ 1 and r1 is a polynomial with deg(r1) ≤ 2t+ 2.

Consider the interpolation conditions on the hyperplane x1 = 0

Dαf(Xi) = 0, Xi ∈ Xk|x1=0, α = (0, α2, . . . , αd),

0 ≤ |α| ≤ pk, k = 0, 1, . . . , d,
(8)

where Xk|x1=0 denotes the set of the points in Xk with x1 = 0.

Substituting f into (8) yields

Dαr1(Xi) = 0, Xi ∈ Xk|x1=0, α = (0, α2, . . . , αd),

0 ≤ |α| ≤ pk, k = 0, 1, . . . , d.
(9)

Since r1 is a polynomial with respect to x2, . . . , xd and of deg(r1) ≤ 2t + 2, interpolation prob-

lem (9) can be seen as a d − 1 dimensional interpolation problem. According to the inductive

hypothesis for d, we have r1 ≡ 0 and f = x1f1. Similarly, f can be divided by xi, i = 2, . . . , d.

Hence f can be written as

f(x1, x2, . . . , xd) = x1x2x3 . . . xdg(x1, x2, . . . , xd), deg(g) ≤ 2t+ 2− d.

If 2t + 2 < d, we have f ≡ 0. Otherwise, we consider the interpolation conditions on the

hyperplane x1 = 1. The following conditions should be satisfied

Dαg(Xi) = 0, Xi ∈ Xk|x1=1, 0 ≤ |α| ≤ pk − d+ k, k = 0, 1, . . . , d, (10)
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where pk − d+ k = t+ [k/2] + 1− d. Again let

g(x1, x2, . . . , xd) = (x1 − 1)g1(x1, . . . , x2) + r2(x2, . . . , xd),

where r2(x2, . . . , xd) is a polynomial of degree no more than 2t+ 2− d. Substituting g into (10)

yields

Dαr2(Xi) = 0, Xi ∈ Xk|x1=1, α = (0, α2, . . . , αd),

0 ≤ |α| ≤ t+ [k/2] + 1− d, k = 0, 1, . . . , d.

Thus we have r2 ≡ 0 by inductive hypothesis of the second statement for odd d and the first

statement for even d, which means that g can be divided by x1 − 1. Similarly, g can be divided

by xi − 1, i = 2, 3, . . . , d. If 2t + 2 − 2d < 0, the result is true. Otherwise, together with the

previous conclusion, we have

f(x1, x2, . . . , xd) = x1x2 . . . xd(x1 − 1)(x2 − 1) . . . (xd − 1)h(x1, x2, . . . , xd),

where deg(h) ≤ 2t+ 2− 2d and

Dαh(Xi) = 0, Xi ∈ Xk, 0 ≤ |α| ≤ pk − d, k = 0, 1, . . . , d. (11)

Clearly, (11) is the same interpolation problem as (6), but substituting t − d for t. By the

inductive hypothesis for t, we have h ≡ 0 and hence f ≡ 0. Therefore, the first statement holds

for d and is proved by inductive method.

The proof of the second statement is similar and omitted. We complete the proof. �

Remark 2.3 In Theorem 2.2, only t ≥ 0 is required for (6) and t ≥ 1 is required for (7). If

pk < 0, it implies that no interpolation happens at this point and the results are also true.
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