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Abstract This paper proposes three new attacks. In the first attack we consider the class of

the public exponents satisfying an equation eX −NY + (apr + bqr)Y = Z for suitably small

positive integers a, b. Applying continued fractions we show that Y
X

can be recovered among

the convergents of the continued fraction expansion of e
N
. Moreover, we show that the number

of such exponents is at least N
2

(r+1)
−ε

where ε ≥ 0 is arbitrarily small for large N . The second

and third attacks works upon k RSA public keys (Ni, ei) when there exist k relations of the

form eix − Niyi + (apri + bqri )yi = zi or of the form eixi − Niy + (apri + bqri )y = zi and the

parameters x, xi, y, yi, zi are suitably small in terms of the prime factors of the moduli. We

apply the LLL algorithm, and show that our strategy enables us to simultaneously factor k

prime power RSA moduli.

Keywords RSA prime power; factorization; LLL algorithm; simultaneous diophantine ap-

proximations; continued fraction
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1. Introduction

The underlying one-way function of RSA is the integer factorization problem: Multiplying

two large primes is computationally easy, but factoring the resulting product is very hard. It

is also well known that the security of RSA is based on the difficulty of solving the so-called

RSA problem: Given an RSA public key (e,N) and a ciphertext c ≡ me (mod N), compute the

plaintext m. The RSA problem is not harder to solve than the integer factorization problem,

because factoring the RSA modulus N leads to computing the private exponent d, and to solving

the RSA problem. However, it is not clear, if the converse is true. In the RSA cryptosystem, the

public modulus N = pq is a product of two primes of the same bit size. The public and private

exponent e and d satisfy the congruence

ed ≡ 1 (mod ϕ(N)),

where ϕ(N) = (p− 1)(q − 1) is the Euler totient function [1,2].
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In 1990, Wiener showed that RSA is insecure if d < 1
3N

0.25 (see [3]). Later based on the

lattice basis reduction, Boneh and Durfee improved the bound to d < N0.292 (see [4]). The

number of exponents for which their attack applies can be estimated as N0.292−ε. Wiener’s

attack as well as its generalization by Boneh and Durfee is based on the RSA key equation

ed− kϕ(N) = 1 where k is a positive integer. In 2004, Blomer and May combined both Wiener

method with Boneh and Durfee method to show that RSA is insecure if the public exponent e

satisfies an equation ex − kϕ(N) = y (see [5]). Applying the continued fraction algorithm and

Coppersmith’s method [6], they showed that the RSA modulus can be factored in polynomial

time if the parameters x and y satisfy

x <
1

3
N

1
4 and |y| ≤ N− 3

4 ex.

Additionally, Blomer and May proved that the number of such weak exponents is at least N
3
4−ε

(see [7,8,2]).

Many RSA variants have been proposed in order to ensure computational efficiency while

maintaining the acceptable levels of security. One such important variant is the prime power

RSA. In prime power RSA the modulus N is in the form N = prq for r ≥ 2. In 1998, Takagi

showed how to use the prime power RSA to speed up the decryption process when the public and

private exponents satisfy an equation ed ≡ 1 (mod (p− 1)(q − 1)) (see [9]). As in the standard

RSA cryptosystem, the security of the prime power RSA depends on the difficulty of factoring

integers of the form N = prq (see [10–12]).

Containing the discussion of variants of RSA moduli by manipulating k instances of RSA

moduli and public key pair (Ni, ei) via their k equations. In 2007, Hinek, showed that it is

possible to factor the k modulus Ni using k equations of the form eid − kiϕ(Ni) = 1 if d < N δ

with δ = k
2(k+1) − ε where ε is a small constant depending on the size of maxNi (see [13]).

Very recently in 2014, with k RSA public keys (Ni, ei), Nitaj, et al. presented a method that

factors the k RSA moduli Ni using k equations of the shape eix− yiϕ(Ni) = zi or of the shape

eixi − yϕ(Ni) = zi where Ni = piqi, ϕ(Ni) = (pi − 1)(qi − 1) and the parameters x, xi, y, yi, zi

are suitably small in terms of the prime factors of the moduli [14].

Our contribution, as motivated from the recent result of [14] and [2]. This paper proposes

three new attacks on the Prime Power RSA with a modulus N = prq. In the first attack, we

consider an instance of the prime power RSA with modulus N = prq and public of exponent e

satisfying the equation eX − NY + (apr + bqr)Y = Z for suitable positive integers a, b. Using

continued fraction we show that Y
X can be recovered among the convergents of the continued

fraction expansion of e
N . We show that the number of such exponents is at least N

2
(r+1)

−ε where

ε ≥ 0 is arbitrarily small for large N . Hence one can factor the modulus N = prq in polynomial

time.

For k ≥ 2, r ≥ 2, let Ni = pri qi, i = 1, . . . , k. The second attack works when k instances

(Ni, ei) are such that there exist an integer x, k integers yi, and k integers zi satisfying eix −
Niyi + (apri + bqri )yi = zi. We show that the k RSA moduli Ni can be factored in polynomial
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time if N = mini Ni and

x < Nδ, yi < Nδ, |zi| <
apri − bqri

3(apri + bqri )
N

1
r2 yi where δ =

k − kr2 − αkr2

r2(1 + k)
.

In the third attack we show that the k RSA moduli Ni can be factored in polynomial time,

when the k instance (Ni, ei) of RSA are such that there exist an integer y, and k integers xi and

k integers zi satisfying eixi −Niy + (apri + bqri )y = zi with mini N = mini Ni, ei = Nβ and

xi < Nδ, y < N δ, |zi| <
apri − bqri

3(apri + bqri )
N

1
r2 yi where δ =

βkr2 − αkr2 − k

r2(1 + k)
.

For the second and third attack we transform the equations into simultaneous diophantine prob-

lem and apply lattice basis reduction techniques to find the parameters (x, yi) or (y, xi) which

leads to factorization of k RSA moduli Ni.

The rest of the paper is structured as follows. In Section 2, we give a brief review of

basic facts about the continued fraction, lattice basis reduction and simultaneous diophantine

approximations with some useful results needed for the attack. In Section 3, we propose the first

attack with estimation of the number of exponents for which our attack works. In Sections 4

and 5, we give the second and third attack. We conclude this paper in Section 6.

2. Preliminaries

We start with definition and an important result concerning the continued fraction, lattice

basis reduction techniques and simultaneous diophantine equations as well as some useful lemmas

needed for the attacks.

2.1. Continued fraction

Definition 2.1 (Continued fraction) The continued fraction of a real number R is an expression

of the form

R = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·
where a0 ∈ Z and ai ∈ N−0 for i ≥ 1. The numbers a0, a1, a2, . . . are called the partial quotients.

We use the notation R = [a0, a1, a2, . . .]. For i ≥ 1 the rational ri
si

= [a0, a1, a2, . . .] are called the

convergents of the continued fraction expansion of R. If R = a
b is a rational number such that

gcd(a, b) = 1, then the continued fraction expansion is finite.

Hardy and Wright (1965) (see [15]). Let x = [a0, a1, a2, . . . , am] be a continued fraction

expansion of x. If X and Y are coprime integers such that∣∣x− Y

X

∣∣ < 1

2X2
.

Then Y = pn and X = qn for some convergent pn

qn
of x with n ≥ 0.

2.2. Lattice
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A lattice is a discrete (additive) subgroup of Rn. Equivalently, given m ≤ n linearly inde-

pendent vectors b1, . . . , bm ∈ Rn, the set

L = L(b1, . . . , bm) =
{ m∑

i=1

αibi|αi ∈ Z
}

is a lattice. The bi are called basis vectors of L and B = b1, . . . , bm is called a lattice basis for L.
Thus, the lattice generated by a basis B is the set of all integer linear combinations of the basis

vectors in B.

The dimension (or rank) of a lattice, denoted dim(L), is equal to the number of vectors

making up the basis. The dimension of a lattice is equal to the dimension of the vector subspace

spanned by B. A lattice is said to be full dimensional (or full rank) when dim(L) = n (see [12]).

A lattice L can be represented by a basis matrix. Given a basis B, a basis matrix M for

the lattice generated by B is the m× n matrix defined by the rows of the set b1, . . . , bm

M =

 b1
...

bm

 .

It is often useful to represent the matrix M by B. A very important notion for the lattice L is

the determinant.

Let L be a lattice generated by the basis B = ⟨b1, . . . , bm⟩. The determinant of L is defined

as

det(L) =
√

det(BBT ).

If n = m, we have

det(L) =
√

det(BBT ) = |det(B)|.

Lenstra et al. (1982) (see [16]). Let L be a lattice of dimension ω with a basis v1, . . . , vω.

The LLL algorithm produces a reduced basis b1, . . . , bω satisfying

∥b1∥ ≤ ∥b2∥ ≤ · · · ≤ ∥bi∥ ≤ 2
ω(ω−1)

4(ω+1−i) detL
1

ω+1−i

for all 1 ≤ i ≤ ω.

An application of the LLL algorithm is that it provides a solution to the simultaneous dio-

phantine approximations problem which is defined as follows. Let α1, . . . , αn be n real numbers

and ε a real number such that 0 < ε < 1. A classical theorem of Dirichlet asserts that there exist

integers p1, . . . , pn and a positive integer q ≤ ε−n such that

|qαi − pi| < ε for 1 ≤ i ≤ n.

A method to find simultaneous diophantine approximations to rational numbers was described

by [16]. In their work, they considered a lattice with real entries. The following is a similar result

for a lattice with integer entries.

Theorem 2.2 (Simultaneous diophantine approximations) ([14]) There is a polynomial time

algorithm, for given rational numbers α1, . . . , αn and 0 < ε < 1, to compute integers p1, . . . , pn
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and a positive integer q such that

max
i

|qαi − pi| < ε and q ≤ 2
n(n−3)

4 .

Proof See [14] Appendix A. �

Lemma 2.3 Let N = prq be an RSA modulus prime power with q < p < 2q. Then

2−
r

r+1N
1

r+1 < q < N
1

r+1 < p < 2
1

r+1N
1

r+1 .

Proof Suppose N = prq. Then multiplying q < p < 2q by pr, we get prq < prp < 2prq which

implies N < pr+1 < 2N , that is N
1

r+1 < p < 2
1

r+1N
1

r+1 . Also since N = prq, q = N
pr which in

turn implies 2−
r

r+1N
1

r+1 < q < N
1

r+1 , we have 2−
r

r+1N
1

r+1 < q < N
1

r+1 < p < 2
1

r+1N
1

r+1 . �

Lemma 2.4 Let N = prq be an RSA modulus prime power with q < p < 2q. Let a, b be

suitably small integers with gcd(a, b) = 1. Let |apr − bqr| < N
1
r . Let S be an approximation of

|apr + bqr| such that

|apr + bqr − S| < |apr − bqr|
3(apr + bqr)

N
1
r2 .

Then abqr−1 = [ S
2

4N ].

Proof Set S = apr + bqr + k with k < |apr−bqr|
3(apr+bqr)N

1
r2 . Observe that

(apr − bqr)2 = (apr − bqr)(apr − bqr) = (apr + bqr)2 − 4abqrpr

= (apr + bqr)2 − 4abNqr−1.

Therefore, we obtain

(apr − bqr)2 = (apr + bqr)2 − 4abNqr−1. (1)

Now we consider

S2 − 4abNqr−1 = (apr + bqr + k)2 − 4abNqr−1

= a2p2r + 2abqrpr + 2akpr + b2q2r + 2bkqr − 4abNqr−1

= a2p2r + 2abqrpr + b2q2r + 2k(apr + bqr) + k2 − 4abNqr−1

= (apr + bqr)2 − 4abNqr−1 + 2k(apr + bqr) + k2.

Therefore using (1) above, we can rewrite

S2 − 4abNqr−1 = (apr − bqr)2 + 2k(apr + bqr) + k2. (2)

Suppose that |apr − bqr| < N
1
r and k < |apr−bqr|

3(apr+bqr)N
1
r2 < N

1
r2 . Then, from (2), we have

|S2 − 4abNqr−1| = |(apr − bqr)2 + 2k(apr + bqr) + k2|

< (N
1
r )2 + 2(apr + bqr)

|apr − bqr|
3(apr + bqr)

N
1
r2 + (N

1
r2 )2

< N
2
r +

2

3
|apr − bqr|N

1
r2 + (N

1
r2 )2

< N
2
r +

2

3
N

1
rN

1
r2 +N

2
r2
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< N
2
r +

2

3
N

r+1

r2 +N
2
r2

< 2N.

Thus we have |S2 − 4abNqr−1| < 2N . When dividing by 4N , we obtain∣∣ S2

4N
− abqr−1

∣∣ = |S2 − 4abNqr−1|
4N

<
2N

4N
=

1

2

which implies that abqr−1 = [ S
2

4N ]. �

3. The first attack on prime power RSA with moduli N = prq

Let (N, e) be a public key satisfying an equation eX −NY + (apr + bqr)Y = Z with small

parameters X, Y and Z where a, b are suitably small positive integers. In this section, we present

a result based on continued fractions and show how to factor the Prime Power RSA modulus N .

Lemma 3.1 Let N = prq be an RSA modulus prime power with q < p < 2q. Let a, b

be suitably small integers with gcd(a, b) = 1. Let e be a public key exponent satisfying the

equation eX − NY + (apr + bqr)Y = Z with gcd(X,Y ) = 1, if 1 ≤ Y ≤ X < N
1
2

2(apr+bqr)
1
2

and

|Z| < |apr−bqr|
3(apr+bqr)N

1
r2 . Then Y

X is among the convergent of the continued fraction expansion of
e
N .

Proof Assume that Z < |apr−bqr|
3(apr+bqr)N

1
r2 Y , thus Z < |apr − bqr|Y . Hence from the equation

eX −NY + (apr + bqr)Y = Z,

we get ∣∣ e
N

− Y

X

∣∣ = |eX −NY |
NX

=
|Z − (apr + bqr)Y |

NX

<
|Z + (apr + bqr)Y |

NX
≤ |Z|

NX
+

|(apr + bqr)Y |
NX

≤ |(apr + bqr)Y |
NX

+
|(apr + bqr)Y |

NX

≤ 2(apr + bqr)Y

NX
≤ 2(apr + bqr)X

NX

=
2(apr + bqr)

N
.

Therefore, if the condition 2(apr+bqr)
N < 1

2X2 holds, then from the theorem of the continued

fraction, Y
X is one of the convergents of the continued fraction of e

N . This is equivalent to

2(apr + bqr)

N
<

1

2X2
, 4X2(apr + bqr) < N,

X2 <
N

4(apr + bqr)
, X <

N
1
2

2(apr + bqr)
1
2

. �

Theorem 3.2 Let N = prq be an RSA modulus prime power with q < p < 2q. Let a, b be

suitably small integers with gcd(a, b) = 1. Suppose that e is a public key exponent satisfying the
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equation eX − NY + (apr + bqr)Y = Z with gcd(X,Y ) = 1, if 1 ≤ Y ≤ X < N
1
2

2(apr+bqr)
1
2

and

|Z| < |apr−bqr|
3(apr+bqr)N

1
r2 Y , then N can be factored in polynomial time.

Proof Suppose that the public key e satisfies an equation

eX −NY + (apr + bqr)Y = Z

with gcd(X,Y ) = 1. Let 1 ≤ Y ≤ X < N
1
2

2(apr+bqr)
1
2

and |Z| < |apr−bqr|
3(apr+bqr)N

1
r2 Y satisfy the

condition of Lemma 3.1 above. Then Y
X is one of the convergents of the continued fraction of e

N .

Let us rewrite equation eX −NY + (apr + bqr)Y = Z as

eX

Y
−N + (apr + bqr) =

Z

Y
, (apr + bqr) +

eX

Y
−N =

Z

Y
.

This implies

(apr + bqr)− (N − eX

Y
) =

Z

Y
.

We define S = N − eX
Y , therefore by Lemma 2.4, S is an approximation of |apr + bqr| satisfying

|apr + bqr − S| ≤ |(apr + bqr)− (N − eX

Y
)| = Z

Y

≤ |apr − bqr|
3(apr + bqr)Y

N
1
r2 Y <

|apr − bqr|
3(apr + bqr)

N
1
r2 ,

which, by Lemma 2.4, implies that abqr−1 = [ S
2

4N ], for value of S = N − eX
Y . Therefore, it follows

that q = gcd([ S
2

4N ], N). �

Example 3.3 The following shows an illustration of our attack for r = 3, given N and e as

N = 35873192098203857081, e = 28134227590946405731.

Suppose that the public key (e,N) satisfies N = prq, q < p < 2q and eX−NY +(apr+bqr)Y = Z

for small parameters X, Y , Z as stated in the Theorem 1. Following the above algorithm, we first

compute the continued fraction expansion of e
N . The list of first convergents of the continued

fraction expansion of e
N are[

0, 1,
3

4
,
4

5
,
7

9
,
11

14
,
29

37
,
40

51
,
309

394
,
349

445
,
2054

2619
,
4457

5683
,
15425

19668
,
189557

241699
,
394539

503066
, . . .

]
.

Therefore omitting the first and second entry and starting with the convergent 3
4 , we obtain

S = N − eX

Y
=

−4917334069174051681

3
,

[ S2

4N

]
= 18723494352664627.

Hence gcd([ S
2

4N ], N) = (18723494352664627, 35873192098203857081) = 1. Therefore applying

the factorization algorithm with the convergent 40
51 , we obtain

S = N − eX

Y
=

82076789887590959

40
,

[ S2

4N

]
= 29342068566.

We compute gcd([ S
2

4N ], N) = (29342068566, 35873192098203857081) = 69931. Finally with q =

69931, we compute p = 3

√
N
q = 80051, which leads to the factorization of N .
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Algorithm 1

Input: A public key (e,N) satisfying N = prq, q < p < 2q and eX −NY + (apr +

bqr)Y = Z for small parameters X, Y , Z

Output: The prime factors p and q.

1: Compute the continued fraction expansion of e
N .

2: For every convergent Y
X of e

N , compute S = N − eX
Y .

3: Compute [ S
2

4N ].

4: Compute q = gcd([ S
2

4N ], N).

5: If 1 < q < N , then pr = N
q .

6: End if.

7: End for.

3.1. Estimation of the weak exponent

Lemma 3.4 Let N = prq be an RSA modulus prime power with q < p < 2q. Let a, b be

suitably small integers with gcd(a, b) = 1 and |apr − bqr| < N
1
r . Suppose that e is a public key

exponent satisfying the two equations

eX ′ −NY ′ + (apr + bqr)Y ′ = Z ′, eX −NY + (apr + bqr)Y = Z

with gcd(X,Y ) = 1 = gcd(X ′, Y ′), 1 ≤ Y ≤ X < N
1
2

2(apr+bqr)
1
2

and |Z,Z ′| < |apr−bqr|
3(apr+bqr)N

1
r2 Y .

Then X = X ′, Y = Y ′ and Z = Z ′.

Proof Suppose that e satisfies the two equations

eX ′ −NY ′ + (apr + bqr)Y ′ = Z ′, eX −NY + (apr + bqr)Y = Z

with 1 ≤ Y ≤ X < N
1
2

2(apr+bqr)
1
2
and |Z|, |Z ′| < |apr−bqr|

3(apr+bqr)N
1
r2 Y . Then, from

eX −NY + (apr + bqr)Y = Z,

we have

e =
NY + Z − (apr + bqr)Y

X
.

Also from eX ′ −NY ′ + (apr + bqr)Y ′ = Z ′, we get

e =
NY ′ + Z ′ − (apr + bqr)Y ′

X ′ .

Equating the term e yields

NY + Z − (apr + bqr)Y

X
=

NY ′ + Z ′ − (apr + bqr)Y ′

X ′ ,

NY X ′ + ZX ′ − (apr + bqr)Y X ′ = NY ′X + Z ′X − (apr + bqr)Y ′X,

(apr + bqr)(Y ′X − Y X ′) + ZX ′ − Z ′X = N(Y ′X − Y X ′). (3)

Next we assume that X,X ′ < N
1
2

2(apr+bqr)
1
2

and |Z,Z ′| < |apr−bqr|
3(apr+bqr)N

1
r2 Y . Then the left hand
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side of (3) becomes

|(apr + bqr)(Y ′X − Y X ′) + ZX ′ − Z ′X|

< (apr + bqr)|(Y ′X − Y X ′)|+ |ZX ′ − Z ′X|

< (apr + bqr)(|Y ′X|+ |Y X ′|) + |ZX ′|+ |Z ′X|

< (apr + bqr)
N

2
r

2(apr + bqr)
+

N
1
r

6(apr + bqr)2
×N

1+2r

r2

<
1

2
N

2
r +

N
1
r+

1+2r

r2

6(apr + bqr)2
<

1

2
N

2
r +

N
3r+1

r2

6(apr + bqr)2

< N.

Hence from the right hand side of (3) we deduce that Y ′X − Y X ′ = 0. Since gcd(X,Y ) =

gcd(X ′, Y ′) = 1, it follows that X ′ = X, Y ′ = Y and Z ′ = Z. �

Theorem 3.5 Let N = prq be an RSA modulus prime power with q < p < 2q. Let a, b

be suitably small integers with gcd(a, b) = 1. Suppose that e < N is a public key exponent

satisfying the equation

eX −NY + (apr + bqr)Y = Z

with gcd(X,Y ) = 1, 1 ≤ Y ≤ X < N
1
2

2(apr+bqr)
1
2
and |Z,Z ′| < |apr−bqr|

3(apr+bqr)N
1
r2 Y is at least N

2
(r+1)

−ε

where ε > 0 is arbitrarily small for suitably large N .

Proof Suppose that the exponent e satisfies an equation

eX −NY + (apr + bqr)Y = Z

with gcd(X,Y ) = 1 and 1 ≤ Y ≤ X < N
1
2

2(apr+bqr)
1
2
, |Z,Z ′| < |apr−bqr|

3(apr+bqr)N
1
r2 Y . Let ξ denote the

number of the exponent e satisfying

e ≡ Z − (apr + bqr)Y

X
mod N.

With the condition given in the theorem, we have

ξ =

ω1∑
Y=1

Y−1∑
X=1

gcd(X,Y )=1

ω2∑
|Z|=1

1, (4)

where ω1 = ⌊ N
1
2

2(apr+bqr)
1
2
⌋ and ω2 = ⌊ |apr−bqr|

3(apr+bqr)N
1
r2 ⌋. Observe that

ω2∑
|Z|=1

1 = 2ω2 >
apr − bqr

3(apr + bqr)
N

1
r2 >

N
r
r2

3(apr + bqr)
> N

1
r+1 . (5)

Substituting (5) into (4), we get

ξ > N
1

r+1

ω1∑
X=1

X−1∑
Y=1

gcd(X,Y )=1

1. (6)
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Also by considering the following identity for 1 < Y < N , we have [15, Theorem 328]

Y−1∑
X=1

gcd(X,Y )=1

1 = ϕ(Y ) >
CY

log log Y
>

CY

log logN
, (7)

where c is a positive constant. Substituting (7) into (6), we get

ξ > N
1

r+1 × C

log logN

ω1∑
Y=1

Y. (8)

Then for
∑ω1

Y=1 Y , we have

ω1∑
Y=1

Y =
ω1(ω1 + 1)

2
>

N

8(apr + bqr)
.

Substituting into (8) gives

ξ > N
1

r+1 × C

log logN
× N

8(apr + bqr)
,

ξ >
C

8 log logN
× N

1
r+1 ×N

(apr + bqr)
. (9)

Next we assume that apr + bqr < 2apr, then using the result from Lemma 2.3, we have

(apr + bqr) < (2apr) < (2a(2
1

r+1N
1

r+1 )r) < 2a(2
r

r+1N
r

r+1 ).

Substituting the above result into (10), we get

ξ >
C

16 log logN
× N

1
r+1 ×N

a2
r

r+1N
r

r+1
=

C

16 log logN
× N

r+2
(r+1)

a2
r

r+1N
r

r+1

=
C

16a2
r

r+1 log logN
N

r+2−r
(r+1) =

C

16a2
r

r+1 log logN
N

2
(r+1)

= N
2

(r+1)
−ε,

where we set N−ε = C

16a2
r

r+1 log logN
and ε > 0 is arbitrarily small for large N . �

4. The second attack on k prime power RSA with moduli Ni = pri qi

Suppose that the prime power RSA moduli Ni = pri qi with the same size N , satisfies the

k equations of the form eix − Niyi + (apri + bqri )yi = zi. In this section for k ≥ 2, r ≥ 2 we

show that it is possible to factor the RSA moduli Ni if the unknown parameters x, yi, and zi

are suitably small.

Theorem 4.1 For k ≥ 2, r ≥ 2, let Ni = pri qi, 1 ≤ i ≤ k be k RSA moduli. Let N = mini

Ni. Let ei, i = 1, . . . , k, be k public exponents. Define δ = k−kr2−αkr2

r2(1+k) . Let a, b be suitably

small integers with gcd(a, b) = 1 such that apri + bqri < N
r

r+1+α. If there exist an integer x < N δ

and k integers yi < N δ and |zi| < apr
i−bqri

3(apr
i+bqri )

N
1
r2 yi such that eix−Niyi + (apri + bqri )yi = zi for

i = 1, . . . , k, then one can factor the k RSA moduli N1, . . . , Nk in polynomial time.

Proof For k ≥ 2, and r ≥ 2, let Ni = pri qi, 1 ≤ i ≤ k be k RSA moduli. Let N = mini Ni and
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suppose that yi < N δ and |apri+bqri | < N
r

r+1+α. Then the equation eix−Niyi+(apri+bqri )yi = zi

can be rewritten as ∣∣ ei
Ni

x− yi
∣∣ = |zi − (apri + bqri )yi|

Ni
. (10)

Let N = mini Ni, and suppose that yi < Nδ, |zi| < N
1
r2 yi and |apri + bqri | < N

r
r+1+α. Then

|zi − (apri + bqri )yi|
Ni

≤ |zi + (apri + bqri )yi|
N

<
N

1
r2 ·Nδ +N

r
r+1+α ·Nδ

N

<
N

1
r2

+δ +Nδ+ r
r+1+α

N
<

2N
1
r2

+δ+α

N

< 2N
1
r2

+δ+α−1 < 2Nδ+α− 1−r2

r2 .

Substituting into (11) gives ∣∣ ei
Ni

x− yi
∣∣ < 2N δ+α− 1−r2

r2 .

Hence to show the existence of the integer x, we let ε = 2Nδ+α− 1−r2

r2 with δ = k−kr2−αkr2

r2(1+k) . Then

we have Nδεk = 2kNδ+δk+αk− k−kr2

r2 = 2k. Therefore since 2k < 2
k(k−3)

4 · 3k for k ≥ 2, we get

Nδεk < 2
k(k−3)

4 · 3k. It follows that if x < N δ, then x < 2
k(k−3)

4 · 3k · ε−k. Summarizing for

i = 1, . . . , k, we have ∣∣ ei
Ni

x− yi
∣∣ < ε, x < 2

k(k−3)
4 · 3k · ε−k.

Hence it satisfies the conditions of [9], and we can obtain x and yi for i = 1, . . . , k. Next from the

equation eix−Niyi = zi− (apri + bqri )yi, we get (ap
r
i + bqri )− (Ni− eix

yi
) = zi

yi
. Since |zi| < N

1
r2 yi

and Si = Ni − eix
yi

is an approximation of apri + bqri with an error term of at most N
1
r2 , using

Lemma 2.4 implies that abqr−1
i = [

S2
i

4Ni
] with Si = Ni − eix

yi
. For i = 1, . . . , k, we compute

qi = gcd(Ni, [
S2
i

4Ni
]), which leads to factorization of k RSA moduli Ni, . . . , Nk. �

Example 4.2 As an illustration to our second attack on k prime power RSA, we consider the

following three RSA prime power and three public exponents

N1 = 195913529940402603031674701565686460957705692507216261,

N2 = 1699792229500044813712237659620911127764134824069262841,

N3 = 329379702220475771810602176295700529470194378439619479,

e1 = 1299624034157903683520936147567648842539689302303,

e2 = 24975977316909591477014987638482535355381489609233,

e3 = 32771125955079641000884923182329513369784895666742.

Then N = max(N1, N2, N3) = 1699792229500044813712237659620911127764134824069262841.

Since k = 3 and r = 3 with α < 1
3 , we get δ = k−kr2−αkr2

r2(1+k) = 0.29166666 and ε = 2Nδ+α− 1−r2

r2 =

0.00001068145463. Using [14, Eq. (11)], with n = k = 3, we obtain

C = [3n+1 · 2
(n+1)(n−4)

4 · ε−n−1] = 3111239348000000000000.
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Consider the lattice L spanned by the matrix

M =


1 −[Ce1/N1] −[Ce2/N2] −[Ce3/N3]

0 C 0 0

0 0 C 0

0 0 0 C

 .

Therefore applying the LLL algorithm to L, we obtain the reduced basis with following matrix

K =


213211211837 632821697847507 1241289918735056 13478586491738418

5446677911782793 −8118714952379577 −4474991019541616 5620827954759402

5441774053910541 2034705429745149 −12690482991353808 −5161303690478674

13755566028807787 5229506896157957 −5232739515531344 −4243530005173282

 .

Next we compute

K ·M−1 =


213211211837 1414371 3132829 21213121

5446677911782793 36131417379 80031018860 541908826441

−5441774053910541 −36098886846 −79958963793 −541420924658

13755566028807787 91249768303 202118058404 1368588847080

 .

Then from the first row we obtain x = 213211211837, y1 = 1414371, y2 = 3132829, y3 =

21213121. Hence, using x and yi for i = 1, 2, 3, and defining Si = Ni − eix
yi

, we get

S1 = 28170739846798573051098910012723043413860,

S2 = 216450726906431579918076792924822175513927,

S3 = 67266921312851019748440655807702140329434

and Lemma 2.4 implies that abqr−1
i = [

S2
i

4Ni
] for i = 1, 2, 3, which gives[ S2

1

4N1

]
= 1012679654842390385982096006,

[ S2
2

4N2

]
= 6890682926598440000469557334,

[ S2
3

4N3

]
= 3434363648097928977937361334.

Therefore for i = 1, 2, 3, we compute qi = gcd([
S2
i

4Ni
], Ni), that is

q1 = 12991533491999, q2 = 33888746722667, q3 = 23924755826333.

Finally for i = 1, 2, 3, we find pi = 3

√
Ni

qi
, hence

p1 = 24705937446979, p2 = 36879082724147, p3 = 23967152513467

which leads to the factorization of three RSA moduli N1, N2 and N3.

5. The third attack on k prime power RSA with moduli Ni = pri qi

In this section, we consider the scenario when the k RSA moduli Ni = pri q for k ≥ 2, and

r ≥ 2 satisfy k equations eixi − Niy + (apri + bqri )y = zi for i = 1, . . . , k, with suitably small

unknown parameters xi, y and zi.



416 Sadiq SHEHU and Muhammad Rezal Kamel ARIFFIN

Theorem 5.1 For k ≥ 2, and r ≥ 2 let Ni = pri qi, 1 ≤ i ≤ k be k RSA moduli with the same

size N . Let ei, i = 1, . . . , k, be k public exponents with mini, ei = Nβ . Let δ = βkr2−αkr2−k
r2(1+k) .

Let a, b be suitably small integers with gcd(a, b) = 1 such that apri + bqri < N
r

r+1+α. If there

exist an integer y < N δ and k integers xi < N δ such that eixi − Niy + (apri + bqri )y = zi for

i = 1, . . . , k, then one can factor the k RSA moduli N1, . . . , Nk in polynomial time.

Proof For k ≥ 2, and r ≥ 2, let Ni = pri qi, 1 ≤ i ≤ k be k RSA moduli. Then the equation

eixi −Niy + (apri + bqri )y = zi can be rewritten as∣∣Ni

ei
y − xi

∣∣ = |zi − (apri + bqri )y|
ei

. (11)

Let N = maxi Ni, |zi| < N
1
r2 yi and suppose that y < N δ, mini, ei = Nβ and |apri + bqri | <

N
r

r+1+α. Then

|zi − (apri + bqri )y|
ei

≤ |zi + (apri + bqri )y|
Nβ

<
N

1
r2 ·Nδ +N

r
r+1+α ·Nδ

Nβ

=
N

1
r2

+δ +Nδ+ r
r+1+α

Nβ
<

2N
1
r2

+δ+α

Nβ

< 2N
1
r2

+δ+α−β . (12)

Substituting into (12) yields |Ni

ei
y − xi| < 2N

1
r2

+δ+α−β . Hence to show the existence of the

integer y and integers xi, we let ε = 2N
1
r2

+δ+α−β , with δ = βkr2−αkr2−k
r2(1+k) . Then we have

Nδεk = 2kNδ+δk+ k
r2

+αk−βk = 2k.

Therefore since 2k < 2
k(k−3)

4 · 3k for k ≥ 2, we get Nδεk < 2
k(k−3)

4 · 3k. It follows that if y < Nδ,

then y < 2
k(k−3)

4 · 3k · ε−k. Summarizing for i = 1, . . . , k, we have∣∣Ni

ei
y − xi

∣∣ < ε, y < 2
k(k−3)

4 · 3k · ε−k.

Hence it satisfies the conditions of [14], and we can obtain y and xi for i = 1, . . . , k. Next from

the equation eixi −Niy = zi − (apri + bqri )y, we get

(apri + bqri )− (Ni −
eixi

y
) =

zi
y
.

Since Si = Ni − eixi

y is an approximation of apri + bqri with an error term of at most N
1
r2 , using

Lemma 2.4 implies that abqr−1
i = [

S2
i

4Ni
] with Si = Ni − eixi

y . For i = 1, . . . , k, we compute

qi = gcd(Ni, [
S2
i

4Ni
]), which leads to factorization of k RSA moduli Ni, . . . , Nk. �

Example 5.2 As an illustration to our third attack on k prime power RSA, we consider the

following three RSA prime power and three public exponents

N1 = 2947800737861709702340657241703794392595272941431041237,

N2 = 3697392947331799452334760423078627470780897985505068341,

N3 = 1401228895229192381379851548290360077956330577127825833,

e1 = 3190363639511369890381378344202974523183993998454150851841,
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e2 = 3416262481491300633991858686896448090699950274009362612830,

e3 = 1265833259393721777962385219569823558855832762344370841001.

Then N = max(N1, N2, N3) = 3697392947331799452334760423078627470780897985505068341.

Also min(e1, e2, e3) = Nβ with β = 0.994871. Since k = 3 and r = 3 with α < 1
3 , we get δ =

βkr2−αkr2−k
r2(1+k) = 0.2878199168 and ε = 2N

1
r2

+δ+α−β = 0.00001163556867. Using [14, Eq. (11)],

with n = k = 3, we obtain

C = [3n+1 · 2
(n+1)(n−4)

4 · ε−n−1] = 2209553741000000000000.

Consider the lattice L spanned by the matrix

M =


1 −[CN1/e1] −[CN2/e2] −[CN3/e3]

0 C 0 0

0 0 C 0

0 0 0 C

 .

Therefore applying the LLL algorithm to L, we obtain the reduced basis with following matrix

M =


12142354517 −2333587136850290 −2655014285575194 −2972297581182437

−1016896438021615 3395215855002550 8132820287728430 −8244621735525985

1883362666735622 11499575960505860 −7006895107637804 −854668408378342

13230083976811097 −7127477806244890 4998010273833246 −132246744939817

 .

Next we compute

K ·M−1 =


12142354517 11219173 13141571 13441121

−1016896438021615 −939581943953 −1100578699230 −1125665376413

1883362666735622 1740170866389 2038348013065 2084810277532

13230083976811097 12224202540996 14318811699479 14645195816308

 .

Then from the first row we obtain y = 12142354517, x1 = 11219173, x2 = 13141571, x3 =

13441121. Hence, by using x and yi for i = 1, 2, 3, and defining Si = Ni − eixi

y , we get

S1 = 277496294015124701379226644329763281134895,

S2 = 338073957594699297080413539113762416114576,

S3 = 140236753892330396642702216833404082558525

and Lemma 2.4 implies that abqr−1
i = [

S2
i

4Ni
] for i = 1, 2, 3, which gives[ S2

1

4N1

]
= 6530647764202866046495021254,

[ S2
2

4N2

]
= 7728012847959674598896447094,

[ S2
3

4N3

]
= 3508767769708551665573768166.

Therefore for i = 1, 2, 3 we compute qi = gcd([
S2
i

4Ni
], Ni), that is

q1 = 32991533672047, q2 = 35888746722707, q3 = 24182527334519
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and finally for i = 1, 2, 3, we find pi = 3

√
Ni

qi
, hence

p1 = 44705937443491, p2 = 46879082724167, p3 = 38696272470943

which leads to the factorization of three RSA moduli N1, N2 and N3.

6. Conclusion

This paper shows three new attacks on RSA-type modulus of N = prq for r ≥ 2 and

q < p < 2q. For the first attack, using continued fraction we show that Y
X can be recovered

among the convergents of the continued fraction expansion of e
N . Furthermore we show that

the set of such weak exponents is relatively large, namely that their number is at least N
2

(r+1)
−ε

where ε ≥ 0 is arbitrarily small for suitably large N . Hence one can factor the prime power RSA

modulus N = prq in polynomial time. For k ≥ 2, r ≥ 2, we present second and third attacks on

the prime power RSA with moduli Ni = pri qi for i = 1, . . . , k. The attacks work when k RSA

public keys (Ni, ei) are such that there exist k relations of the shape eix−Niyi+(apri +bqri )yi = zi

or of the shape eixi −Niy + (apri + bqri )y = zi where the parameters x, xi, y, yi, zi are suitably

small in terms of the prime factors of the moduli. Applying LLL algorithm, we show that our

approach enables us to simultaneously factor the k prime power RSA moduli Ni.
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