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Abstract In this paper, we define the Morrey spaces Mp,q
F (Rn) and the Campanato spaces

Ep,q
F (Rn) associated with a family F of sections and a doubling measure µ, where F is close-

ly related to the Monge-Ampère equation. Furthermore, we obtain the boundedness of the

Hardy-Littlewood maximal function associated to F , Monge-Ampère singular integral opera-

tors and fractional integrals on Mp,q
F (Rn). We also prove that the Morrey spaces Mp,q

F (Rn)

and the Campanato spaces Ep,q
F (Rn) are equivalent with 1 ≤ q ≤ p < ∞.
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1. Introduction

To characterize the regularity of solutions to some partial differential equations, Morrey [1]

first introduced the classical Morrey space as an extension of Lebesgue spaces. For 1 ≤ q ≤ p ≤
∞, a function f is said to be in the Morrey space Mp,q(Rn) if

∥f∥Mp,q(Rn) := sup
x∈Rn,r>0

1

|B(x, r)|1/q−1/p

(∫
B(x,r)

|f(y)|qdy
)1/q

< ∞. (1.1)

A natural generalization of the BMO(Rn) spaces is called Campanato space Lp,q(Rn) (see [2]), via

replacing the integrand |f(y)| in (1.1) by |f(y)− fB(x,r)|, where fB(x,r) :=
1

|B(x,r)|
∫
B(x,r)

f(y)dy

denotes the average of f over the ball B(x, r). Some tight relations between Morrey spaces

and Campanato spaces were clarified by Peetre [3], for examples, Mp,p(Rn) = Lp(Rn) for all

p ∈ [1,∞], L∞,q(Rn) = BMO(Rn) for all q ∈ [1,∞) and Mp,q(Rn) = Lp,q(Rn) whenever

1 ≤ q < p < ∞. Adams [4] seems to firstly start to research some properties of classical operators

of harmonic analysis in Morrey spaces. The boundedness of Hardy-Littlewood maximal functions

on classical Morrey spaces was obtained by Chiarenza and Frasca [5]. We could refer to [6–11]

and the references therein for more information of these spaces and some recent developments.

The main purpose of this paper is to study some boundednesses of classical operators on

Morrey spaces associated with a family F of sections which is closely related to the Monge-

Ampère equation. We recall some notations and definitions associated with sections. We denote

a family of sections by a collection of bounded convex sets F = {S(x, t) ⊂ Rn : x ∈ Rn and t > 0}
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satisfying certain axioms of affine invariance, which are based on the properties of the solutions

of the real Monge-Ampère equations. In order to study real variable theory related to the

Monge-Ampère equation, Caffarelli and Gutiérrez [12] introduced this concept, and meanwhile

for a family of convex sets F = {S(x, t) ⊂ Rn : x ∈ Rn and t > 0}, they gave a Besicovitch type

covering lemma to build a variant of the Calderón-Zygmund decomposition. As an application of

the Calderón-Zygmund decomposition, the Hardy-Littlewood maximal operator M and BMOF

space associated to the family F were well defined and the weak type (1, 1) boundedness of MF

and the John-Nirenberg inequality for BMOF were proved. In their another outstanding work

[13], they studied the L2 boundedness of the Monge-Ampère singular integral H and applied to

the linear Monge-Ampère equation. We also refer the readers to [14]. Later, Incognito [15] used

the theory of homogeneous space to prove the weak type (1, 1) of H. Ding and Lin [16] defined

the Hardy space H1
F , which is just the dual of BMOF , and showed that H is bounded from

H1
F to L1. Tang [17] introduced the function space BLOF as a subset of BMOF and gave the

boundedness of M from BLOF to BMOF . Recently Lee [18] obtained the H1
F -boundedness of H

by using the atom-molecule theory. In Lin’s paper [19], Hardy spaces Hp
F with 1/2 < p ≤ 1 and

their dual spaces-Campanato spaces are studied, and the boundedness of H on these spaces are

obtained.

For x ∈ Rn and t > 0, let S(x, t) denote an open and bounded convex subset of Rn

containing x. We call S(x, t) a section if the family F := {S(x, t) ⊂ Rn : x ∈ Rn, t > 0} is

monotone nondecreasing in t, i.e., S(x, t) ⊂ S(x, t′) for t ≤ t′, and satisfies the following three

conditions:

(A) There are positive constants K1,K2,K3 and ϵ1, ϵ2 such that for any two sections

S(x0, t0) and S(x, t) with t ≤ t0 satisfying

S(x0, t0) ∩ S(x, t) ̸= ∅

and an affine transformation T that “normalizes” S(x0, t0), that is,

B(0, 1/n) ⊂ T (S(x0, t0)) ⊂ B(0, 1),

there exists z ∈ B(0,K3) depending on S(x0, t0) and S(x, t) which satisfies

B(z,K2(t/t0)
ϵ2) ⊂ T (S(x, t)) ⊂ B(z,K1(t/t0)

ϵ1)

and

T (x) ∈ B(z, (1/2)K2(t/t0)
ϵ2).

Here and what follows B(x, t) denotes the usual Euclidean ball centered at x with radius t.

(B) If T is an affine transformation that normalizes S(x, t), then there is a constant δ > 0

such that for any section S(x, t), y ∈ S(x, t) and 0 < ϵ < 1, B(T (y), ϵδ) ∩ T (S(x, (1− ϵ)t)) = ∅.
(C)

∩
t>0 S(x, t) = {x} and

∪
t>0 S(x, t) = Rn.

An important example of the family of sections comes from the Monge-Ampère equation

[12]. Suppose ϕ : Rn → R is a convex smooth function and let L(x) be a supporting hyperplane

of ϕ at the point (x, ϕ(x)) for any x ∈ Rn. We define the set for any t > 0

Sϕ(x, t) = {y ∈ Rn : ϕ(y) < L(x) + t}.
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Then F = {Sϕ(x, t) : x ∈ Rn, t > 0} is just the family of sections.

In addition, let the family F be equipped with a doubling Borel measure µ, which is finite

on compact sets and µ(Rn) = ∞, where F = {S(x, t) : x ∈ Rn, t > 0}. There exists a constant

A such that

µ(S(x, 2t)) ≤ Aµ(S(x, t)) for any section S(x, t) ∈ F . (1.2)

Aimar, Forzani and Toledano [20] used the properties (A) and (B) to get the following engulfing

properties:

(D) There exists a constant θ > 1, depending only on K1, δ and ϵ1, such that for y ∈ S(x, r)

we have

S(y, r) ⊂ S(x, θr) and S(x, r) ⊂ S(y, θr). (1.3)

By the family F , we can define a quasi-metric d(x, y) on Rn as

d(x, y) = inf{t : x ∈ S(y, t) and y ∈ S(x, t)}. (1.4)

It is easy to check that for θ appearing in (1.3)

d(x, y) ≤ θ(d(x, z) + d(z, y)) for any x, y, z ∈ Rn. (1.5)

Also,

S(x,
t

2θ
) ⊂ Bd(x, t) ⊂ S(x, t) for any x ∈ Rn and t > 0, (1.6)

where Bd(x, t) := {y ∈ Rn : d(x, y) < t} is called a d-ball. From (1.2) and (1.6), it follows that

µ(Bd(x, 2t)) ≤ Ak0µ(Bd(x, t)) for any x ∈ Rn and t > 0 if we choose k0 ∈ N satisfying 2k0−2 ≥ θ.

Hence, (Rn, d, µ) is a homogeneous space of Coifman-Weiss type [21].

Let us define such a function ρ on Rn × Rn as ρ(x, y) = inf{t > 0 : y ∈ S(x, t)}. The
engulfing property of the sections (1.3) implies the following three properties of ρ (see [15]):

ρ(x, y) ≤ θρ(y, x), for all x, y ∈ Rn, (1.7)

and

ρ(x, y) ≤ θ2(ρ(x, z) + ρ(z, y)), for all x, y, z ∈ Rn, (1.8)

and

(E) For a given section S(x, t), y ∈ S(x, t) if and only if ρ(x, y) < t.

Next we introduce some definitions of operator associated to the family F . At first, the

maximal function Mf of f is defined by

Mf(x) := sup
x∈S⊂F

1

µ(S)

∫
S

|f(y)|dµ(y).

We consider the Monge-Ampère singular integral operator H as follows

H(f)(x) =

∫
Rn

K(x, y)f(y)dµ(y),

where K(x, y) =
∑∞

i ki(x, y) satisfies the following conditions

(v1) suppki(·, y) ⊂ S(y, 2i) for all y ∈ Rn;

(v2) suppki(x, ·) ⊂ S(x, 2i) for all x ∈ Rn;
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(v3)
∫
Rn ki(x, y)dµ(y) =

∫
Rn ki(x, y)dµ(x) = 0 for all x, y ∈ Rn;

(v4) supi
∫
Rn |ki(x, y)|dµ(y) ≤ c1 for all x ∈ Rn;

(v5) supi
∫
Rn |ki(x, y)|dµ(x) ≤ c2 for all y ∈ Rn;

(v6) If T is an affine transformation that normalizes the section S(y, 2i), then

|ki(u, y)− ki(v, y)| ≤
c2

µ(S(y, 2i))
|T (u)− T (v)|α;

(v7) Finally, if T is an affine transformation that normalizes the section S(x, 2i), then

|ki(x, v)− ki(x, u)| ≤
c2

µ(S(y, 2i))
|T (u)− T (v)|α,

where 0 < α ≤ 1 and c1, c2 > 0.

We emphasize here that Caffarelli and Gutiérrez [14] introduced and proved that H is

bounded on L2(Rn,dµ). Subsequently, the Lp(Rn, dµ), 1 < p < ∞, and weak type (1, 1) estimate

of H were obtained by Incognito [14].

For β ∈ (0, 1), the fractional integral operator Iβ associated to the family F is defined by

setting, for all real valued bounded functions f and x ∈ Rn,

Iβ(f)(x) :=

∫
Rn

f(y)

µ(S(x, d(x, y)))1−β
dµ(y).

In this paper, we will study the boundedness of the above classical operators on Morrey space

associated to the sections. It is pointed out here that many properties on our spaces could come

down to the space of homogeneous type by the quasi-metric d.

2. Morrey spaces on sections

For 1 ≤ q ≤ p < ∞, the Morrey space Mp,q
F (Rn) associated with the family F and the Borel

measure µ satisfying the doubling condition (1.2) is defined to be the collection of all real-valued

functions f on Rn such that

∥f∥Mp,q
F

:= sup
S∈F

1

[µ(S)]1/q−1/p

{∫
S

|f(y)|qdµ(y)
}1/q

< ∞. (2.1)

Remark 2.1 Because the family F is monotone increasing in t, the property of sections (C)

implies that Lp(Rn, dµ) = Mp,p
F (Rn) for all p ∈ [1,∞). And applying Hölder’s inequality and the

doubling condition (1.2) easily yields the following embedding relations: for all 1 ≤ q1 ≤ q2 ≤
p < ∞,Mp,p

F (Rn) ⊂ Mp,q2
F (Rn) ⊂ Mp,q1

F (Rn) in the sense of continuous embedding.

Theorem 2.2 If 1 < q ≤ p < ∞, then the maximal operator M is bounded on Mp,q
F (Rn).

Remark 2.3 This theorem was proved by Tang and Xu [22].

Proof By the definition of Morrey spaces, it suffices to show that for all f ∈ Mp,q
F (Rn) and

S ∈ F ,
1

µ(S)1/q−1/p

{∫
S

|M(f)(y)|dµ(y)
}1/q

≤ C∥f∥Mp,q
F

. (2.2)

Fix a section S = S(x0, t0) and set S̃ = S(x0, θ
2t0). We split f = f1 + f2, where f1 = fχS̃ and
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f2 = f − f1. By the Lq-boundedness of M and (1.2), we obtain

1

µ(S)1/q−1/p

{∫
S

|M(f1)(x)|dµ(x)
}1/q

≤ C

[µ(S)]1/q−1/p

{∫
Rn

|f1(y)|dµ(y)
}1/q

≤ C∥f∥Mp,q
F

.

Note that when S(x′, t)∩S(x0, t0) ̸= ∅ and S(x′, t)∩ S̃ ̸= ∅, the property (D) implies that t ≥ t0,

moreover, S(x0, t0) ⊂ S(x0, t) ⊂ S(y, θt) ⊂ S(x′, θ2t), where y ∈ S(x′, r) ∩ S(x0, t0). Thus

M(f2)(y) = sup
S(x′,t)∈F

1

µ(S(x′, t))

∫
S(x′,t)

|f(z)|dµ(z)

≤ sup
S(x′,t):S⊂S(x′,θ2t)∈F

1

µ(S(x′, t))

∫
S(x′,t)

|f(z)|dµ(z).

Using Hölder inequality, we can get for S(x′, r) with S ⊂ S(x′, θ2r)

1

µ(S(x′, t))

∫
S(x′,t)

|f(z)|dµ(z) ≤ 1

µ(S(x′, t))1/q

{∫
S(x′,t)

|f(y)|qdµ(z)
}1/q

≤ C∥f∥Mp,q
F

µ(S(x′, t))−1/p

≤ C∥f∥Mp,q
F

µ(S)−1/p.

Hence,
1

µ(S)1/q−1/p

{∫
S

|M(f2)(y)|dµ(y)
}1/q

≤ C∥f∥Mp,q
F

.

We introduce another maximal function Md as follows

Md(f)(x) := sup
Bd∋x

1

µ(Bd)

∫
Bd

|f(y)|dµ(y),

where Bd is the d-ball. By (1.6), it is easy to see that M(f)(x) is equivalent to Md(f)(x). As a

consequence of Theorem 1.2 in [23], we also have the vector-valued inequality of M .

Lemma 2.4 If 1 < q ≤ ∞ and 1 < r ≤ ∞, then there exists a constant C depending only on

p, q, r, A, θ such that∥∥∥(∑
j∈N

[M(fj)]
r
)1/r∥∥∥

L1,∞(Rn,dµ)
≤ C

∥∥∥(∑
j∈N

|fj |r
)1/r∥∥∥

L1(Rn,dµ)
, (2.3)

and ∥∥∥(∑
j∈N

[M(fj)]
r
)1/r∥∥∥

Lq(Rn,dµ)
≤ C

∥∥∥(∑
j∈N

|fj |r
)1/r∥∥∥

Lq(Rn,dµ)
. (2.4)

Theorem 2.5 If 1 < q ≤ p < ∞ and 1 < r ≤ ∞, then there exists a constant C depending only

on p, q, r, A, θ such that∥∥∥(∑
j∈N

[M(fj)]
r
)1/r∥∥∥

Mp,q
F

≤ C
∥∥∥(∑

j∈N
|fj |r

)1/r∥∥∥
Mp,q

F

.

Proof Fix a section S = S(x0, t0) ∈ F . For each j ∈ N, set f1
j := fjχS̃ and f2

j := f − f1, where

S̃ = S(x0, θ
2t0). Since M is a sublinear operator, we have

M(fj)(x) ≤ M(f1
j )(x) +M(f2

j )(x).
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Then, applying Minkowski inequality, we see that

1

µ(S)1/q−1/p

{∫
S

(∑
j∈N

[M(fj)(x)]
r
)q/r

dµ(x)
}1/q

≤ 1

µ(S)1/q−1/p

{∫
S

(∑
j∈N

[M(f1
j )(x)]

r
)q/r

dµ(x)
}1/q

+

1

µ(S)1/q−1/p

{∫
S

(∑
j∈N

[M(f2
j )(x)]

r
)q/r

dµ(x)
}1/q

= I + II.

By (2.3), we can estimate

I ≤ C

µ(S)1/q−1/p

{∫
S̃

(∑
j∈N

|fj(x)|r
)q/r}1/q

≤ Cµ(S̃)1/q−1/p

µ(S)1/q−1/p

∥∥∥(∑
j∈N

|fj |r
)1/r∥∥∥

Mp,q
F

≤ C
∥∥∥(∑

j∈N
|fj |r

)1/r∥∥∥
Mp,q

F

.

Indeed, we know that for any j ∈ N and x ∈ S,

M(f2
j )(x) ≤ sup

S(x′,t):S⊂S(x′,θ2t)∈F

1

µ(S(x′, t))

∫
S(x′,t)

|f(z)|dµ(z). (2.5)

For any j ∈ N, there exists a sequence of sections, {Sj,k = S(xj,k, tj,k)}k∈N, satisfying that

S ⊂ Sj,k and that

sup
S(x′,t):S⊂S(x′,θ2t)∈F

1

|µ(S(x′, t))|

∫
S(x′,t)

|f(z)|dµ(z) = lim
k→∞

1

µ(Sj,k)

∫
Sj,k

|fj(z)|dµ(z),

which, combined with (2.5) and Fatou’s lemma, implies that

II ≤ µ(S)1/p
{∑

j∈N

(∑
j∈N

sup
S(x′,t):S⊂S(x′,θ2t)∈F

1

µ(S(x′, t))

∫
S(x′,t)

|f(z)|dµ(z)
)r}1/r

≤ lim inf
k→∞

{
µ(S)1/p

(∑
j∈N

[ 1

µ(Sj,k)

∫
Sj,k

|f(z)|dµ(z)
]r)1/r}

.

By duality, we need to prove that for all k ∈ N and all non-negative sequences {aj}j∈N satisfying

that [
∑

j∈N ar
′

j ]1/r
′
j = 1,

µ(S)1/p
∑
j∈N

aj
µ(Sj,k)

∫
Sj,k

|fj(z)|dµ(z) ≤ C
∥∥∥(∑

j∈N
|fj |r

)1/r∥∥∥
Mp,q

F

.

To go on with our steps, we make the following geometric observation. For any k ∈ N and i ∈ N,
notice

Jk,i = {j ∈ N : 2iµ(S) ≤ µ(S(xj,k, θ
2tj,k)) ≤ 2i+1µ(S), S ⊂ S(xj,k, tj,k)},

and Sk,i = S(x0, t
k,i), where tk,i = sup{tj,k : j ∈ Jk,i}. Then, we claim that for any j ∈

Jk,i, S(xj,k, θ
2tj,k) ⊂ S(x0, θ

3tk,i) and µ(Sk,i) ∼ 2iµ(S) with implicit positive constants indepen-

dent of k and i. In fact, for any j ∈ Jk,i, we have S(xj,k, θ
2tj,k) ⊂ S(x0, θ

3tj,k) ⊂ S(x0, θ
3tk,i) by

the property (D). Using the doubling condition (1.2) and the previous inclusion relation, we get

that for any j ∈ Jk,i,

2iµ(S) ≤ µ(S(xj,k, θ
2tj,k)) ≤ µ(S(x0, θ

3tk,i)) ≤ Cµ(Sk,i).
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On the other hand, notice that there exists a subsequence {jv}v∈N of Jk,i such that tjv,k increases

to tk,i as v → ∞. Using the continuity of µ, (1.2) and (1.3), we obtain that

µ(Sk,i) = lim
v→∞

µ(S(x0, tjv,k)) ≤ lim
v→∞

µ(S(x0, θtjv,k))

≤ lim
v→∞

µ(S(xjv,k, θ
2tjv,k)) ≤ 2i+1µ(S).

By the above claim and the Hölder inequality, we see that

µ(S)1/p
∑
j∈N

aj
µ(Sj,k)

∫
Sj,k

|fj(z)|dµ(z)

= µ(S)1/p
∑
i∈N

∑
j∈Jk,i

aj
µ(Sj,k)

∫
Sj,k

|fj(z)|dµ(z)

≤ Cµ(S)1/p−1
∑
i∈N

2−i
( ∑

j∈Jk,i

ar
′

j

)1/r′
∫
S(x0,θ3tk,i)

( ∑
j∈Jk,i

|fj(z)|r
)1/r

dµ(z)

≤ Cµ(S)1/p−1
∑
i∈N

2−iµ(S(x0, θ
3tk,i))1−1/p

∥∥∥(∑
j∈N

|fj |r
)1/r∥∥∥

Mp,q
F

≤ C
∑
i∈N

2−i/p
∥∥∥(∑

j∈N
|fj |r

)1/r∥∥∥
Mp,q

F

≤ C
∥∥∥(∑

j∈N

|fj |r
)1/r∥∥∥

Mp,q
F

.

Hence,

II ≤ C
∥∥∥(∑

j∈N

|fj |r
)1/r∥∥∥

Mp,q
F

,

and we complete the proof. �
Here we also introduce the sharp maximal function M ♯(f) of f associated to the family F

as follows.

M ♯(f)(x) := sup
x∈S⊂F

1

µ(S)

∫
S

|f(y)− fS |dµ(y) ∼ sup
S∋x

inf
c

1

µ(S)

∫
S

|f(y)− c|dµ(y).

For δ > 0, we also define the following maximal function, Mδ(f) = M(|f |δ)1/δ and M ♯,δ(f) =

M ♯(|f |δ)1/δ.

Remark 2.6 It is not difficult to see that these maximal functions are equivalent to the ones

replaced by d-balls in the definitions.

Lemma 2.7 ([24]) Let 0 < δ < 1. Then there exists a constant C > 0 such that

Mδ(Hf)(x) ≤ CM(f)(x), (2.6)

for any smooth function f and every x ∈ Rn.

By Remark 2.6 and Theorem 4.2 in [25], we have the following Fefferman-Stein inequality.

Lemma 2.8 Let 0 < q, δ < ∞. There exists a positive C such that∫
Rn

Mδ(f)(x)qdµ(x) ≤ C

∫
Rn

M ♯,δ(f)(x)qdµ(x)
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for any smooth function f for which the left-hand side is finite.

Similarly, we have the responding lemma on Morrey spaces as a consequent result.

Lemma 2.9 Let 0 < δ < ∞ and 1 < q ≤ p ≤ ∞. There exists a positive C such that

∥Mδ(f)∥Mp,q
F

≤ C∥M ♯,δ(f)∥Mp,q
F

for any smooth function f for which the left-hand side is finite.

Proof For any section S = S(x0, t0) ∈ F , set S̃ = S(x0, θ
2t0). We can check that if x ∈

S(x0, θ
k+2t0)\S(x0, θ

kt0) for any k ∈ N, then M(χS)(x) ≤ Cµ(S)/µ(S(x0, θ
kt0)). So

1

µ(S)1/q−1/p

(∫
S

M δ(f)(x)qdµ(x)
)1/q

≤ 1

µ(S)1/q−1/p

(∫
Rn

Mδ(f)(x)qM(χS)(x)dµ(x)
)1/q

≤ C

µ(S)1/q−1/p

(∫
Rn

M ♯,δ(f)(x)qM(χS)(x)dµ(x)
)1/q

≤ C

µ(S)1/q−1/p

(∫
S̃

M ♯,δ(f)(x)qM(χS)(x)dµ(x)+

∞∑
k=1

∫
S(x0,θ2(k+1)t0)\S(x0,θ2kt0))

M ♯,δ(f)(x)qM(χS)(x)dµ(x)
)1/q

≤ C

µ(S)1/q−1/p

{(∫
S

M ♯,δ(f)(x)qM(χS)(x)dµ(x)
)1/q

+

( ∞∑
k=1

∫
S(x0,θ2(k+1)t0)\S(x0,θ2kt0))

M ♯,δ(f)(x)qM(χS)(x)dµ(x)
)1/q}

≤ C

µ(S)1/q−1/p

{(∫
S

M ♯,δ(f)(x)qM(χS)(x)dµ(x)
)1/q

+

( ∞∑
k=1

∫
S(x0,θ2(k+1)t0)\S(x0,θ2kt0))

M ♯,δ(f)(x)q
µ(S)

µ(S(x0, θ2kt0))
dµ(x)

)1/q}
≤ C∥M ♯,δ(f)∥Mp,q

F
. �

Theorem 2.10 If 1 < q ≤ p < ∞, then the Monge-Ampère singular integral operator H is

bounded on Mp,q
F (Rn).

Proof By Lemmas 2.9, 2.7 and Theorem 2.2, we have that for 0 < δ < ∞ and 1 < q ≤ p < ∞,

∥Hf∥Mp,q
F

≤ ∥M(Hf)∥Mp,q
F

≤ C∥M ♯,δ(Hf)∥Mp,q
F

≤ C∥M(f)∥Mp,q
F

≤ C∥f∥Mp,q
F

. �

Theorem 2.11 Let 0 < β < 1. If 1 < q ≤ p < ∞, 1 < t ≤ s < ∞, and q/t = p/s = 1− βp, then

Iβ is bounded from Mp,q
F (Rn) to Ms,t

F (Rn).

Proof Fix f ∈ Mp,q
F (Rn). We claim that, for all x ∈ Rn, the inequality of Hedberg type

|Iβ(f)(x)| ≤ C∥f∥βpMp,q
F

[M(f)(x)]1−βp (2.7)
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holds. Assume (2.7) holds for the moment and we prove Theorem 2.11. Indeed, by (2.7),

t(1− βp) = q and q
t (

1
q −

1
p ) =

1
t −

1
s as well the fact that M is bounded on the space Mp,q

F (Rn),

we conclude that for all S ∈ F ,

1

µ(S)1/t−1/s

{∫
S

|Iβ(f)(y)|tdµ(y)
}1/t

≤ C∥f∥βpMp,q
F

1

µ(S)1/t−1/s

{∫
S

|M(f)(y)|t(1−βp)dµ(y)
}1/t

≤ C∥f∥βpMp,q
F

µ(S)1/t−q/(pt)

µ(S)1/t−1/s

{ 1

µ(S)1/q−1/p

(∫
S

|M(f)(y)|qdµ(y)
)1/q}q/t

≤ C∥f∥βpMp,q
F

∥M(f)∥1−βp
Mp,q

F

≤ C∥f∥Mp,q
F

.

Now we should show (2.7). Fix x ∈ Rn and t > 0,

|Iβ(f)(x)| ≤
∫
S(x,t)

|f(y)|
µ(S(x, d(x, y)))1−β

dµ(y) +

∫
S(x,t)c

|f(y)|
µ(S(x, d(x, y)))1−β

dµ(y)

:= III + IV.

For III, by (1.2), we write

III =

∞∑
k=0

∫
S(x,2−(k+1)t)⊂S(x,d(x,y))⊂S(x,2−kt)

|f(y)|
µ(S(x, d(x, y)))1−β

dµ(y)

≤
∞∑
k=0

1

µ(S(x, 2−(k+1)t))1−β

∫
S(x,2−kt)

|f(y)|dµ(y)

≤ C
∞∑
k=0

A−kµ(S(x, t))βM(f)(x) ≤ Cµ(S(x, t))βM(f)(x).

As to IV, the Hölder inequality and (1.2) imply that

IV =
∞∑
k=0

∫
S(x,2kt)⊂S(x,d(x,y))⊂S(x,2k+1t)

|f(y)|
µ(S(x, d(x, y)))1−β

dµ(y)

≤
∞∑
k=0

µ(S(x, 2k+1t))1/q
′

µ(S(x, 2kt))1−β

(∫
S(x,2k+1t)

|f(y)|qdµ(y)
)1/q

≤
∞∑
k=0

Ak(βp−1)µ(S(x, t))(βp−1)/p∥f∥Mp,q
F

≤ Cµ(S(x, t))(βp−1)/p∥f∥Mp,q
F

.

So,

|Iβ(f)(x)| ≤ C(µ(S(x, t))βM(f)(x) + µ(S(x, t))(βp−1)/p∥f∥Mp,q
F

).

Now take µ(S(x, t)) = ∥f∥pMp,q
F

M(f)(x)−p, then

µ(S(x, t))βM(f)(x) = µ(S(x, t))(βp−1)/p∥f∥Mp,q
F

= ∥f∥βpMp,q
F

M(f)(x)1−βp.

Thus we complete the proof. �
Directly, we have the boundedness of the fractional integral Iβ on Lebesgue space as follows.
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Corollary 2.12 Let 0 < β < 1. If 1 < q < 1
β and 1

t = 1
q−β. Then Iβ is bounded from Lq(Rn, dµ)

to Lt(Rn,dµ).

Besides, by Minkowski’s inequality, we have the following pointwise estimate[∑
j∈N

|Iβ(fj)(x)|r
]1/r

≤ Iβ
([∑

j∈N

|fj |r
]1/r)

(x),

then we obtain a vector-valued inequality of Iβ .

Corollary 2.13 Let 0 < β < 1. If 1 < q ≤ p < ∞, 1 < t ≤ s < ∞, and q/t = p/s = 1 − βp.

Then there exists a constant C such that∥∥∥[∑
j∈N

|Iβ(fj)|r
]1/r∥∥∥

Mp,q
F

≤ C
∥∥∥(∑

j∈N

|fj |r
)1/r∥∥∥

Mp,q
F

.

3. Campanato spaces

For q ∈ [1,∞] and p ∈ (1,∞] a real-valued function f on Rn is said to be in the Campanato

space Ep,q
F (Rn) provided that

∥f∥Ep,q
F

:= sup
S∈F

1

[µ(S)]1/q−1/p

{∫
S

|f(y)− fS |qdµ(y)
}1/q

< ∞, (3.1)

where and in what follows, fS = 1
µ(S)

∫
S
f(y)dµ(y) denotes the mean of f over the section S.

Remark 3.1 This definition coincides with (1.2) in [19]. Clearly ∥ ·∥Ep,q
F

is only a seminorm and

∥f∥Ep,q
F

= 0 if and only if f is constant µ-almost everywhere. We will assume the Ep,q
F spaces to be

quotient spaces from now on. As usual, when p = ∞, the space E∞,1
F (Rn) is reduced to BMOF ,

which originated in [12]. From [16, Proposition 4.1], it is clear that E∞,q
F (Rn) = BMOF (Rn)

for all 1 ≤ q < ∞. Lin [19] obtained that Ep/(1−p),q′

F (Rn) is the dual space of Hp,q
F (Rn), for

p = 1 < q ≤ ∞ or 1/2 < p < 1 ≤ q < ∞.

Theorem 3.2 For 1 ≤ q < p < ∞, the spaces Mp,q
F (Rn) and Ep,q

F (Rn) coincide with equivalent

norms.

Proof For any f ∈ Mp,q
F (Rn),Minkowski’s inequality implies that ∥f∥Ep,q

F
≤ 2∥f∥Mp,q

F
naturally.

Conversely, we need to show that for all f ∈ Ep,q
F (Rn) and all S ∈ F

1

[µ(S)]1/q−1/p

{∫
S

|f(y)|qdµ(y)
}1/q

≤ C∥f∥Ep,q
F

.

It is not difficult to note that

∥f∥Ep,q
F

≤ 2 sup
S∈F

inf
c

1

µ(S)1/q−1/p

(∫
S

|f(y)− c|qdµ(y)
)1/q

≤ ∥f∥Ep,q
F

.

Since f ∈ Mp,q
F (Rn), we have |fS(x,t)| ≤ µ(S(x, t))−1/p∥f∥Mp,q

F
→ 0 as t → ∞. Then, by Fatou’s

lemma, we can get for any x ∈ Rn

1

µ(S)1/q−1/p

{∫
S

|f(y)|qdµ(y)
}1/q

=
1

µ(S)1/q−1/p

{∫
S

|f(y)− lim
t→∞

fS(x,t)|qdµ(y)
}1/q
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≤ lim
t→∞

1

µ(S)1/q−1/p

{∫
S

|f(y)− fS(x,t)|qdµ(y)
}1/q

≤ C∥f∥Ep,q
F

.
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