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Abstract In this paper, we study the optimal financing problem in the dual model. We

introduce a value function which considers both the expected present value of the dividends

payout minus the equity issuance and a penalty at ruin. In order to get the optimal strategy,

two categories of suboptimal models are constructed and studied. Based on these two subop-

timal models, we identify the value function and the optimal strategy in the general optimal

problem.
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1. Introduction

Optimal dividends have attracted a lot of interest since the early works of Borch [1,2] and

Gerber [3]. For example, Avanzi et al. [4] considered the dividend problem in the dual model with

the presence of barrier dividends strategy. Ng [5] considered the dual model of the compound

Poisson model under a threshold dividend strategy. See, also, Jeanblanc-Picqué and Shiryaev

[6], Asmussen et al. [7,8], Høgaard and Taksar [9, 10], Gerber and Shiu [11,12] and the references

therein. Equity issuance is an important approach for the company to raise capital and reduce

risk in financial market. This strategy has been extensively studied in various risk models. Sethi

and Taksar [13] considered the model for the company that can control its risk exposure by equity

issuance and dividends payout. Løkka and Zervos [14] studied the problem with the possibility

of bankruptcy, and also considered the proportional transaction costs in their model. For more

papers on this topic, we refer the readers to Avanzi et al. [15], He and Liang [16,17], Yao et al. [18]

and the references therein. But we realize that just considering one of the two above strategies

is not enough in the reality. Scholars have considered the effects of both these strategies. Dai et

al. [19] and Yao et al. [20,21] applied these two strategies to study the optimal asset control of
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the dual model. On the other hand, the time of ruin, which is a classical topic in risk theory,

is important for the company and performance evaluation. However, we observe that all these

papers outlined above do not take it into account. During the past years, this disadvantage has

gathered a lot of attentions. Thonhauser and Albrecher [22] considered this problem for the

companies which can control their exposures only by means of their dividend payments.

In this paper, we focus on the control problem of maximizing the expected present value of

dividends payout minus equity issuance before bankruptcy. Moreover, we add a component to

the objective function that penalizes the early ruin of the controlled risk process.

The rest of this paper is organized as follows. In Section 2, the dual model is shortly

discussed and some preliminaries in our model are introduced. In Section 3, we identify the

solution to the control problem that allows for no issuance of new equity. In Section 4, we solve

the control problem that arises when the admissible strategies are constrained to allow for no

bankruptcy, while Section 5 is concerned with the solution to the general control problem that

involves no constraints on the issuance of new equity and the reserves.

2. Mathematical model

In this paper, we model the uncontrolled reserves of a company by a dual risk model. Let

S(t) =
∑N(t)

i=0 Yi, a compound Poisson process with Poisson rate λ, be the positive gains or profits.

We denote by D(y) the distribution function of Yi. We use the completed filtration {Ft}t≥0 with

Ft = σ{S(v), v ≤ t} satisfying the usual conditions. Let B = {Bt}t≥0 be a standard Brownian

motion adapted to that filtration. If there are no equity issuance and dividends payout to control

the risk, the liquid reserve of the company evolves according to the following equation

Rt = x+ µt+ σBt + S(t),

where 0 ≤ x < ∞ is the initial reserve, µ < 0 is the rate of expenses, and σ > 0. Furthermore,

we assume that {Bt}, {N(t)} and {Yi} are mutually independent, and E[Yi] < ∞. Moreover, we

assume that the net profit condition is satisfied, i.e., µ + λE[Y1] ≥ 0. As usual, we call such a

model a dual model.

We can use such process to model companies (or financial institutions) that have occasional

gains whose amount and frequency can be modeled by the process {S(t)}. For further discussions
on the applications of this model, see e.g., Avanzi et al. [4,15], Bayraktar and Egami [23], Dong

and Wang [24], Seal [25], Zhu and Yang [26] and the references therein.

To enrich the model, we assume that the company’s manager can control the reserves

by paying out dividends and by raising capital through issuing equity. We denote by Lt the

cumulative amount of dividends paid from time zero up to time t, and by Gt the total amount of

capital raised by issuing equity from time zero up to time t. We assume that both L = {Lt}t≥0

and G = {Gt}t≥0 are (Ft)-adapted, increasing and right-continuous with left limits. A control

policy π is described by the stochastic processes (Lπ, Gπ). Similar to Øksendal and Sulem [27],

we only consider admissible policies. Let Π = {π} denote the set of all admissible policies.
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Given a control policy π, we model the liquid reserves of the company by

Rπ
t = x+ µt+ σBt + S(t)− Lπ

t +Gπ
t , (2.1)

and define the ruin time τπ by τπ = inf{t ≥ 0 : Rπ
t < 0}.

As usual, the proportional transaction costs are considered in our model. If the company

pays l as dividends, then the shareholders can get β1l, β1 < 1. On the other hand, in order to

meet the cost of getting the amount of η by issuing new equity, the shareholders should pay out

β2η, β2 > 1.

In this paper, we aim to identify the control strategy π that maximizes

J(x, π) = E
[ ∫ τπ

0

e−rtβ1dL
π
t −

∫ τπ

0

e−rtβ2dG
π
t +

∫ τπ

0

e−rtΛdt
]
,

where Λ > 0, and r denotes the discount rate.

Here, we point out that compared to the classical value function, which maximizes the

expected present value of the dividends payout minus the equity issuance before bankruptcy,

there is an additional term depending on the lifetime of the controlled process. e−rtΛ can be

interpreted as the present value of an amount which the insurer earns as long as the company is

alive. In this way, the lifetime of the portfolio becomes part of the value function and is weighted

according to the choice of Λ. Another interpretation is that in this way the Laplace transform

of the ruin time is part of the value function.

At the end of this section, we introduce some preliminaries. The following ordinary differ-

ential equation plays an important role in our analysis below,

1

2
σ2g′′(x) + µg′(x) + λ

∫ ∞

0

g(x+ y)dD(y)− (λ+ r)g(x) + Λ = 0. (2.2)

The candidate solution to the equation (2.2) is given by

g(x) = c1e
k1x + c2e

k2x +
Λ

r
, (2.3)

where c1, c2 ∈ R are constants, and the real numbers k1 > 0 and k2 < 0 are solutions to the

following equation

1

2
σ2k2 + µk + λ

∫ ∞

0

ekydD(y)− (λ+ r) = 0.

It follows from Øksendal and Sulem [27] that k1 and k2 exist.

For simplicity, for each function g(x) ∈ C2(R), define the integro-differential operator A by

Ag(x) =
1

2
σ2g′′(x) + µg′(x) + λ

∫ ∞

0

g(x+ y)dD(y)− (λ+ r)g(x).

3. The case without equity issuance

In this section, we consider the optimal dividend problem without equity issuance. We

introduce the following notation. Given an initial reserve x ≥ 0, let Πp =
{
πp = (Lπp , Gπp) ∈
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Π : G
πp

t = 0 for all t ≥ 0
}
⊂ Π. We define the associated value function Vp(x) by

Vp(x) = sup
πp∈Πp

J(x, πp). (3.1)

Our aim is to find the value function Vp(x) and an optimal strategy π∗. Similar to Dai

et al. [19], here we try to construct a twice continuously differentiable concave solution to this

problem, which is referred to as a classical solution to the optimal problem.

With reference to Øksendal and Sulem [27], the Hamilton-Jacobi-Bellman (HJB) equation

corresponding to (3.1) is

max
{1

2
σ2W ′′(x) +µW ′(x) + λ

∫ ∞

0

W (x+ y)dD(y)− (λ+ r)W (x) +Λ, β1 −W ′(x)
}
= 0 (3.2)

with the boundary condition

W (0) = 0. (3.3)

It follows from the Brownian motion, which takes us below zero in probability 1, and the negative

drift of the process that the reserve x = 0 corresponds to bankruptcy. Then the boundary

condition (3.3) naturally arises.

With regard to simple economic considerations, we conjecture that the value function Vp(x)

identifies with a solution W (x) to the HJB equation (3.2) satisfying

1

2
σ2W ′′(x) + µW ′(x) + λ

∫ ∞

0

W (x+ y)dD(y)− (λ+ r)W (x) + Λ = 0, 0 < x ≤ b∗, (3.4)

and

β1 −W ′(x) = 0, x ≥ b∗ (3.5)

for some constant b∗ > 0.

By (2.2), we would consider a solution to the equations (3.4) and (3.5) of the form

W (x) = c1e
k1x + c2e

k2x +
Λ

r
, if 0 < x ≤ b∗, (3.6)

and

W (x) = β1(x− b∗) + c1e
k1b

∗
+ c2e

k2b
∗
+

Λ

r
, if x ≥ b∗. (3.7)

Next, we specify the parameters c1, c2 and b∗. Our aim is to find a classical solution, so we

need

c1k1e
k1b

∗
+ c2k2e

k2b
∗
= β1, (3.8)

c1k
2
1e

k1b
∗
+ c2k

2
2e

k2b
∗
= 0. (3.9)

Using (3.8) and (3.9), we can express c1 and c2 in terms of b∗:

c1(b
∗) = − β1k2

k1(k1 − k2)
e−k1b

∗
> 0, (3.10)

and

c2(b
∗) =

β1k1
k2(k1 − k2)

e−k2b
∗
< 0. (3.11)
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By (3.3),
Λ

r
+ c1(b

∗) + c2(b
∗) = 0. (3.12)

Lemma 3.1 There exists a unique solution b∗ > 0 to the equation (3.12). The function W (x)

given by (3.6) and (3.7) with b∗ being the unique solution to (3.12) and with c1, c2 being given

by (3.10) and (3.11) is concave in [0, ∞) and satisfies the HJB equation (3.2) and the boundary

condition (3.3).

Proof For any b ≥ 0, define C(b) = Λ
r + c1(b) + c2(b). We have that

C ′(b) =
β1k2

k1 − k2
e−k1b − β1k1

k1 − k2
e−k2b < 0,

C(0) =
Λ

r
+

β1k1
k2(k1 − k2)

− β1k2
k1(k1 − k2)

> 0.

Therefore, C(b) is strictly decreasing. Since C(0) > 0 and limb→+∞ C(b) = −∞, the function

C(b) has a unique positive root b∗ > 0.

Since W ′′(b∗) = 0 and for x < b∗,

W ′′′(x) = c1k
3
1e

k1x + c2k
3
2e

k2x > 0,

we can get that W ′′(x) < 0 for all x ∈ [0, b∗). Thus we can see that W ′′(x) ≤ 0 for all x ≥ 0.

This shows that W (x) is concave in [0, ∞).

It follows from (3.12) that W (x) satisfies the boundary condition (3.3).

The remaining problem is to prove that W (x) satisfies the HJB equation (3.2). Noting (3.6)

and (3.7), we only need to prove the following conditions:

W ′(x) ≥ β1, x ∈ [0, b∗],

A[W (x)] + Λ ≤ 0, x ≥ b∗.

The proof is as follows. The concavity of W (x) implies that W ′(x) is decreasing. Thus, we

can get from (3.8) that for any x ∈ [0, b∗], W ′(x) ≥ W ′(b∗) = β1. Moreover, for x ≥ b∗,

A[W (x)] + Λ = λβ1

∫ ∞

o

ydD(y) + µβ1 − rβ1(x− b∗)− rW (b∗) + Λ

≤ µβ1 − rW (b∗) + λβ1

∫ ∞

o

ydD(y) + Λ

= lim
x↓b∗

A[W (x)] + Λ = lim
x↑b∗

A[W (x)] + Λ = 0.

So W (x) satisfies the HJB equation (3.2). The proof is completed. �

Theorem 3.2 The value function Vp identifies with the concave solution W (x) to the HJB

equation (3.2). Moreover, define π∗ = (Lπ∗
, 0), where (Rπ∗

t , Lπ∗

t ) is a solution to the following

system of equation:

Rπ∗

t = x+ µt+ σB(t) +

N(t)∑
i=1

Yi − Lπ∗

t ,

Rπ∗

t ≤ b∗, t ≥ 0,
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0

I{Rπ∗

t ≤ b∗}dLπ∗

t = 0,

Gπ∗

t = 0.

π∗ is an optimal strategy, i.e., Vp(x) = J(x, π∗).

The proof of Theorem 3.2 can be developed by a straightforward modification of the proof

of Theorem 5.2 below, so we omit it.

Remark 3.3 We can see that without equity issuance the optimal strategy is a barrier strategy,

that is, any surplus above the level b∗ would be paid as dividends to the shareholders of the

company.

4. The case that never goes bankrupt

In this section we consider the optimal dividend problem with equity issuance. In this case,

the bankruptcy is prohibited. Thereby, the reserve processes stay positive all the time. We aim

at maximizing the discounted dividends payout minus the discounted costs of issuing new equity.

Given an initial reserve x ≥ 0, let Πs = {πs = (Lπs , Gπs) ∈ Π : Rπs
t ≥ 0 for all ≥ 0} ⊂ Π. We

define the associated value function Vs(x) by

Vs(x) = sup
πs∈Πs

J(x, πs). (4.1)

We aim at finding the value function Vs(x) and an optimal strategy π∗∗ ∈ Πs.

Standard arguments, see Øksendal and Sulem [27], formally yield the associated HJB equa-

tion

max
{1

2
σ2H ′′(x) + µH ′(x) + λ

∫ ∞

0

H(x+ y)dD(y)−

(λ+ r)H(x) + Λ, β1 −H ′(x), H ′(x)− β2

}
= 0. (4.2)

We now construct a classical solution H(x) to the HJB equation (4.2). Considering the time

value of money, we conjecture that an optimal strategy associated with a solution to the HJB

equation (4.2) is characterized by

H ′(0) = lim
x↓0

H(x) = β2,

1

2
σ2H ′′(x) + µH ′(x) + λ

∫ ∞

0

H(x+ y)dD(y)− (λ+ r)H(x) + Λ = 0, 0 < x < b∗∗,

H ′(x) = β1, x ≥ b∗∗.

By (2.2), we would conjecture that a function H(x) satisfying (4.2) is given by

H(x) = d1e
k1x + d2e

k2x +
Λ

r
, if 0 ≤ x < b∗∗, (4.3)

and

H(x) = β1(x− b∗∗) + d1e
k1b

∗∗
+ d2e

k2b
∗∗

+
Λ

r
, if x ≥ b∗∗. (4.4)

To find the solution, we must determine the parameters d1, d2 and b∗∗. Our aim is to find a C2
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solution, so we need

d1k1e
k1b

∗∗
+ d2k2e

k2b
∗∗

= β1, (4.5)

and

d1k
2
1e

k1b
∗∗

+ d2k
2
2e

k2b
∗∗

= 0. (4.6)

Using equations (4.5) and (4.6), we can express d1 and d2 as functions of b∗∗:

d1(b
∗∗) = − β1k2

k1(k1 − k2)
e−k1b

∗∗
> 0, (4.7)

and

d2(b
∗∗) =

β1k1
k2(k1 − k2)

e−k2b
∗∗

< 0. (4.8)

Moreover,

d1(b
∗∗)k1 + d2(b

∗∗)k2 = β2. (4.9)

Lemma 4.1 The equation (4.9) has a unique solution b∗∗ > 0. The function H(x) defined by

(4.3) and (4.4) with b∗∗ being the unique solution to (4.9) and d1, d2 being given by (4.7) and

(4.8) is concave in [0, ∞), and satisfies the HJB equation (4.2).

Proof Define D(b) = d1(b)k1 + d2(b)k2. We have that

D′(b) =
β1k1k2
(k1 − k2)

e−k1b − β1k2k1
(k1 − k2)

e−k1b,

D′(0) = 0,

D′′(b) = − β1k
2
1k2

(k1 − k2)
e−k1b +

β1k1k
2
2

(k1 − k2)
e−k1b > 0.

So we get that the function D′(b) is strictly increasing. Thus, D′(b) > 0 for all b > 0. We

easily see that D(b) is increasing. Since D(0) = β1 < β2 and limb→+∞ D(b) = ∞, we get that

D(b) = β2 has a unique positive root b∗∗ > 0.

Using the same method as the proof for Lemma 3.1, we can prove that H(x) is concave and

satisfies the HJB equation (4.2). The proof is completed. �

Theorem 4.2 The value function Vs(x) identifies with the concave solution H(x) given

by (4.3) and (4.4) to the HJB equation (4.2). Moreover, define π∗∗ = (Lπ∗∗
, Gπ∗∗

), where

(Rπ∗∗

t , Lπ∗∗

t , Gπ∗∗

t ) is a solution to the following system of equation:
Rπ∗∗

t = x+ µt+ σB(t) +
∑N(t)

i=1 Yi − Lπ∗∗

t +Gπ∗∗

t ,

0 ≤ Rπ∗∗

t ≤ b∗∗, t ≥ 0,∫∞
0

I(Rπ∗∗

t ≤ b∗∗)dLπ∗∗

t = 0,∫∞
0

I(Rπ∗∗

t ̸= 0)dGπ∗∗

t = 0.

π∗∗ is an optimal strategy, i.e., Vs(x) = J(x, π∗∗) = H(x).

Using the same method as the proof for Theorem 5.2 below, we can readily prove Theorem

4.2. Here we omit it.

5. The solution to the general problem
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We now address the general problem of maximizing the expected discounted dividend flow

minus the expected discounted costs of issuing new equity over all admissible strategies in the

general case. Given an initial capital x ≥ 0, we define the value function V (x) by

V (x) = sup
π∈Π

J(x, π). (5.1)

We mainly aim at finding a value function V (x) and an optimal strategy.

Remark 5.1 Since πp, πs ∈ Π, V (x) ≥ max{Vp(x), Vs(x)} for all x ≥ 0.

The main result of this paper is the following.

Theorem 5.2 Fix any initial capital x ≥ 0, and consider the problem of maximizing the

performance criterion V (x) over all admissible strategies.

(i) If b∗ ≤ b∗∗, then V (x) = W (x) = Vp(x). An optimal strategy is π∗ = {Lπ∗
, 0} which is

given by Theorem 3.2.

(ii) If b∗ ≥ b∗∗, then V (x) = H(x) = Vs(x). An optimal strategy is π∗∗ = {Lπ∗∗
, Gπ∗∗}

which is given by Theorem 4.2.

In order to prove Theorem 5.2, we need the following Lemmas.

Lemma 5.3 (I) If b∗ ≥ b∗∗, then H(0) ≥ 0.

(II) If b∗ ≤ b∗∗, then W ′(x) ≤ β2.

Proof We first prove (I). It follows from (3.10), (3.11), (4.7) and (4.8) that c1(x) = d1(x) and

c2(x) = d2(x). Thus,

H(0) = d1(b
∗∗) + d2(b

∗∗) +
Λ

r
= c1(b

∗∗) + c2(b
∗∗) +

Λ

r
= C(b∗∗).

Since C(b) = c1(b) + c2(b) +
Λ
r is strictly decreasing and b∗ ≥ b∗∗,

H(0) = C(b∗∗) = c1(b
∗∗) + c2(b

∗∗) +
Λ

r
≥ c1(b

∗) + c2(b
∗) +

Λ

r
.

By (3.12), W (0) = c1(b
∗) + c2(b

∗) + Λ
r = C(b∗) = 0. So H(0) ≥ 0.

Next, we prove (II). From Lemma 3.1, we get that W (x) is concave. The concavity of W (x)

implies that for all x ≥ 0, W ′(x) ≤ β2 if and only if W ′(0) ≤ β2, i.e.,

W ′(x) ≤ β2 ⇔ W ′(0) = c1(b
∗)k1 + c2(b

∗)k2 ≤ β2.

Since D(b) is increasing on [0, ∞) and b∗ ≤ b∗∗,

β2 = D(b∗∗) = d1(b
∗∗)k1 + d2(b

∗∗)k2 = c1(b
∗∗)k1 + c2(b

∗∗)k2

≥ c1(b
∗)k1 + c2(b

∗)k2 = W ′(0).

So W ′(x) ≤ β2. The proof has been done. �

Lemma 5.4 If Q(x) satisfies the following HJB equation

max
{1

2
σ2Q′′(x) + µQ′(x) + λ

∫ ∞

0

Q(x+ y)dD(y)− (r + λ)Q(x) + Λ,
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β1 −Q′(x), Q′(x)− β2

}
= 0, (5.2)

and the boundary condition

max{−Q(0), Q′(0)− β2} = 0, (5.3)

then Q(x) ≥ J(x, π) for any admissible strategy π.

Proof For any fixed strategy π, put D = {s : Lπ
s− ̸= Lπ

s } and D ′ = {s : Gπ
s− ̸= Gπ

s }. Moreover,

let L̂π
t be the discontinuous part of Lπ

t and L̃π
t be the continuous part of Lπ

t . Similarly, Ĝπ
t and

G̃π
t stand for discontinuous and continuous parts of Gπ

t , respectively.

By the Dynkin formula [27, Theorem 1.23]

E[e−r(t∧τπ)Q(Rπ
t∧τπ )] =Q(x) + E

{∫ t∧τπ

0

e−rsA
[
Q(Rπ

s )
]
ds−∫ t∧τπ

0

e−rsQ′(Rπ
s )dL̃

π
s +

∫ t∧τπ

0

e−rsQ′(Rπ
s )dG̃

π
s+∑

s∈D∪D′,s≤t∧τπ

e−rs[Q(Rπ
s )−Q(Rπ

s−)]
}
. (5.4)

By (5.2),

E[e−r(t∧τπ)Q(Rπ
t∧τπ )] ≤Q(x)− E

[ ∫ t∧τπ

0

e−rsQ′(Rπ
s )dL̃

π
s +

∫ t∧τπ

0

e−rsQ′(Rπ
s )dG̃

π
s

]
+

E
[ ∑
s∈D∪D′,s≤t∧τπ

e−rs[Q(Rπ
s )−Q(Rπ

s−)]−
∫ t∧τπ

0

e−rsΛds
]
.

Since β1 ≤ Q′(x) ≤ β2, Q(Rπ
s )−Q(Rπ

s−) ≤ β2(G
π
s −Gπ

s−)− β1(L
π
s − Lπ

s−). So

E
[
e−r(t∧τπ)Q(Rπ

t∧τπ ) +

∫ t∧τπ

0

e−rsβ1dL
π
s −

∫ t∧τπ

0

e−rsβ2dG
π
s+∫ t∧τπ

0

e−rsΛds
]
≤ Q(x). (5.5)

By (5.3), we take limits in (5.5) and then get

E
[ ∫ τπ

0

e−rsβ1dL
π
s −

∫ τπ

0

e−rsβ2dG
π
s +

∫ τπ

0

e−rsΛds
]
≤ Q(x).

Therefore J(x, π) ≤ Q(x). The proof has been done. �
Next, we prove the main result of this paper.

Proof of Theorem 5.2 We first prove case (i) of the theorem. Since b∗ ≤ b∗∗, we deduce from

Lemmas 3.1 and 5.3 that W (x) satisfies the HJB equation (5.2) and the boundary condition

(5.3). So W (x) ≥ V (x). On the other hand, we get from Remark 5.1 that W (x) ≤ V (x). Hence

W (x) = V (x).

In the sequel, we will show that J(x, π∗) = W (x) = V (x), i.e., π∗ is an optimal strategy.

We deduce from Lemma 3.1 and Theorem 3.2 that for all t ≥ 0,

A[W (Rπ∗

t )] + Λ = 0.
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Applying the generalized Itô formula, we have that

e−r(t∧τπ∗
)W (Rπ∗

t∧τπ∗ ) =W (x) +

∫ t∧τπ∗

0

e−rsA[W (Rπ∗

s )]ds−
∫ t∧τπ∗

0

e−rsW ′(Rπ∗

s )dL̃π∗

s +∑
s∈D,s≤t∧τπ∗

e−rs[W (Rπ∗

s )−W (Rπ∗

s−)] +M1(t ∧ τπ
∗
) +M2(t ∧ τπ

∗
)

=W (x)−
∫ t∧τπ∗

0

β1e
−rsdLπ∗

s +

∫ t∧τπ∗

0

σe−rsW ′(Rπ∗

s )dBs−∫ t∧τπ∗

0

e−rsΛds+M1(t ∧ τπ
∗
) +M2(t ∧ τπ

∗
), (5.6)

where M1(t) =
∫ t

0
σe−rsW ′(Rπ∗

s )dBs and

M2(t) =

∫ t

0

∫ +∞

0

e−rs(W (Rπ∗

s− + y)−W (Rπ∗

s−))(N(ds,dy)− λdsdD(y)).

By Theorem 3.2, W (Rπ∗

t∧τπ∗ ) is bounded by W (b∗). So M1 and M2 converge in L1 to two

integrable random variables, respectively. Furthermore, M1 and M2 are uniformly integrable

martingales. On the other hand, we have

lim inf
t→∞

e−r(t∧τπ∗
)W (Rπ

t∧τπ∗ ) = e−rτπ∗

W (0) = 0.

From above arguments, we can take limits in (5.6) and then take the expectations at both

sides of (5.6). Finally, we get

W (x) = E
[
lim inf
t→∞

{∫ t∧τπ∗

0

e−rsβ1dL
π∗

s +

∫ t∧τπ∗

0

e−rsΛds
}]

= V (x, π∗).

So W (x) = V (x) = Vp(x).

We now prove case (ii) of the theorem. Similar to the proof for case (i), since b∗ ≥ b∗∗, we

deduce from Lemmas 4.1 and 5.3 that H(x) defined by (4.3) and (4.4) satisfies the HJB equation

(5.2) and the boundary condition (5.3). So H(x) ≥ V (x). On the other hand, we get from

Remark 5.1 that H(x) ≤ V (x). Hence H(x) = V (x).

Next, we will prove that π∗∗ is an optimal strategy, i.e., V (x, π∗∗) = H(x). The proof is as

follows. We deduce from Lemma 4.1 and Theorem 4.2 that for all t ≥ 0,

A[H(Rπ∗∗

t )] + Λ = 0.

Applying the generalized Itô formula gives

e−r(t∧τπ∗∗
)H(Rπ∗∗

t∧τπ∗∗ ) =H(x) +

∫ t∧τπ∗∗

0

e−rsA[H(Rπ∗∗

s )]ds−∫ t∧τπ∗∗

0

e−rsH ′(Rπ∗∗

s )dL̃π∗∗

s +∫ t∧τπ∗∗

0

e−rsH ′(Rπ∗∗

s )dG̃π∗∗

s +∑
s∈D,s≤t∧τπ∗∗

e−rs[H(Rπ∗∗

s )−H(Rπ∗∗

s− )] +M2(t ∧ τπ
∗
)+
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s∈D′,s≤t∧τπ∗∗

e−rs[H(Rπ∗∗

s )−H(Rπ∗∗

s− )] +M1(t ∧ τπ
∗
)

=H(x)−
∫ t∧τπ∗∗

0

e−rsβ1dL
π∗∗

s +

∫ t∧τπ∗∗

0

e−rsβ2dG
π∗∗

s −∫ t∧τπ∗

0

e−rs ∧ ds+M1(t ∧ τπ
∗
) +M2(t ∧ τπ

∗
). (5.7)

By virtue of Theorem 4.2, H(Rπ∗∗

t∧τπ∗∗ ) is bounded by H(b∗∗). Then,

lim inf
t→∞

e−r(t∧τπ∗∗
)H(Rπ

t∧τπ∗∗ ) = 0.

Taking the expectations at both sides of (5.7) yields

H(x) = J(x, π∗∗).

So V (x) = H(x) = Vq(x). �
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