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Abstract In this paper, using the generalized Omori-Yau maximum principle, we obtain

height estimates for spacelike hypersurface in a generalized Robertson-Walker (GRW) space-

time with constant higher order mean curvature and whose boundary is contained in a slice.

Furthermore, we apply these results to draw some topological conclusions. Finally, considering

the Omori-Yau maximum principle for the Laplacian and for more general elliptic trace type

differential operators, we have some further non-existence results.
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1. Introduction

In the seventies, constant mean curvature spacelike hypersurfaces in Lorentzian manifolds

have been studied not only from their mathematical interest, but also from their important in

general relativity.

Recently, the height estimates for constant (higher order) mean curvature compact spacelike

hypersurfaces with boundary have been studied by more and more authors. This is because the

height estimates are very useful tool to research existence and uniqueness problems of space-

like hypersurfaces with constant mean curvature, more generally, constant higher order mean

curvature, as well as to obtain some relevant topological property of such hypersurfaces.

There are some articles studying the height estimates of spacelike hypersurfaces in a general-

ized Robertson-Walker spacetimes. López [1] obtained the the height estimates of constant mean

curvature compact spacelike hypersurfaces in the Lorentz-Minkowski spacetime Ln+1 and with

boundary on a spacelike hyperplan. Later, the height estimates for compact spacelike graphs

in the steady state spacetime were obtained by Montiel in [2] and he used them to prove some

existence and uniqueness theorems for complete spacelike hypersurfaces in the de Sitter space-

time with constant mean curvature H > 1 and prescribed asymptotic future boundary. More

generally, Lima [3] extended the height estimates proved by López to any n and he also got sharp

height estimates for compact spacelike hypersurfaces with some positive constant higher order
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mean curvature in the Lorentz-Minkowski spacetime with boundary on a spacelike hyperplan.

More recently, the authors [4] obtained a sharp height estimate concerning compact hypersur-

faces immersed into warped product spaces with some constant higher order mean curvature and

whose boundary is contained in a slice, and they applied these results to study of topological

properties of spacelike hypersurfaces. Furthermore, Garćıa-Mart́ınez and Impera [5] obtained

height estimates and half-space theorems for spacelike hypersurfaces of constant k-mean curva-

ture, 1 ≤ k ≤ n in a generalized Robertson-Walker spacetimes and whose boundary is contained

in a slice.

In this paper we study compact spacelike hypersurfaces in a wider family of spacetimes,

that is, the generalized Robertson-Walker (GRW) spacetimes. i.e., a spacetime considering a

warped product of a negative definite interval as a base and a Riemannian manifold as a fiber,

moreover, a positive smooth function as a warped function (see Section 2). Notice that the family

of GRW spacetimes is very wide, for instance, the Lorentz-Minkowski spacetime, the Einstein-

de Sitter spacetime, the static Einstein spacetime, and the Roberston-Walker (RW) spacetimes

(fiber of constant sectional curvature). In any GRW spacetime there is a distinguished family

of spacelike hypersurfaces, that is so-called slices, which are defined as level hypersurfaces of the

time coordinate of the spacetime. Furthermore, any slice is totally umbilical and has constant

higher order mean curvature.

In this paper, first we study the height estimates of compact spacelike hypersurface with

constant k-th mean curvature Hk for 1 ≤ k ≤ n in a GRW spacetime and with boundary

contained in a slice. By controlling the specific value Hk+1

Hk
for 1 ≤ k ≤ n − 1 and imposing

suitable conditions on the geometry of the ambient spacetime, see Theorems 3.1, 3.5 in Section

3 and Theorems 4.1, 4.3 in Section 4.

Following the same spirit as in [6] and using these results in previous sections, we obtain

several non-existence results about the topological properties of complete spacelike hypersurfaces

properly immersed into spatially closed GRW spacetime, see Theorems 5.2 and 5.6 in Section 5.

Finally, in Section 6, we prove a number of further non-existence results in the form of

half-space theorem, extending to the complete spacelike hypersurface in a GRW spacetime, see

Theorems 6.5 and 6.8. Notice that, since the height estimates do not apply in this more general

case. So, in this case, our approach is based on applying a generalized version of the Omori-Yau

maximum principle for trace type differential operators associated to the Newton transforma-

tions.

2. Preliminaries

Consider Mn an n-dimensional Riemannian manifold, and let I be an open interval in R
endowed with the metric −dt2. We let f : I → R+ be a positive smooth function. Denote

M
n+1

:= −I ×f Mn to be the warped product endowed with the Lorentzian metric

⟨, ⟩ = −π∗
I (dt

2) + f(πI)
2π∗

M (⟨, ⟩M ) (2.1)

where πI and πM denote the projections onto I and M , respectively. This spacetime is a warped
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product in the sense of ([7], Chap.7), with fiber (M, ⟨, ⟩), base (I,−dt2) and warping function f .

Following the terminology used in [8] we will refer to −I×fM
n as a generalized Robertson-Walker

(GRW) spacetime. In particular, if the fiber Mn has constant section curvature, it is called a

Robertson-Walker (RW) spacetime. Notice that f(t) ∂
∂t is closed conformal timelike vector field

on M
n+1

which determines a foliation t → Mt := t×M of M
n+1

by complete totally umbilical

spacelike hypersurfaces with constant mean curvature.

Now consider a spacelike hypersurface φ : Σn → M
n+1

. In this case, since vector field ∂t :=

∂/∂t is a (unitary) timelike globally defined on M , there exists a unique unitary timelike normal

field N globally defined on Σ with the same time-orientation as ∂t, i.e., such that ⟨N, ∂t⟩ < 0.

From the wrong-way Cauchy-Schwarz inequality ([7, Proposition 5.30], for instance), we have

⟨N, ∂t⟩ ≤ −1, and the equality holds at a point p ∈ M if and only if N = ∂t at p. Moreover, we

will denote the function Θ : Σ → (−∞,−1], Θ := −⟨N, ∂t⟩, as the angle function. In this case,

we will refer to that normal field N as the future-pointing Gauss map of the hypersurface.

Let A : TΣ → TΣ stand for the shape operator of Σ with respect to the future-pointing

Gauss map N . It is well known that A restricts to a self-adjoint linear operator Ap : TpΣ → TpΣ,

and its eigenvalues k1(p), . . . , kn(p) are the principal curvatures of the hypersurface Σ. Associated

to the shape operator there are n algebraic invariants, which are the elementary symmetric

function Sk of its eigenvalues, given by

Sk(p) = Sk(k1(p), . . . , kn(p)) =
∑

i1<···<ik

λi1 · · ·λik , k = 1, . . . , n.

Observe that the characteristic polynomial of A satisfies

det(tI −A) =
n∑

k=0

(−1)kSkt
n−k,

where S0 = 1 by construction. The kth-mean curvature Hk of the hypersurface is then defined

by (
n

k

)
Hk = (−1)kSk.

Thus H1 = − 1
nTr(A) is the mean curvature and

n(n− 1)H2 = S − S + 2Ric(N,N),

where S is the scalar curvature of Σ, while S and Ric are, respectively, the scalar curvature and

the Ricci tensor of the GRW spacetime M
n+1

. Furthermore, if k is even, it follows from the

Gauss equation that Hk is a geometric quantity which is related to the intrinsic curvature of Σn.

In the following, we introduce the corresponding Newton transformations Pk : TΣ → TΣ

which are inductively defined by

P0 = I, Pk =

(
n

k

)
HkI +APk−1, k = 1, . . . , n.

It is not difficult to see that the Newton transformations Pk are all self-adjoint operators

which commute with the shape operator A. Even more, if {ek} is an orthonormal frame on TpΣ
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which is diagonalizable with Ap, Ap(ei) = ki(p)ei, then

(Pk)p(ei) = (−1)k
∑

i1<···<ik,ij ̸=i

ki1 · · · kik(p)ei,

It can be easily seen that the Newton transformations satisfy the following properties:

(a) Tr(Pk) = ckHk;

(b) Tr(A ◦ Pk) = −ckHk+1;

(c) Tr(A2 ◦ Pk) =
(

n
k+1

)
(nH1Hk+1 − (n− k − 1)Hk+2)

where ck = (n−k)
(
n
k

)
= (k+1)

(
n

k+1

)
, and Hk = 0 if k > n. We refer the reader to [9] for further

details.

Let ∇ stand for the Levi-Civita connection of Σ and let g ∈ C∞(Σ). Associated to each

Newton transformations Pk, we define the second order linear differential operator Lk : C∞(Σ) →
C∞(Σ), given by

Lk(g) = Tr(Pk ◦ ∇2g). (2.2)

Here ∇2g : TΣ → TΣ denotes the self-adjoint linear operator metrically equivalent to the hessian

of g, and it is given by

⟨∇2g(X), Y ⟩ = ⟨hess g(X), Y ⟩ = ⟨∇X(∇g), Y ⟩, X, Y ∈ TΣ.

It follows from (2.2) that the operator Lk is elliptic if and only if Pk is positive definite. Clearly,

L0 = ∆ is always elliptic. For our applications, it is useful to state two lemmas in which geometric

conditions are given in order to guarantee the ellipticity of Lk when k ≥ 1.

Lemma 2.1 ([10]) Let Σ be a spacelike hypersurface in a GRW spcetime. If H2 > 0 on Σ, then

L1 is an elliptic operator (for an appropriate choice of the Gauss map N).

For a proof of Lemma 2.1 [10, Lemma 3.2], where Aĺıas and Colares proved it as a conse-

quence of [11, Lemma 3.10]. The next lemma is a consequence of [12, Proposition 3.2].

Lemma 2.2 ([10]) Let Σ be a spacelike hypersurface in a GRW spcetime. If there exists an

elliptic point of Σ, with respect to an appropriate choice of the Gauss map N , and Hk > 0 on

Σ, 3 ≤ k ≤ n, then the operator Lj is elliptic for any 1 ≤ j ≤ k − 1.

If φ : Σn → M
n+1

is a Riemannian immersion, with Σ oriented by unit vector field N .

We will refer to the normal vector field N as future-pointing Gauss map of the hypersurface.

In what follows, we will consider two particular functions naturally attached to Σ, namely, the

angle function Θ and the (vertical) height function h = (πI) |Σ.
Let ∇ and ∇ stand for gradients with respect to the metrics of M

n+1
and Σn, respectively.

A simple computation shows that the gradient of πI on M
n+1

is given by

∇πI = −⟨∇πI , ∂t⟩∂t = −∂t.

So, the gradient of h on Σn is

∇h = (∇πI)
⊤ = −∂⊤

t = −∂t −ΘN.
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Particularly, we have

|∇h|2 = −1 + Θ2,

where | | denotes the norm of a vector field on Σn.

In the following, we give the technical proposition that will be essential for the proofs of our

main results (for further details of the proof see Sections 4 and 8 in [10]).

Proposition 2.3 ([5]) Let φ : Σn → −I ×f M
n be a spacelike hypersurface with angle function

Θ and height function h = πI ◦ φ. Then the following formulas hold:

(a) Let σ(t) be a primitive of f(t). Then

Lk−1h =− (log f)′(h)(ck−1Hk−1 + ⟨Pk−1∇h,∇h⟩)−Θck−1Hk, (2.3)

Lk−1σ(h) =− ck−1(f
′(h)Hk−1 +Θf(h)Hk). (2.4)

(b) Let Θ̂ = f(h)Θ. Then

Lk−1Θ̂ =

(
n

k

)
f(h)⟨∇h,∇Hk⟩+ f ′(h)ck−1Hk+

Θ̂

(
n

k

)
(nH1Hk − (n− k)Hk+1)+

Θ̂

f2(h)

n∑
i=1

µk−1,iKM (N∗ ∧ E∗
i )|N∗ ∧ E∗

i |2−

Θ̂(log f)′′(h)(|∇h|2ck−1Hk−1 − ⟨Pk−1∇h,∇h⟩), (2.5)

where {Ei}ni=1 is an orthonormal frame on Σ and, for any vector field X in −I ×f Mn, we let

X∗ = πM∗X.

3. Height estimate for constant mean curvature hypersurfaces

In this section, we will use the results that we have discussed in the previous section to

state and prove our main result about the height estimate of spacelike hypersurfaces in GRW

spacetime −I×f M
n. We point out that, to prove this result we are not assuming that the mean

curvature of the spacelike hypersurface is constant.

Theorem 3.1 Let Σn be a compact spacelike hypersurface in a GRW spacetime −I ×f Mn

with H2 > 0. Assume that ∂Σ ⊂ {s} ×M for some s ∈ I. If either

(i) f ′(h) ≤ 0 and H2

H1
≤ infI(log f)

′ or

(ii) f ′(h) ≥ 0 and H2

H1
≥ supI(log f)

′

then h ≤ s.

Proof First, we prove part (i). Note that, in this case, H1 is a negative function and H2

H1
≤

infI(log f)
′ ≤ (log f)′(h). Applying (2.4) with k = 2, we then obtain

L1σ(h) = −c1(f
′(h)H1 +Θf(h)H2) = −c1f(h)H1((log f)

′(h) + Θ
H2

H1
) ≥ 0.

and we conclude by Lemma 2.1 that L1 is an elliptic operator. It follows then by the classical
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maximum principle for the elliptic operator L1 that σ(h) must attain its maximum on ∂Σ, that

is σ(h) ≤ σ(s). Since σ is an increasing function, this implies that h ≤ s.

For part (ii), observe that, in this case, H1 is a positive function and H2

H1
≥ supI(log f)

′ ≥
(log f)′(h). Hence

L1σ(h) = −c1(f
′(h)H1 +Θf(h)H2) = −c1f(h)H1((log f)

′(h) + Θ
H2

H1
) ≥ 0.

and we conclude again by the classical maximum principle for elliptic operator L1 that h must

attain its maximum on ∂Σ, that is h ≤ s. �
Now, let Rn+2

1 be the (n+2)-dimensional Lorentz-Minkowski space and consider the hyper-

quadric

Sn+1
1 = {p ∈ Rn+2

1 : ⟨p, p⟩ = 1}.

As known to all, the hyperquadric Sn+1
1 is the de Sitter space and its sectional curvature is 1. If

we choose a unit timelike vector a ∈ Rn+2
1 , then we consider on Sn+1

1 the closed conformal vector

field

Ta(p) = a− ⟨a, p⟩p, p ∈ Sn+1
1 , ⟨a, a⟩ = −1.

It is easy to see that Ta is a timelike vector field. So, we can denote the de Sitter space Sn+1
1 as

the warped product −I ×cosh t Sn, where Sn means the Riemannian unit sphere [13].

Particularly, if a is a null vector, the vector field Ta is timelike on the open set

{p ∈ Sn+1
1 : ⟨p, a⟩ ̸= 0}.

Let Hn+1 be the connected component of this set characterized by ⟨p, a⟩ > 0, which is called the

(n+1)-dimensional steady state spacetime. Moreover, as well-explained in [14], the steady state

spacetime is isometric to the GRW spacetime −I ×et M
n.

In the following, we consider spacelike hypersurfaces immersed in the de Sitter space Sn+1
1

and the steady state spacetime Hn+1, then from Theorem 3.1, we have:

Corollary 3.2 Let φ : Σn → Sn+1
1 be a compact spacelike hypersurface in the de Sitter space

Sn+1
1 with H2 > 0. Suppose that the boundary of Σn satisfies φ(∂Σ) ⊂ Sτ for some τ ∈ I. If

either

(i) h ≤ 0 and H2

H1
≤ infI(tanh)(h);

(ii) h ≥ 0 and H2

H1
≥ supI(tanh)(h)

then h ≤ τ .

Corollary 3.3 Let φ : Σn → Hn+1 be a compact spacelike hypersurface in the steady state

spacetime Hn+1 with H2 > 0. Assume that the boundary φ(∂Σ) ⊂ Mτ for some τ ∈ I. If
H2

H1
≥ 1, then h ≤ τ .

Recall that a spacetime obeys the null convergence condition (NCC) if its Ricci tensor is

non-negative on null (or lightlike) directions. It is not difficult to see that a GRW spacetime

−I ×f Mn obeys the NCC if and only if

RicM ≥ (n− 1) sup
I
(ff ′′ − f ′2)⟨, ⟩M (3.1)



Height estimates for spacelike hypersurfaces with constant k-mean curvature in GRW spacetimes 511

where RicM and ⟨, ⟩M are respectively the Ricci and metric tensors of Riemannian manifold Mn.

In the following, we state a lemma which will be essential for the proof of our main results

(see also [5] Proposition 7 for more detailed proof).

Lemma 3.4 ([5]) Let −I ×f Mn be a GRW spacetime which obeys the NCC. Assume that

Σn is a spacelike hypersurface of constant mean curvature in −I ×f Mn. Then the function

ϕ = H1σ(h) + Θ̂ is superharmonic.

By Theorem 3.1, Lemma 3.4 and the classical maximum principle, we have one of the main

theorem of this section.

Theorem 3.5 Let −I ×f Mn be a GRW spacetime obeying the NCC and Σn be a compact

spacelike hypersurface in −I ×f Mn with non-vanishing constant mean curvature satisfying

H2 > 0. Assume that ∂Σ ⊂ {s} ×Mn for some s ∈ I and that f is a monotone function on I.

(i) If f ′ ≥ 0 and H2

H1
≥ supI(log f)

′, then Σn ⊂ [s− α, s]×Mn where

α =

f(s)
f(minΣ h) max∂Σ(−Θ)− 1

H1
≥ 0.

(ii) If f ′ ≤ 0 and H2

H1
≤ infI(log f)

′ then Σn ⊂ [s− β, s]×Mn where

β =
max∂Σ(−Θ)− 1

H1
≥ 0.

Proof First, we prove (i). Applying Theorem 3.1, we have h ≤ s. Furthermore, by Lemma 3.4,

the function −ϕ = −H1σ(h)− Θ̂ is subharmonic. So it can attain its maximum on the ∂Σ, then

−H1σ(h) + f(h) ≤ −H1σ(h)− Θ̂ ≤ −H1σ(s) + f(s)max
∂Σ

(−Θ). (3.2)

Note that, for any t ≤ s,

σ(s)− σ(t) =

∫ t

s

f(υ)dυ ≥ inf
υ∈(t,s)

(f(υ))(s− t).

Therefore, when f ′ ≥ 0, for any x ∈ Σ, we have

H1f(h)(h− s) ≥ H1(σ(h)− σ(s)) ≥ f(h)− f(s)max
∂Σ

(−Θ).

Particularly,

H1(h− s) ≥ 1− f(s)

f(h)
max
∂Σ

(−Θ) ≥ 1− f(s)

f(minΣ h)
max
∂Σ

(−Θ). (3.3)

So, we prove the part (i) of the theorem.

As for part (ii), if f ′ ≤ 0, the discussion is similar to the above, we also have

H1f(s)(h− s) ≥ H1(σ(h)− σ(s)) ≥ f(h)− f(s)max
∂Σ

(−Θ) ≥ f(s)(1−max
∂Σ

(−Θ)).

Hence, we prove (ii). �
As a consequence of Theorem 3.5, we have the following results.

Corollary 3.6 Let φ : Σn → −R+ ×cosh t M
n be a compact spacelike hypersurface of constant
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mean curvature in de Sitter spacetime −R+ ×cosh t M
n with H2 > 0 and RicM ≥ n− 1. Assume

that φ(∂Σ) ⊂ Mτ for some τ ∈ I. If H2

H1
≥ supI(tanh), then Σn ⊂ [τ − α, τ ]×Mn where

α =

cosh(τ)
cosh(minΣ h) max∂Σ(−Θ)− 1

H1
≥ 0.

Corollary 3.7 Let φ : Σn → −R− ×cosh t M
n be a compact spacelike hypersurface of constant

mean curvature in de Sitter spacetime −R− ×cosh t M
n with H2 > 0 and RicM ≥ n− 1. Assume

that φ(∂Σ) ⊂ Mτ for some τ ∈ I. If H2

H1
≤ infI(tanh), then Σn ⊂ [τ − β, τ ]×Mn where

β =
max∂Σ(−Θ)− 1

H1
≥ 0.

Corollary 3.8 Let φ : Σn → −I ×et M
n be a compact spacelike hypersurface of constant

mean curvature in steady state spacetime −I ×et M
n with H2 > 0 and RicM ≥ 0. Assume that

φ(∂Σ) ⊂ Mτ for some τ ∈ I. If H2

H1
≥ 1, then Σn ⊂ [τ − α, τ ]×Mn where

α =
eτ−minΣ h max∂Σ(−Θ)− 1

H1
≥ 0.

Corollary 3.9 Let φ : Σn → −I ×Mn be a compact spacelike hypersurface of constant mean

curvature H1 ̸= 0 in the static spacetime −I × Mn with H2 > 0 and RicM ≥ 0. Assume that

φ(∂Σ) ⊂ Mτ for some τ ∈ I. Then Σn ⊂ [τ − α, τ ]×Mn where

α =
max∂Σ(−Θ)− 1

H1
≥ 0.

4. Height estimates of constant k-th mean curvatures

In this section, we generalize the estimates of previous section spacelike hypersurface of

constant k-th mean curvatures, 2 ≤ k ≤ n. In the following we give the version of Theorem 3.1

in the higher order mean curvature case.

Theorem 4.1 Let Σn be a compact spacelike hypersurface in a GRW spacetime −I ×f Mn

with positive k-th mean curvature for 2 ≤ k ≤ n. Assume that ∂Σ ⊂ {s} ×M for some s ∈ I

and that, if k ≥ 3, there exists an elliptic point p ∈ Σ. If either

(i) f ′(h) ≤ 0 or

(ii) f ′(h) ≥ 0 and Hk+1

Hk
≥ supI(log f)

′(h),

then h ≤ s.

Proof Firstly, if f ′(h) ≤ 0, since Hk > 0 for 2 ≤ k ≤ n, using (2.4), we have

Lkσ(h) = −ck(f
′(h)Hk +Θf(h)Hk+1) ≥ 0.

Furthermore, by Lemmas 2.1 and 2.2 that Lk−1 is an elliptic operator, then we can obtain the

conclusion by applying the classical maximum principle for elliptic operator Lk.

Finally, for part (ii), Hk+1

Hk
≥ supI(log f)

′ ≥ (log f)′(h). Hence we have

Lkσ(h) = −ck(f
′(h)Hk +Θf(h)Hk+1) = −ckf(h)Hk((log f)

′(h) + Θ
Hk+1

Hk
) ≥ 0,
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so the conclusion follows again by the maximum principle for the elliptic operator Lk. �
Now, we are ready to extend the Theorem 3.5 to the case of constant higher order mean

curvature spacelike hypersurfaces. Here, in order to do that we need to impose on −I ×f Mn

the following strong condition instead of the null convergence condition, that is

KM ≥ sup
I
(ff ′′ − f ′2) (4.1)

where KM is the sectional curvature of Mn. We will refer to (4.1) as the strong null convergence

condition (strong NCC).

Firstly, we state the following lemma which is very useful to prove our main results, and we

refer to [10] for the proof of the Lemma.

Lemma 4.2 ([10]) Let −I ×f Mn be a GRW spacetime obeying the strong NCC and let Σn

be a spacelike hypersurface in −I ×f Mn with positive constant k-th mean curvature Hk for

some 2 ≤ k ≤ n. Moreover, if k ≥ 3, assume that there exists an elliptic point on Σ. Let

ϕ = H
1/k
k σ(h) + Θ̂. If f ′(h) ≥ 0, then

Lk−1ϕ ≤ 0

on Σ.

Using Theorem 4.1 and Lemma 4.2, we can prove the following

Theorem 4.3 Let −I ×f Mn be a GRW spacetime obeying the strong NCC and with f is

non-decreasing function. Let Σn be a spacelike hypersurface in −I×f M
n with positive constant

k-th mean curvature satisfying Hk+1

Hk
≥ supI(log f)

′(h), for some 2 ≤ k ≤ n. Suppose that

∂Σ ⊂ {s} ×Mn for some s ∈ I and, if k ≥ 3, there exists an elliptic point on Σ. Then

Σn ⊂ [s− α, s]×Mn

where

α =

f(s)
f(minΣ h) max∂Σ(−Θ)− 1

H
1/k
k

≥ 0.

Proof Applying Theorem 4.1, we have h ≤ s. Moreover, by Lemma 4.2, the function ϕ is

subharmonic and Σ is compact, we can obtain the following by the classical maximum principle

for the elliptic operator Lk−1

−H
1/k
k σ(h)− Θ̂ ≤ −H

1/k
k σ(s) + f(s)max

∂Σ
(−Θ).

So

H
1/k
k (σ(h)− σ(s)) ≥ f(h)− f(s)max

∂Σ
(−Θ).

Therefore, we can obtain the conclusion reasoning as in Theorem 3.5. �
Considering the de Sitter space −R+ ×cosh t M

n, as a consequence of Theorem 4.3, we have

the following corollary.

Corollary 4.4 Let Σn be a compact spacelike hypersurface in de Sitter space −R+ ×cosh t M
n

satisfying KM ≥ 1. Suppose that Σ has constant k-th mean curvature Hk, 2 ≤ k ≤ n, obeying
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Hk+1

Hk
≥ supI(tanh)

′ and, if k ≥ 3, assume that there exists an elliptic point on Σ. Suppose that

∂Σ ⊂ {τ} ×Mn for some τ ∈ I. Then Σn ⊂ [τ − α, τ ]×Mn where

α =

cosh(τ)
cosh(minΣ h) max∂Σ(−Θ)− 1

H
1/k
k

≥ 0.

Considering the steady state space −I×etM
n and using Theorem 4.3, we have the following.

Corollary 4.5 Let Σn be a compact spacelike hypersurface in steady state spacetime −I×etM
n

with KM ≥ 0. Assume that Σ has constant k-th mean curvature Hk, 2 ≤ k ≤ n, satisfying
Hk+1

Hk
≥ 1 and, if k ≥ 3, assume that there exists an elliptic point on Σ. Suppose that ∂Σ ⊂

{τ} ×Mn for some τ ∈ I. Then Σn ⊂ [τ − α, τ ]×Mn where

α =
eτ−minΣ h max∂Σ(−Θ)− 1

H
1/k
k

≥ 0.

5. Half-space theorems of spacelike hypersurfaces

In this section, we will consider complete spacelike hypersurfaces in spatially closed GRW

spacetimes −I×fM
n, that is Riemannian fiber Mn is compact. First, we introduce the following

definition.

Definition 5.1 ([5]) Let Σ be a spacelike hypersurface in a GRW spacetime −I×f M
n. We say

that Σ lies in an upper or lower half-space if it is respectively contained in a region of −I ×f M
n

of the form

[τ,+∞)×Mn or (−∞, τ ]×Mn,

for some real number τ .

By the height estimates which are obtained in the above section, we have the following

Theorem 5.2 Let Σn be a complete spacelike hypersurface properly immersed in a spatially

closed GRW spacetime −I ×f Mn obeying the NCC and with monotone warping function.

Suppose that H2 > 0 and H1 ̸= 0. If either

(i) f ′(h) ≤ 0 and H2

H1
≤ infI(log f)

′ or

(ii) f ′(h) ≥ 0 and H2

H1
≥ supI(log f)

′

then Σ cannot lie in a lower half-space. Particularly, Σ must have at least one top end.

Proof Suppose that Σ lies in a lower half-space (−∞, τ ] ×Mn, τ ∈ I. For any s ∈ I, s < τ ,

denote by Σ+
s the hypersurface

Σ+
s = {(t, x) ∈ Σ|t ≥ s}.

Furthermore, since Mn is compact and the immersion is proper, then Σ+
s is a compact spacelike

hypersurface with boundary contained in Ms. By Theorem 3.1, we have the height function of

Σ+
s obeys h ≤ s, leading to a contradiction since s is arbitrary. So, we obtain the conclusion. �

Combining Theorem 5.2 and the conclusion in the previous section we can get the following
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Corollary 5.3 Let Σn be a complete spacelike hypersurface properly immersed in a spatially

closed de Sitter spacetime −R+×cosh tM
n with H2 > 0 and RicM ≥ n−1. If H2

H1
≥ supR+(tanh),

then Σ cannot lie in a lower half-space. Particularly, Σ must have at least one top end.

Corollary 5.4 Let Σn be a complete spacelike hypersurface properly immersed in a spatially

closed de Sitter spacetime −R−×cosh tM
n with H2 > 0 and RicM ≥ n−1. If H2

H1
≤ infR−(tanh),

then Σ cannot lie in a lower half-space. Particularly, Σ must have at least one top end.

Corollary 5.5 Let Σn be a complete spacelike hypersurface properly immersed in a spatially

closed steady state spacetime −I ×et M
n with H2 > 0 and RicM ≥ 0. If H2

H1
≥ 1, then Σ cannot

lie in a lower half-space. Particularly, Σ must have at least one top end.

By Theorem 3.5, we can extend Theorem 5.2 to the hypersurfaces of positive constant k-th

mean curvature.

Theorem 5.6 Let Σn be a complete spacelike hypersurface properly immersed in a spatially

closed GRW spacetime −I×fM
n obeying the strong NCC and with non-decreasing warping func-

tion. Suppose that Σn has positive constant k-th mean curvature satisfying Hk+1

Hk
≥ supI(log f)

′

for some 2 ≤ k ≤ n and that, if k ≥ 3, there exists an elliptic point on Σ. Then Σ cannot lie in

a lower half-space. In particular, Σ must have at least one top end.

Last, as an application of Theorem 5.6, we can have the following corollaries.

Corollary 5.7 Let Σn be a complete spacelike hypersurface properly immersed in a spatially

closed de Sitter space −R+ ×cosh t M
n satisfying KM ≥ 1. Suppose that Σ has constant k-th

mean curvature Hk, 2 ≤ k ≤ n, obeying Hk+1

Hk
≥ supR+(tanh)′ and, if k ≥ 3, there exists an

elliptic point on Σ. Then Σ cannot lie in a lower half-space. In particular, Σ must have at least

one top end.

Corollary 5.8 Let Σn be a complete spacelike hypersurface properly immersed in a spatially

closed steady state spacetime −I ×et M
n with KM ≥ 0. Assume that Σ has constant k-th mean

curvature Hk, 2 ≤ k ≤ n, satisfying Hk+1

Hk
≥ 1 and, if k ≥ 3, there exists an elliptic point on Σ.

Then Σ cannot lie in a lower half-space. In particular, Σ must have at least one top end.

6. Further half-space theorems for spacelike hypersurfaces

In this section, we will extend the previous theorems to the complete noncompact situation.

In order to do that, the main tool is a generalization of the Omori-Yau maximum principle for

trace type differential operators that we are introducing the next.

Let Σ be a Riemannian manifold and let L = Tr(P ◦hess) be a semi-elliptic operator, where

P : TΣ → TΣ is a positive semi-definite symmetric tensor. Following the terminology introduced

in [15], we say that the Omori-Yau maximum principle holds on Σ for the operator L if, for any

function u ∈ C2(Σ) with u∗ = supΣ u < +∞, there exists a sequence {pj}j∈N ⊂ Σ with the
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properties

(i) u(pj) > u∗ − 1

j
, (ii) ∥ ∇u(pj) ∥<

1

j
, (iii) Lu(pj) <

1

j

for every j ∈ N. Equivalently, for any function u ∈ C2(Σ) with u∗ = infΣ u > −∞, there exists

a sequence {pj}j∈N ⊂ Σ with the properties

(i) u(pj) < u∗ +
1

j
, (ii) ∥ ∇u(pj) ∥<

1

j
, (iii) Lu(pj) > −1

j

for every j ∈ N.
In the following, we state some useful facts obtained in [16], [17], and [5] where the validity

of the Omori-Yau maximum principle has been proved for the trace type differential operators.

Lemma 6.1 ([16]) Let (Σ, ⟨, ⟩) be a Riemannian manifold, and let L = Tr(P ◦ hess) be a semi-

elliptic operator, where P : TΣ → TΣ is a positive semi-definite symmetric tensor satisfying

supΣ TrP < +∞. Assume the existence of a non-negative C2 function γ with the properties

(1) γ(p) → +∞ as p → ∞,

(2) ∃A > 0 such that ∥ ∇γ ∥≤ A
√
γ outside a compact set,

(3) ∃B > 0 such that Lγ ≤ B
√
γG(

√
γ) outside a compact set,

where G is a smooth function on [0,+∞) such that:

(i) G(0) > 0,

(ii) G′(t) ≥ 0 on [0,+∞),

(iii) 1/
√
G(t) /∈ L1(+∞),

(iv) lim supt→∞
tG(

√
t)

G(t) < +∞,

then, the Omori-Yau maximum principle holds on Σ for the operator L.

Lemma 6.2 ([17]) Let (Σ, ⟨, ⟩) be a complete, noncompact Riemannian manifold with sectional

curvature bounded from below. Then, the Omori-Yau maximum principle holds on Σ for any

semi-elliptic operator L = Tr(P ◦ hess) with supΣ TrP < +∞.

Lemma 6.3 ([5]) Let −I×f M
n be a GRW spacetime satisfying the strong NCC. Let φ : Σn →

−I ×f Mn be a complete spacelike hypersurface contained in a slab with supΣ ∥ A ∥2< +∞
and infΣ

f ′′(h)
f(h) > −∞. Then the sectional curvature of Σ is bounded from below and the

Omori-Yau maximum principle holds on Σ for any semi-elliptic operator L = Tr(P ◦ hess) with
supΣ TrP < +∞.

Remark 6.4 ([16]) From the equality

∥ A ∥2= n2H2
1 − n(n− 1)H2

it follows that under the condition infΣ H2 > −∞, the assumption supΣ ∥ A ∥2< +∞ is equiva-

lent to supΣ |H1| < +∞.

With previous preparation we are ready to prove the main results.

Theorem 6.5 Let Σn be a complete spacelike hypersurface of constant mean curvature in a GRW

spacetime −I×fM
n which satisfies the strong NCC. Suppose that H2 > 0 and infΣ

f ′′(h)
f(h) > −∞.
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(i) If H2

H1
> supI(log f)

′, then Σ cannot lie in a lower half-space.

(ii) If H2

H1
< infI(log f)

′, then Σ cannot lie in an upper half-space.

Proof First we notice that the basic inequality H2
1 ≥ H2 > 0, it follows that we can orient

the hypersurface so that H1 > 0 on Σ. Now we define the operator L̂1 = Tr(P̂1 ◦ hess) with

P̂1 = ( 1
H1

)P1. Note that Tr(P̂1) = c1. So, by the Lemma 6.3 and Remark 6.4, we have the

Omori-Yau maximum principle holds on Σ for the operator L̂1.

In the following, let us prove part (i). Applying contradiction, we assume that Σ lies in a

lower half-space, that is, supΣ(h) := h∗ < +∞. By the definition of the operator L̂1, there exists

a sequence {pj}j∈N such that

(i) limj→∞ σ(h(pj)) = supΣ σ(h),

(ii) ∥ ∇σ(h)(pj) ∥= f(h(pj)) ∥ ∇h(pj) ∥< 1
j ,

(iii) L̂1σ(h)(pj) <
1
j .

Observe that condition (i) implies that limj→+∞ h(pj) = h∗, since σ(t) is strictly increasing.

Therefore by condition (ii) we obtain limj→+∞ ∥ ∇h(pj) ∥= 0, and limj→+∞ Θ(pj) = −1. Thus,

using

L̂1σ(h) = −c1(f
′(h) + Θf(h)

H2

H1
),

we have
1

j
> L̂1σ(h)(pj) = −c1f(h(pj))((log f)

′(h(pj)) + Θ(pj)
H2

H1
).

Letting j → +∞, we get

0 ≥ (
H2

H1
− (log f)′(h∗)).

So, we complete the proof of (i), since H2

H1
≤ (log f)′(h∗) ≤ supI(log f)

′, contradicting the initial

assumption on H2

H1
.

For the part (ii), we assume by contradiction that Σ lies in an upper half-space, that is,

infΣ(h) := h∗ > −∞. Again, we can find a sequence {qj}j∈N satisfying the following conditions

(i) limj→∞ σ(h(qj)) = infΣ σ(h),

(ii) ∥ ∇σ(h)(qj) ∥= f(h(qj)) ∥ ∇h(qj) ∥< 1
j ,

(iii) L̂1σ(h)(qj) > −1
j .

Hence

−1

j
< L̂1σ(h)(qj) = −c1f(h(qj))((log f)

′(h(qj)) + Θ(qj)
H2

H1
).

If j → +∞, adopting the similar arguments leads to a contradiction with the initial condition.

So, part (ii) is proved. �
By Theorem 6.5, we can have the following corollaries immediately.

Corollary 6.6 Let Σn be a complete spacelike hypersurface of constant mean curvature in a de

Sitter spacetime −I ×cosh t M
n with H2 > 0 and RicM ≥ n− 1.

(i) If H2

H1
> supI(tanh), then Σ cannot lie in a lower half-space.

(ii) If H2

H1
< infI(tanh), then Σ cannot lie in an upper half-space.
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Corollary 6.7 Let Σn be a complete spacelike hypersurface of constant mean curvature in a

steady state spacetime −I ×et M
n with H2 > 0 and RicM ≥ 0.

(i) If H2

H1
> 1, then Σ cannot lie in a lower half-space.

(ii) If H2

H1
< 1, then Σ cannot lie in an upper half-space.

The next results extend to the complete spacelike hypersurface of constant k-th mean cur-

vature in case 2 ≤ k ≤ n.

Theorem 6.8 Let Σn be a complete spacelike hypersurface of positive constant k-th mean cur-

vature for some 2 ≤ k ≤ n in a GRW spacetime −I ×f Mn which satisfies the strong NCC and

whose warping function is non-decreasing. Suppose that supΣ |H1| < +∞ and infΣ
f ′′(h)
f(h) > −∞.

Moreover, if k ≥ 3, there exists an elliptic point on Σ.

(i) If Hk+1

Hk
> supI(log f)

′, then Σ cannot lie in a lower half-space.

(ii) If Hk+1

Hk
< infI(log f)

′, then Σ cannot lie in an upper half-space.

Proof First, we observe that the existence of an elliptic point and Hk > 0 implies that Hi > 0

and the operators Pi are positive definite for all 1 ≤ i ≤ k − 1. Since Hk > 0, we consider

the operator L̂k = Tr(P̂k ◦ hess) with P̂k = ( 1
Hk

)Pk. Note that Tr(P̂k) = ck. Therefore, using

Lemma 6.3 and Remark 6.4, the Omori-Yau maximum principle holds on Σ for the operator L̂k.

We conclude then as in Theorem 6.5 with the aid of the equation

L̂kσ(h) = −ck(f
′(h) + Θf(h)

Hk+1

Hk
) = −ckf(h)((log f)

′ +Θ
Hk+1

Hk
). �

Finally, as an application of Theorem 6.8, we can straightforwardly have the following

corollaries about hypersurface of constant higher mean curvature in spacial spacetime.

Corollary 6.9 Let Σn be a complete spacelike hypersurface of positive constant k-th mean

curvature for 2 ≤ k ≤ n in a de Sitter space −R+ ×cosh t M
n satisfying KM ≥ 1. Suppose that

supΣ |H1| < +∞ and, if k ≥ 3, there exists an elliptic point on Σ.

(i) If Hk+1

Hk
> supR+(tanh)′, then Σ cannot lie in a lower half-space.

(ii) If Hk+1

Hk
< infR+(tanh)′, then Σ cannot lie in an upper half-space.

Corollary 6.10 Let Σn be a complete spacelike hypersurface of positive constant k-th mean

curvature for 2 ≤ k ≤ n in steady state spacetime −I ×et M
n with KM ≥ 0. Suppose that

supΣ |H1| < +∞ and, if k ≥ 3, there exists an elliptic point on Σ.

(i) If Hk+1

Hk
> 1, then Σ cannot lie in a lower half-space.

(ii) If Hk+1

Hk
< 1, then Σ cannot lie in an upper half-space.
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[16] L. J. ALÍAS, D. IMPERA, M. RIGOLI. Hypersurfaces of constant higher order mean curvature in warped

products. Trans. Amer. Math. Soc., 2013, 365(2): 591–621.
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