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Abstract We establish a relation between the number of semi-edge walks of a connected

graph and the number of walks of two auxiliary graphs. In addition, this relation gives upper

bounds on the signless Laplacian spectral radius of connected graphs and planar graphs.
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1. Introduction

Throughout this paper, all graphs are finite, connected and simple unless stated oth-

erwise. Let G = (V (G), E(G)) be a graph of order n with size m, where the vertex set

V (G) = {v1, v2, . . . , vn}. We denote NG(v) (or N(v) for short) as the set of neighbours of v

in G, and |NG(v)| as the degree of v. For i ∈ {1, 2, . . . , n}, let di = dG(vi) = |NG(vi)|. Moreover,

the maximum and minimum degrees of G are denoted by ∆ and δ, respectively. An edge with

identical ends is called a loop. Two or more edges with the same pair of ends are said to be

parallel edges. A linear k-forest is a graph whose components are paths of length at most k.

The linear k-arborocity of G, denoted by lak(G), is the least integer p such that E(G) can be

decomposed into p linear k-forests. All notations undefined in this article are referred to the

book [1].

Let A(G) (or simply A) be the adjacency matrix of G and D(G) = diag(d1, d2, . . . , dn) be

the diagonal matrix of vertex degrees. Matrix Q(G) = D(G) + A(G) (or simply Q) is called

the signless Laplacian matrix of G. Obviously, all the eigenvalues of A(G) and Q(G) are real

numbers since both of them are real symmetric matrices. Moreover, the largest eigenvalues of

A(G) and Q(G), denoted by λ1(G) and q1(G) (or simply λ1 and q1), are called the spectral

radius and the signless Laplacian spectral radius of G, respectively.

The following definitions facilitate the proof of our main results.

Definition 1.1 A walk of length k in a graph G (not necessarily simple) is an alternating
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sequence v1, e1, v2, e2, . . . , vk, ek, vk+1 of vertices v1, v2, . . . , vk, vk+1 and edges e1, e2, . . . , ek such

that for any i ∈ {1, 2, . . . , k} the vertices vi and vi+1 are end-vertices (not necessarily distinct)

of the edge ei.

Definition 1.2 Suppose e = uv is an edge of a simple graph. A semi-edge, denoted by uvu, is

a ‘walk’ that starts from u toward v along e up to the midpoint of uv and then returns back to

u.

Note that, for an edge uv, there are two semi-edges uvu and vuv.

Definition 1.3 A semi-edge walk of length k in a graph G is an alternating sequence v1,

e1, v2, e2, . . . , vk, ek, vk+1, where v1, v2, . . . , vk, vk+1 are vertices and e1, e2, . . . , ek are edges or

semi-edges such that for any i ∈ {1, 2, . . . , k} the vertices vi and vi+1 are end-vertices of ei.

It is well-known that the (i, j)-entry of the matrix Ak is the number of walks of length k

from vertex i to vertex j. Based on this property, the number of walks has been widely used to

study the spectral radius, the energy, the k-th spectral moment and other parameters (see [2–5]

for details). Similarly, we have the following theorem.

Theorem 1.4 ([6]) Let Q be the signless Laplacian matrix of a graph G. The (i, j)-entry of

the matrix Qk is equal to the number of semi-edge walks of length k starting at vertex i and

terminating at vertex j.

From this theorem, we can study some algebraic properties of a graph, such as signless

Laplacian spectral radius, by counting its number of semi-edge walks. In this paper, we obtain

a relation between the numbers of walks and semi-edge walks. Using this relation, we can study

the number of semi-edge walks by the number of walks since it has been well studied.

2. Main results

Before stating our main result, we need to construct two new graphs.

Let G be a connected graph. For each edge uv, we add two loops lu(v) and lv(u) incident

with u and v, respectively. The resulting graph is denoted by G1.

Remark 2.1 For each edge uv in G, the semi-edges uvu and vuv are corresponding to loops

lu(v) and lv(u) in G1, respectively. Clearly, this corresponding is a bijection between the set of

all semi-edges of G and the set of all loops in G1.

Let V (G) = {v1, v2, . . . , vn}. We duplicate G to get G′. The vertex in G′ corresponding to

vi is denoted by v′i. Consider the disjoint union graph G + G′. For each i ∈ {1, 2, . . . , n}, let
NG(vi) = {u1, . . . , udi}. We link vi and v′i with di parallel edges in G + G′ and denote these

edges by εvi(uj), for 1 ≤ j ≤ di, respectively. The resulting graph is denoted by G2.

Remark 2.2 Suppose viuj ∈ E(G). It associates a loop lvi(uj) incident to vi in G1. Then the

corresponding lvi(uj) 7→ εvi(uj) is a bijection from E(G1) \ E(G) onto E(G2) \ E(G+G′).

Remark 2.3 There are no edges in G2 incident with vi and v′j except i = j.
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Note that G1 and G2 are not simple, where G1 has loops and G2 has parallel edges. The

following figure shows the graphs that we have defined.
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Figure 1 Two constructions

The following theorem gives a relation between the semi-edge walks in G and the walks in

G1 and G2.

Theorem 2.4 Let G be a graph and let G1 and G2 be graphs constructed from G as above.

If we ignore the direction of all loops, then the number of semi-edge walks in G equals to the

number of walks in G1 and equals to half of the number of walks in G2.

Proof The first part of the theorem follows from Remark 2.1.

Let Si be the set of walks in Gi, i = 1, 2. Let W2 = x1e1x2 · · · ekxk+1 be a walk of length

k in G2. According to the definition, xj is either vj or v′j for some vj ∈ V (G), 1 ≤ j ≤ k + 1.

Define ϕ(W2) = v1g1v2 · · · gkvk+1, where

gj =

{
vjvj+1 if ej = vjvj+1 or ej = v′jv

′
j+1 is a link;

lvj (v) if ej = εvj (v) for some v ∈ V (G).

So ϕ(W2) ∈ S1. Clearly, ϕ : S2 → S1 is a mapping. We will show by induction on the length

of a walk that ϕ is a 2-to-1 surjection and hence we prove the second part of the theorem.

From the definition of ϕ, we have ϕ(WU) = ϕ(W )ϕ(U) if the end vertex of W is the initial

vertex of U .

SupposeW1 = v1g1v2 ∈ S1. LetW2 = x1e1x2 ∈ ϕ−1[W1] be the pre-image ofW1. According

to the definition of ϕ, xi ∈ {vi, v′i} for i = 1, 2. Suppose x1 = v1. If g1 is a link, then v1 ̸= v2

and hence g1 = v1v2 and x2 = v2 (by Remark 2.3). If g1 is a loop, then g1 = lv1(v) for some

v ∈ N(v1). Thus e1 = εv1(v) and x2 = v′1. Suppose x1 = v′1. If g1 is a link, then v1 ̸= v2

and hence g1 = v1v2 and x2 = v′2. If g1 is a loop, then g1 = lv1(v) for some v ∈ N(v1). Thus

e1 = εv1(v) and x2 = v1 and hence |ϕ−1[W1]| = 2.

Suppose |ϕ−1[W ]| = 2 for any walk W of length k − 1 in S1, where k ≥ 2.

Now suppose W1 = v1g1v2 · · · gk−1vkgkvk+1 ∈ S1. Let W2 = x1e1x2 · · · ek−1xkekxk+1 ∈
ϕ−1[W1]. Let U1 = v1g1v2 · · · gk−1vk and U2 = x1e1x2 · · · ek−1xk. Then ϕ(U2) = U1. That
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means, U2 ∈ ϕ−1[U1]. Now xk ∈ {vk, v′k} and xk+1 ∈ {vk+1, v
′
k+1}. Similar to the case when the

walk of length 1, xk+1 is determined uniquely. Therefore, according to the two choices of U1 we

obtain |ϕ−1[W1]| = 2. �

3. Some upper bounds on q1 of planar graphs

In this section, we provide some upper bounds on the signless Laplacian spectral radius of

connected graphs and planar graphs. The spectral radius of a matrix can be represented as a

limit of the matrix norms, which is presented as follows.

Lemma 3.1 ([7]) Let || · || be a matrix norm on Mn, the set of all n×n complex matrices. For

any M ∈ Mn, we have ρ(M) = limk→∞ ∥Mk∥1/k, where ρ(M) is the spectral radius of M .

This result holds for any matrix norm. Thus we can choose some particular norms to study

the signless Laplacian matrix of a graph. Here we use the l1-norm which is defined as

∥M∥1 =
n∑

i,j=1

|mij |,

where mij is the (i, j)-entry of M .

Note that the signless Laplacian matrix of a graph is a nonnegative matrix. Hence, taking

the matrix norm with l1-norm in Lemma 3.1, we have

Corollary 3.2 Let G be a graph of order n, Q be the signless Laplacian matrix of G and u be

the n-vector with all entries 1. Then

q1 = lim
k→∞

k√
uTQku.

Obviously, uTQku stands for the sum of all entries of Qk, which is the number of semi-edges

walks of length k in G by Theorem 1.4. Therefore, we obtain some bounds on q1 by estimating

the number of semi-edges walks of length k in G. We can use Theorem 2.4 to estimate the

number of semi-edges walks since the walks of a graph have been well studied.

Hayer gave an upper bound on the spectral radius by estimating the number of walks as

follows.

Lemma 3.3 ([8]) Let G be a graph with maximum degree ∆. If there is an orientation of G

such that the maximum out-degree ∆+ ≤ ∆/2, then λ1 ≤ 2
√

∆+(∆−∆+).

In his proof, he used the following result on the number of walks.

Lemma 3.4 ([8]) Let G be a graph of order n with maximum degree ∆. If there is an orientation

of G such that the maximum out-degree ∆+ ≤ ∆/2, then the number of walks of length k in G

is at most n2k(
√
∆+(∆−∆+))k.

Note that Lemma 3.4 holds for graphs with parallel edges but without loop. A similar result

about semi-edge walks can be obtained by Theorem 2.4.

Lemma 3.5 Let G be a (simple) graph of order n with maximum degree ∆. If there is an
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orientation of G such that the maximum out-degree ∆+ ≤ ∆/2, then the number of semi-edge

walks of length k is at most n2k(∆+ + ⌈∆
2 ⌉)

k
2 (∆ + ⌊∆

2 ⌋ −∆+)
k
2 .

Proof Let G2 be the graph constructed in Section 2 by adding some parallel edges to the disjoint

union of two copies of G. Suppose there is an orientation of G such that ∆+ ≤ ∆/2. Define an

orientation on G2 from the orientation on G: For any edge e = vivj in G, if its direction is from

vi to vj , then orient the edge vivj from vi to vj and the edge v′iv
′
j from v′i to v′j in G2. For the

dG(vi) parallel edges between vi and v′i in G2, we choose ⌈dG(vi)/2⌉ parallel edges arbitrarily

and orient them from vi to v′i while the other parallel edges from v′i to vi.

Under the above orientation of G2, it is easy to see that its maximum out-degree and

maximum degree are ∆+ + ⌈∆
2 ⌉ and 2∆, respectively. When ∆ is even,

∆+ + ⌈∆
2 ⌉ ≤

∆

2
+

∆

2
= ∆ =

1

2
× 2∆.

And when ∆ is odd, ∆+ ≤ ∆−1
2 as ∆+ is an integer. Hence

∆+ + ⌈∆
2 ⌉ ≤

∆− 1

2
+

∆+ 1

2
= ∆ =

1

2
× 2∆.

Therefore, by Lemma 3.4, the number of walks of length k in G2 is at most

2n · 2k(⌈∆
2 ⌉+∆+)

k
2 (2∆− (⌈∆

2 ⌉+∆+))
k
2 = 2n · 2k(⌈∆

2 ⌉+∆+)
k
2 (∆ + ⌊∆

2 ⌋ −∆+)
k
2 .

As a result, by Theorem 2.4, the number of semi-edge walks of length k in G is at most

n2k(⌈∆
2 ⌉+∆+)

k
2 (∆ + ⌊∆

2 ⌋ −∆+)
k
2 . �

From Corollary 3.2, we know that uTQku equals to the number of semi-edge walks of length

k in G. Combined with Lemma 3.5, we have

Theorem 3.6 Let G be a graph with maximum degree ∆. If there is an orientation such that

the maximum out-degree ∆+ ≤ ∆
2 , then

q1 ≤ 2
√
(⌈∆

2 ⌉+∆+)(∆ + ⌊∆
2 ⌋ −∆+). (3.1)

Remark 3.7 The bound in (3.1) is sharp. It is easy to show by induction that K2n+1 admits

an orientation such that ∆+ = n. Then q1 = 2
√
2n · 2n = 4n = 2∆.

Remark 3.8 Not every graph can admit an orientation such that ∆+ ≤ ∆
2 : Consider the

complete graph K2n, then

n(2n− 1) = |E(K2n)| =
2n∑
i=1

d+i ≤ 2n∆+.

Since ∆+ is an integer, ∆+ ≥ ⌈ 2n−1
2 ⌉ = n > ∆/2.

If G is a tree, then it admits an orientation with maximum out-degree 1 by using the depth-

first tree search and orienting each edge from child to parent. Hence we have

Corollary 3.9 Let T be a tree with maximum degree ∆ ≥ 2. Then

q1 ≤ 2
√

(⌈∆
2 ⌉+ 1)(∆ + ⌊∆

2 ⌋ − 1).
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For planar graphs, Gonçalves proved the following decomposition result.

Lemma 3.10 ([9]) If G is a planar graph, then E(G) = E(T1) ∪ E(T2) ∪ E(T3), where T1, T2

and T3 are forests and ∆(T3) ≤ 4.

Lemma 3.11 If G is a planar graph with the maximum degree ∆ ≥ 2, then

q1 ≤ 2
√

(⌈∆
2 ⌉+ 2)(∆ + ⌊∆

2 ⌋ − 2) + 2
√
15.

Proof If ∆ ≤ 3, then

q1 ≤ 2∆ ≤ 6 < 2
√
15 < 2

√
(⌈∆

2 ⌉+ 2)(∆ + ⌊∆
2 ⌋ − 2) + 2

√
15.

So we may assume ∆ ≥ 4. Let E(G) = E(T1)∪E(T2)∪E(T3) be the edge decomposition of G by

Lemma 3.10. Since T1 and T2 are forests, they admit an orientation with maximum out-degree 1,

respectively. Hence T1∪T2 has an orientation with maximum out-degree at most 2. By Theorem

3.6, each component C of T1 ∪ T2 has

q1(C) ≤ 2
√
(⌈∆

2 ⌉+ 2)(∆ + ⌊∆
2 ⌋ − 2).

Therefore,

q1(T1 ∪ T2) ≤ 2
√
(⌈∆

2 ⌉+ 2)(∆ + ⌊∆
2 ⌋ − 2).

Note that each component T of T3 is a tree with maximum degree at most 4. From Corollary

3.9, we have q1(T ) ≤ 2
√
15 and thus q1(T3) ≤ 2

√
15.

Obviously, Q(G) = Q(T1 ∪ T2) +Q(T3). Hence, by Weyl inequality [7], we have

q1 ≤ 2
√
(⌈∆

2 ⌉+ 2)(∆ + ⌊∆
2 ⌋ − 2) + 2

√
15. �

We now use the linear 2-arboricity to determine the signless Laplacian spectral radius of a

planar graph.

Lemma 3.12 Let G be a graph and la2(G) be its linear 2-arboricity. Then

q1(G) ≤ 3 · la2(G).

Proof Let E(G) = E(T1)∪· · ·∪E(Tla2(G)) be its edge decomposition, where Ti is a forest whose

components are paths of length at most 2 for i ∈ {1, . . . , la2(G)}. And for each component P

of Ti, we can easily obtain q1(P ) ≤ 3 as P is a path of length at most 2. Hence q1(Ti) ≤ 3 for

i ∈ {1, . . . , la2(G)}.
On the other hand, Q(G) = Q(T1) + · · ·+Q(Tla2(G)). Then by Weyl inequality, we have

q1(G) ≤ q1(T1) + · · ·+ q1(Tla2(G)) ≤ 3 · la2(G). �

Recently, Wang studied la2(G) for a planar graph and got the following upper bound on

la2(G).

Lemma 3.13 ([10]) If G is a planar graph with maximum degree ∆, then

la2(G) ≤ ⌈∆+1
2 ⌉+ 6.
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Combining these two lemmas, we have

Lemma 3.14 If G is a planar graph with maximum degree ∆, then

q1 ≤ 3⌈∆+1
2 ⌉+ 18.

Remark 3.15 We know that matrix L(G) = D(G)− A(G) is the Laplacian matrix of G. Let

In and On be the identity matrix and zero matrix of order n, respectively. Given a graph G of

order n, we construct G2 as in Section 2. Consider its adjacency matrix A(G2) and we have

det(λI2n −A(G2)) = det

(
λIn −A(G) −D(G)

−D(G) λIn −A(G)

)
= det

(
λIn − (A(G) +D(G)) λIn − (A(G) +D(G))

−D(G) λIn −A(G)

)
= det(λIn −Q(G)) det

(
In In

−D(G) λIn −A(G)

)
= det(λIn −Q(G)) det

(
In In
On λIn − (A(G)−D(G)

)
= det(λIn −Q(G)) det(λIn − (−L(G))).

As a result, we have

Theorem 3.16 Given a graph G, let G2 be constructed from G as in Section 2. Then the

spectrum of G2 is exactly the union of the signless Laplacian spectrum and the minus of the

Laplacian spectrum of G. In particular, q1(G) = λ1(G2) and µ1(G) = −λ2n(G2), where µ1(G)

is the Laplacian spectral radius of G and λ2n(G2) is the least eigenvalue of G2.
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