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Abstract Let R be a commutative ring and C a semidualizing R-module. We introduce the

notion of DC-projective dimension for homologically bounded below complexes and give some

characterizations of this dimension.
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1. Introduction

Over a commutative Noetherian ring, Foxby [1], Golod [2] and Vasconcelos [3] independently

initiated the study of semidualizing modules under different names, which provided a common

generalization of dualizing modules and free modules of rank one. By using these modules,

Golod [2] defined the GC-dimension, a refinement of projective dimension, for finitely generated

modules. When C = R, this recovers the G-dimension introduced by Auslander and Bridger

[4]. Motivated by Enochs and Jenda’s extensions in [5] of G-dimension, Holm and Jøgensen [6]

extended the GC-dimension to arbitrary modules over a commutative Noetherian ring (where

they used the name of C-Gorenstein projective dimension). Later, White [7] further extended

this concept to the non-Noetherian setting, named GC-projective dimension of modules, and she

showed that it shares many common properties with the Gorenstein projective dimension. As

a special case of Gorenstein projective modules, strongly Gorenstein flat modules were studied

in [8], and later in [9] under different name-the Ding projective modules. The relative versions

of Ding projective modules and Ding projective dimension of modules with respect to a semid-

ualizing module were investigated in [10–12]. In a different direction, homological dimensions

have been extended to complexes. Avramov and Foxby [13] defined projective, injective, and

flat dimensions for arbitrary complexes of left modules over associative rings. Over commuta-

tive local rings, Yassemi [14] and Christensen [15] introduced a Gorenstein projective dimension

for complexes with bounded below homology. Christensen, Frankild and Holm [16] gave a nice

functorial descriptions for the Gorenstein projective dimensions to homologically bounded below

complexes. The Gorenstein projective dimension of complexes with respect to a semidualizing

module over commutative rings were investigated in [17].
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Motivated by these works, in this paper, we introduce a concept of Ding projective dimension

with respect to a semidulizing module for homologically bounded below complexes, and give some

characterizations of this dimension. Our result extends [10, Theorem 2.4] and [11, Proposition

2.11] to the context of complexes.

Next we shall recall some notation and definitions which we need in the sequel. In order to

make things less technical, throughout this article, by a ring R, we always mean a commutative

ring with identity, all modules are unitary R-modules. We use C(R) to denote the category of

complexes of R-modules. To every complex

X : · · · // Xn+1

δXn+1 // Xn

δXn // Xn−1
// · · ·

in C(R), the nth cycle (resp., boundary, homology) of X is denoted by Zn(X) (resp., Bn(X),

Hn(X)), and we set Cn(X) = CokerδXn+1. Given an R-module M , we identify it with the

complex that all entries 0 except M in degree 0. Given an X ∈ C(R) and an integer m, then

ΣmX denotes the complex X shifted m degrees (to the left); it is given by (ΣmX)n = Xn−m

and whose boundary operators are (−1)mδXn−m. The supremum and infimum of X capture its

homological position; they are defined as follows

supX = sup{s ∈ Z | Hs(X) ̸= 0}, and infX = inf{s ∈ Z | Hs(X) ̸= 0}.

For every R-complex X, the underlying graded module X♮ is an R-complex with zero-differential,

so one has

supX♮ = sup{s ∈ Z | Xs ̸= 0}, and infX♮ = inf{s ∈ Z | Xs ̸= 0}.

Let α : X // Y be a morphism of R-complexes. The mapping cone Cone(α) of α is the complex

with Cone(α)n = Yn ⊕Xn−1 and differential

δCone(α)
n (yn, xn−1) = (δYn (yn) + αn−1(xn−1),−δXn−1(xn−1)).

GivenX,Y ∈ C(R), HomR(X,Y ) denotes the complex with HomR(X,Y )n =
∏

t∈Z HomR(Xt, Yn+t),

and with differential given by

δn ((ft)t∈Z) =
(
δYn+tft − (−1)nft−1δ

X
t

)
t∈Z .

A quasi-isomorphism ϕ : X // Y, denoted by ϕ : X
≃ // Y is a morphism such that the in-

duced map Hn(ϕ) : Hn(X) // Hn(Y ) is an isomorphism for all n ∈ Z. The complexes X and

Y are equivalent and denoted by X ≃ Y [15, A.1.11], if they can be linked by a sequence of

quasi-isomorphisms with arrows in the alternating directions. Let X ∈ C(R), and let s, t ∈ Z.
The hard truncation above, X6s, of X at s, and the hard truncation below, X>t, of X at t are

given by:

X6s : 0 // Xs

δXs // Xs−1

δXs−1 // Xs−2
// · · ·

and

X>t : · · · // Xt+2

δXt+2 // Xt+1

δXt+1 // Xt
// 0.



DC-projective dimension of complexes 537

The soft truncation above, X⊂s, of X at s and the soft truncation below, X⊃t, of X at t are

given by

X⊂s : 0 // Cs(X)
δXs // Xs−1

δXs−1 // Xs−2
// · · ·

and

X⊃t : · · · // Xt+2

δXt+2 // Xt+1

δXt+1 // Zt(X) // 0.

We use subscripts @,A,� to denote boundedness conditions and (@), (A), (�) to denote

homological boundedness conditions. For example, CA(R) is the full subcategory of C(R) of

bounded below complexes, and C(A)(R) is the full subcategory of C(R) of homologically bounded

below complexes. For a class L of R-modules, CL(R) denotes the full subcategories of C(R) with
modules in L.

We will use C to denote an arbitrary but fixed semidualizing R-module [7, 1.8], i.e., the

follow three conditions are satisfied:

(1) C admits a degreewise finite projective resolution.

(2) the natural homothety map χR
C : R // HomR(C,C) is an isomorphism.

(3) Ext≥1
R (C,C)=0.

Recall from [7,18] that the R-modules in the following classes

PC = {C ⊗ P |P is a projective R-module},
FC = {C ⊗ F |F is a flat R-module}

are called C-projective and C-flat, respectively. When C = R, we omit the subscript and recover

the classes of projective and flat R-modules.

Let L be a class of R-modules. Recall that a complex X of R-modules is HomR(−,L)-exact
if the complex HomR(X,L) is exact for any L ∈ L.

Definition 1.1 ([10,11]) An R-moduleM is called DC-projective if there exists a HomR(−,FC)-

exact exact complex X of R-modules with Xi ∈ P for all i ≥ 0 and Xi ∈ PC for all i < 0 such

that M ∼= ImδX0 .

The class ofDC-projective R-modules denoted by DCP. Putting C = R, thenDC-projective

modules are just Ding projective modules [8,9], and we denote it by DP.

2. Main results

According to [15, A.3.1], a projective resolution of a complex X ∈ C(A)(R) is a quasi-

isomorphism P
≃ // X where P ∈ CP

A(R). By [15, A.3.2], every complex X ∈ C(A)(R) has a

projective resolution P
≃ // X with Pl = 0 for l < infX. Thus, for every X ∈ C(A)(R), there

exists a quasi-isomorphism D
≃ // X with D ∈ CDCP

A (R) by [10, Proposition 1.8]. Hence we

have

Definition 2.1 The DC-projective dimension of X ∈ C(A)(R), denoted by DC-pdRX, is defined
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as

DC-pdRX = inf{sup{i ∈ Z | Di ̸= 0} | X ≃ D ∈ CDCP
A (R)}.

In order to characterize the DC-projective dimension of complexes, we need the following

preparations.

Lemma 2.2 If D ∈ CDCP
A (R) is exact and F ∈ CFC

� (R), then the complex HomR(D,F ) is exact.

Proof We can assume that F is nonzero and that supF ♮ = n. We proceed by induction on n.

Without loss of generality, we may assume that Di = 0 and Fi = 0 for i < 0.

If n = 0, then F is a C-flat module, and so ExtiR(Dj , F ) = 0 for all i > 0 and j ∈ Z by [10,

Proposition 1.4]. Since D is exact and Ci(D) = 0 for all i ≤ 0, it follows by [15, Lemma 4.1.1(c)]

that Ext1R(Ci(D), F ) = Exti+1
R (C0(D), F ) = 0 for all i > 0. Thus HomR(D,F ) is exact again by

[15, Lemma 4.1.1(c)].

Let n > 0 and assume that HomR(D, F̃ ) is exact for all F̃ ∈ CFC

� (R) concentrated in at

most n− 1 degrees. Consider the degreewise split exact sequence

0 // F6n−1
// F // ∑n

Fn
// 0.

It remains exact after the application of HomR(D,−), so HomR(D,F ) is exact since HomR(D,Fn)

and HomR(D,F6n−1) are exact by the induction base and hypothesis, respectively. �

Lemma 2.3 If X ≃ D ∈ CDCP
A (R) and U ≃ F ∈ CFC

� (R), then RHomR(X,U) can be represent-

ed by HomR(D,F ).

Proof Let P ∈ CP
A(R) be a projective resolution of X, then RHomR(X,U) is represented

by HomR(P, F ). Since P ≃ X ≃ D, there exists a quasi-isomorphism α : P
≃ // D by [15,

A.3.6], and hence we have a morphism HomR(α, F ) : HomR(D,F ) // HomR(P, F ) . Since

Cone(α) is exact by [15, A.1.19] and it belongs to CDCP
A (R) by [10, Proposition 1.8], we conclude

from the isomomorphism Cone(HomR(α, F )) ∼= Σ1HomR(Cone(α), F ) that Cone(HomR(α, F ))

is exact by Lemma 2.2 and, hence HomR(α, F ) is a quasi-isomorphism by [15, A.1.19]. Thus,

HomR(P, F ) ≃ HomR(D,F ). This implies that RHomR(X,U) is represented by HomR(D,F ).

�

Lemma 2.4 Let W be a C-flat R-module and X ∈ C(�)(R). If X ≃ D ∈ CDCP
A (R) and

supX ≤ n, then ExtmR (Cn(D),W ) = H−(m+n)(RHomR(X,W )) for any m > 0.

Proof Since supD = supX ≤ n, D>n ≃ ΣnCn(D) by [15, A.1.14.3], so RHomR(Cn(D),W ) is

represented by HomR(Σ
−nD>n,W ) by Lemma 2.3. Thus for any m > 0, by [15, A.2.1.3, A.1.3.1

and A.1.20.2], we have

ExtmR (Cn(D),W ) = H−m(RHomR(Cn(D),W )) = H−m(HomR(Σ
−nD>n,W ))

= H−m(ΣnHomR(D>n,W )) = H−(m+n)(HomR(D>n,W ))

= H−(m+n)(HomR(D,W )6−n) = H−(m+n)(HomR(D,W )).
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By Lemma 2.3, RHomR(X,W ) is represented by HomR(D,W ), so

ExtmR (Cn(D),W ) = H−(m+n)(RHomR(X,W ))

as desired. �

Lemma 2.5 IfD ∈ CDCP
A (R), U, V ∈ CFC@ (R) and U

≃ // V, then HomR(D,U)
≃ // HomR(D,V ).

Proof Let A be a DC-projective module and · · · // P1
// P0

// A // 0 a projec-

tive resolution of A. Then for any C-flat module W , the sequence

0 // HomR(A,W ) // HomR(P0,W ) // HomR(P1,W ) // · · ·

is exact. Thus we have a quasi-isomorphism HomR(A,W )
≃ // HomR(P,W ), where P is the

complex · · · // P1
// P0

// 0. Now [16, 2.7(a)] yields quasi-isomorphisms

HomR(A,U)
≃ // HomR(P,U) and HomR(A, V )

≃ // HomR(P, V ).

From the following commutative diagram

HomR(A,U) //

��

HomR(P,U)

��
HomR(A, V ) // HomR(P, V )

and the fact that HomR(P,−) preserves quasi-isomorphism it follows that

HomR(A,U)
≃ // HomR(A, V ),

and so HomR(D,U)
≃ // HomR(D,V ) by [16, 2.6(a)]. �

Now, we can achieve some characterizations of the DC-projective dimension of complexes.

Theorem 2.6 Let X ∈ C(A)(R) be a complex of finite DC-projective dimension and n ∈ Z,
then the following conditions are equivalent:

(1) X is equivalent to a bounded complex D of DC-projective R-modules with supD♮ ≤ n,

and D can be chosen such that Di = 0 for i < infX.

(2) DC-pdRX ≤ n.

(3) inf U − infRHomR(X,U) ≤ n for all 0 ̸≃ U ∈ CFC

� (R).

(4) − infRHomR(X,W ) ≤ n for all C-flat R-modules W .

(5) supX ≤ n and the module Cn(D) isDC-projective wheneverD ∈ CDCP
A (R) is equivalent

to X.

Proof (1)⇒(2) and (3)⇒(4) are clear.

(2)⇒(3) Since DC-pdRX ≤ n, there exists a complex D ∈ CDCP
A (R) such that X ≃ D and

Dk = 0 for k > n. Let 0 ̸≃ U ∈ CFC

� (R) and inf U = i. Then by Lemma 2.3, RHomR(X,U) can

be represented by HomR(D,U). Set inf U ♮ = l. Then U⊃i
≃−→ U by [15, A.1.14.4] and there is
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an exact sequence of R-modules

0 // Zi(U) // Ui
// · · · // Ul

// 0.

Since FC is projective resolving [18, Corollary 6.4 and Proposition 3.1], Zi(U) ∈ FC . Thus

U⊃i ∈ CFC@ (R). Hence HomR(D,U⊃i)
≃ // HomR(D,U) by Lemma 2.5. So HomR(D,U⊃i)

also representsRHomR(X,U). In particular, infRHomR(X,U) = inf HomR(D,U⊃i). For l < i−
n and p ∈ Z, either p > n or p+l ≤ n+l < i, so HomR(D,U⊃i)l =

∏
p∈Z HomR(Dp, (U⊃i)p+l) = 0.

Thus Hl(HomR(D,U)) = 0 for all l < i − n, and so infRHomR(X,U) ≥ i − n = inf U − n as

desired.

(4)⇒(5) We first prove that supX ≤ n. By the hypothesis, we assume that DC-pdRX =

m < ∞. Then there exists a D ∈ CDCP
A (R) such that X ≃ D and Di = 0 for all i > m. Set

s = supX. Then s ≤ m. If s = m, then the differential δDm : Dm −→ Dm−1 is not injective

since supD = supX = m. Since Dm is a DC-projective module, there exists a C-projective

module W and an injective homomorphism φ : Dm −→ W . Because δDm is not injective, the

differential HomR(δ
D
m,W ) is not surjective, otherwise φ = ψδDm for some ψ ∈ HomR(Dm−1,W ),

and so δDm is injective, a contradiction. Thus − inf HomR(D,W ) = m = supX. Hence supX =

− infRHomR(X,W ) ≤ n by Lemma 2.3 and (4). Now assume that s < m. If s > n, then by

Lemma 2.4 and (4), we have

ExtiR(Cs(D),W ) = H−(i+s)(RHomR(X,W )) = 0

for any i > 0 and any C-flat module W . So by the exact sequence

0 // Dm
// Dm−1

// · · · // Ds+1
// Ds

// Cs(D) // 0

and [10, Corollary 1.15] we deduced that Cs(D) is DC-projective. Hence D⊂s ∈ CDCP
� (R). By

[15, A.1.14.2], D ≃ D⊂s. Thus X ≃ D⊂s, and so DC-pdRX ≤ s < m, a contradiction. Therefore

supX = s ≤ n.

Next we show that Cn(D) is DC-projective whenever D ∈ CDCP
A (R) is equivalent to X. By

the hypothesis, DC-pdRX <∞, so there exists an A ∈ CDCP
� (R) such that X ≃ A. Assume that

supA♮ = t. Then there is an exact sequence

0 // At
// · · · // An+1

// An
// Cn(A) // 0

since supA = supX ≤ n. By Lemma 2.4 and (4), ExtiR(Cn(A),W ) = H−(i+n)(RHomR(X,W )) =

0 for any C-flat module W and any i > 0. Thus Cn(A) is DC-projective by [10, Corollary 1.15].

To prove the assertion it is now sufficient to see that: if P ∈ CP
A(R), D ∈ CDCP

A (R), and

P ≃ X ≃ D, then the cokernel Cn(P ) is DC-projective if and only if Cn(D) is so.

Let D and P be two such complexes. Then there is a quasi-isomorphism π : P
≃ // D by

[15, A.3.6], which induces a quasi-isomorphism π⊂n : P⊂n
≃ // D⊂n. The mapping cone

Cone(π⊂n) : 0 // Cn(P ) // Pn−1 ⊕ Cn(D) // Pn−2 ⊕Dn−1
// · · ·

is a bounded exact complex, in which all modules but the two left-most ones are DC-projective

modules by [10, Propositions 1.8 and 1.11]. It follows by [10, Proposition 1.12] that Cn(P ) is
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DC-projective if and only if Pn−1 ⊕ Cn(D) is DC-projective if and only if Cn(D) is so.

(5) ⇒ (1) Let P ∈ CP
A(R) be a projective resolution of X with Pl < 0 for l < infX

([15, A.3.2]). Then P ∈ CDCP
A (R) by [10, Propositon 1.8] and supP = supX ≤ n. Thus

X ≃ P⊂n ∈ CDCP
� (R) as Cn(P ) is DC-projective. �

If we choose C = R in Definition 2.1, then we have a notion of Ding projective dimension

for X ∈ C(A)(R), and we denote it by DpdRX. By Theorem 2.6, we get

Corollary 2.7 Let X ∈ C(A)(R) be a complex of finite Ding projective dimension and n ∈ Z,
then the following conditions are equivalent:

(1) X is equivalent to a bounded complex D of Ding projective R-modules with supD♮ ≤ n,

and D can be chosen such that Di = 0 for i < infX.

(2) DpdRX ≤ n.

(3) inf U − infRHomR(X,U) ≤ n for all 0 ̸≃ U ∈ CF
�(R).

(4) − infRHomR(X,W ) ≤ n for all flat R-modules W .

(5) supX ≤ n and the module Cn(D) is Ding projective wheneverD ∈ CDP
A (R) is equivalent

to X.

Lemma 2.8 Let M be an R-module. If M ≃ D ∈ CDCP
A (R), then

D⊃0 : · · · // D2
// D1

// Z0(D) // 0

is a DC-projective resolution of M .

Proof Suppose thatM ≃ D ∈ CDCP
A (R), thenM ≃ D⊃0 by [15, A.1.14.4] since infD = infM =

0, and so we have an exact sequence of R-modules

· · · // D2
// D1

// Z0(D) // M // 0.

Set infD♮ = i, and consider the exact sequence

0 // Z0(D) // D0
// · · · // Di+1

// Di
// 0.

The modules D0, . . . , Di are all DC-projective, and so is Z0(D) by the projective resolving prop-

erties of DC-projective modules [10, Theorem 1.12]. Hence D⊃0 is a DC-projective resolution of

M . �

Corollary 2.9 ([11, Proposition 2.11; 10, Theorem 2.4]) Let M be an R-module with finite

DC-projective dimension and n ∈ Z, then the following conditions are equivalent:

(1) DC-pdRM ≤ n.

(2) ExtiR(M,N) = 0 for all i > n and all R-module N with finite C-flat dimension.

(3) ExtiR(M,N) = 0 for all i > n and all C-flat R-modules N .

(4) For any DC-projective resolution

· · · // D2
// D1

// D0
// M // 0

of M , the Kernel Kn = ker( Dn−1
// Dn−2 ) is a DC-projective module.
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Proof It follows from Theorem 2.6 and Lemma 2.8. �
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