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1. Introduction

Many uncertainty principles have already been proved for the Fourier transform: Heisenberg-

Pauli-Weyl inequality [1–3], Cowling-Price’s inequality [2], local uncertainty inequality [4–6],

Donoho-Stark’s inequality [7], Benedicks inequality [8] and Matolcsi-Szücs inequality [9]. Laeng-

Morpurgo [10] and Morpurgo [11] obtained Heisenberg inequality involving a combination of L1-

norms and L2-norms. Folland-Sitaram [12], next Nemri-Soltani [13–15] proved a general forms

of the Heisenberg-Pauli-Weyl inequality and the Donoho-Stark’s inequality. And one expects

that the results in this work will be useful when discussing the uncertainty principles for the

Segal-Bargmann transform.

Let H(C) denote the space of entire functions on C, and L2(Ω), the space of measurable

functions f on C satisfying

∥f∥2L2(Ω) :=

∫
C
|f(z)|2dΩ(z) < ∞,

where z = x+ iy and dΩ(z) := e−|z|2

π dxdy.

The Fock space F (C) (called also Segal-Bargmann space [16]) is the space of functions in

H(C) ∩ L2(Ω), equipped with the norm ∥f∥F (C) := ∥f∥L2(Ω). This space was introduced by

Bargmann in [17] and it was the tool of many works [16,18,19]. Some uncertainty principles have

already been proved on the Segal-Bargmann space F (C) by Kehe Zhu in his paper [20].

Let L2(µ) be the space of measurable functions on R, for which

∥f∥2L2(µ) :=

∫
R
|f(z)|2dµ(z) < ∞,
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where dµ(z) := 1√
2π

dz. The Segal-Bargmann transform B is defined on L2(µ) by

B(f)(w) := 21/4
∫
R
exp

(
− w2 + z2

2
+
√
2wz

)
f(z)dµ(z), w ∈ C.

This transform (see [17]) is an isometric isomorphism of L2(µ) onto F (C) and has a pointwise

inversion formula. Next, it is the background of some applications in this work; especially,

we give Heisenberg-Pauli-Weyl uncertainty principle, Donoho-Stark uncertainty principle and

Matolcsi-Szücs uncertainty principle for the Segal-Bargmann transform B.

Building on the ideas of Faris [4] and Price [5,6] for the Fourier transform, we show a local

uncertainty principle for the Segal-Bargmann transform B. More precisely, we will show the

following result. Let W be a measurable subset of C such that 0 < m(W ) < ∞, and a > 0. If

f ∈ L2(µ), then

∥χWB(f)∥L2(Ω) ≤


K1(a)(m(W ))a∥ |x|af∥L2(µ), a ∈ (0, 1

2 ),

K2(a)(m(W ))1/2∥f∥1−
1
2a

L2(µ)∥ |x|
af∥

1
2a

L2(µ), a > 1/2,

2K1(
1
4 )(m(W ))1/4∥f∥1/2L2(µ)∥ |x|

1/2f∥1/2L2(µ), a = 1/2,

where χW is the characteristic function of the set W , dm(z) := 1
πdxdy and K1(a), K2(a) are

positive constants given explicitly by Theorem 3.1. We shall use the local uncertainty principle for

the Segal-Bargmann transform B to show for it the following Heisenberg-Pauli-Weyl uncertainty

principle

∥f∥L2(µ) ≤ K(a, b)∥ |x|af∥
b

2a+b

L2(µ)∥ |w|
bB(f)∥

2a
2a+b

L2(Ω), a, b > 0,

where K(a, b) is a positive constant given explicitly by Theorem 3.3. Next, by using Clarkson-

type inequality and Nash-type inequality for the Segal-Bargmann transform B we establish for

it Heisenberg uncertainty principle involving L1(µ) and L2(µ)-norms.

Finally, based on the techniques of Donoho-Stark [7], we will show uncertainty principles of

concentration-type on L2(µ) and on L1∩L2(µ) for the Segal-Bargmann transform B. And based

on the ideas of Ghobber-Jaming [21] we deduce uncertainty principle of Matolcsi-Szücs-type

involving L1(µ) and L2(µ)-norms for the Segal-Bargmann transform B.

The contents of the paper are as follows. In Section 2, we recall some properties of the Fock

space F (C) and the Segal-Bargmann transform B. In Section 3, we establish local uncertainty

principle and Heisenberg-Pauli-Weyl uncertainty principle for the Segal-Bargmann transform B.

In Section 4, we show Heisenberg uncertainty principle involving L1(µ) and L2(µ)-norms for the

Segal-Bargmann transform B. The last section is devoted to present Donoho-Stark uncertainty

principle and Matolcsi-Szücs uncertainty principle for the Segal-Bargmann transform B.

2. Segal-Bargmann transform

We denote by

• H(C) the space of entire functions on C.
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• dΩ(z), the measure defined on C, by

dΩ(z) :=
e−|z|2

π
dxdy, z = x+ iy.

• Lq(Ω), 1 ≤ q < ∞, the space of measurable functions f on C satisfying

∥f∥Lq(Ω) :=
[ ∫

C
|f(z)|qdΩ(z)

]1/q
< ∞.

We define the pre Hilbert space F (C), to be the space of functions inH(C)∩L2(Ω), equipped

with the inner product

⟨f, g⟩F (C) :=

∫
C
f(z)g(z)dΩ(z),

and the squared norm

∥f∥2F (C) :=

∫
C
|f(z)|2dΩ(z).

The following properties are proved in [17].

(a) If f, g ∈ F (C) with f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n, then

⟨f, g⟩F (C) =

∞∑
n=0

anbn n!.

(b) The function K given for w, z ∈ C, by

K(w, z) = ewz,

is the reproducing kernel for the Fock space F (C), that is,
(i) for every w ∈ C, the function z → K(w, z) belongs to F (C);
(ii) for all w ∈ C and f ∈ F (C), we have

⟨f,K(w, .)⟩F (C) = f(w).

(c) If f ∈ F (C), then
|f(w)| ≤ e|w|2/2∥f∥F (C), w ∈ C.

(d) The space F (C) equipped with the inner product ⟨., .⟩F (C) is a Hilbert space; and the

set { wn
√
n!
}n∈N forms a Hilbertian basis for the space F (C).

We denote by

• Lp(µ), 1 ≤ p < ∞, the space of measurable functions on R, for which

∥f∥Lp(µ) :=
[ ∫

R
|f(z)|pdµ(z)

]1/p
< ∞.

Here, µ is the measure defined on R by

dµ(z) :=
1√
2π

dz.

• U the kernel given for w ∈ C and z ∈ R, by

U(w, z) := 21/4 exp(−w2 + z2

2
+
√
2wz).

The kernel U satisfies the following properties [17].
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(a) For w ∈ C and z ∈ R, we have

|U(w, z)| ≤ 21/4e|w|2/2. (2.1)

(b) For w ∈ C and z ∈ R, we have

U(w, z) =
∞∑

n=0

hn(z)√
n!

wn,

where hn are the Hermite functions given by

hn(z) := 21/4(2−nn!)1/2e−z2/2

⌊n/2⌋∑
k=0

(−1)k

k! (n− 2k)!
(2z)n−2k,

with ⌊n/2⌋ being the integer part of n/2.

(c) For all v, w ∈ C, we have

evw =

∫
R
U(v, z)U(w, z)dµ(z).

(d) For all w ∈ C, the function z → U(w, z) ∈ L2(µ), and

∥U(w, .)∥2L2(µ) = e|w|2 . (2.2)

The kernel U gives rise to an integral transform B, which is called the Segal-Bargmann

transform on C, and defined for f in L2(µ), by

B(f)(w) :=

∫
R
U(w, z)f(z)dµ(z), w ∈ C.

From relations (2.1) and (2.2) the Segal-Bargmann transform satisfies the following proper-

ties.

Theorem 2.1 (i) For f ∈ L1(µ) and w ∈ C we have

|B(f)(w)| ≤ 21/4e|w|2/2∥f∥L1(µ).

(ii) For f ∈ L2(µ) and w ∈ C we have

|B(f)(w)| ≤ e|w|2/2∥f∥L2(µ).

The following theorem is proved in [17].

Theorem 2.2 The Segal-Bargmann transform B is an isometric isomorphism of L2(µ) onto

F (C). In particular, we have

∥B(f)∥F (C) = ∥f∥L2(µ), f ∈ L2(µ).

Let β denote the family of entire functions g such that

sup
w∈C

{
|g(w)| exp(−|w|2

4
+ λ|w|)

}
< ∞,

for every λ > 0. Since { wn
√
n!
}n∈N ⊂ β, the family β is dense in F (C). The family β simplifies the

presentation of the inverse operator B−1 (see [17]).
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Theorem 2.3 (i) If g ∈ β, we have

B−1(g)(z) =

∫
C
g(w)U(w, z)e−|w|2dm(w), z ∈ R.

(ii) If g ∈ F (C) and z ∈ R, we have

B−1(g)(z) = lim
n→∞

∫
C
gn(w)U(w, z)e−|w|2dm(w), in L2(µ)-sense,

where the sequence {gn} ⊂ β and converges to g in F (C).

3. Heisenberg uncertainty principle

In this section we begin by establishing local uncertainty principle for the Segal-Bargmann

transform B, more precisely we will show the following theorem.

Theorem 3.1 Let W be a measurable subset of C such that 0 < m(W ) < ∞, and a > 0. If

f ∈ L2(µ), then

∥χWB(f)∥L2(Ω) ≤


K1(a)(m(W ))a∥ |x|af∥L2(µ), a ∈ (0, 1

2 ),

K2(a)(m(W ))1/2∥f∥1−
1
2a

L2(µ)∥ |x|
af∥

1
2a

L2(µ), a > 1/2,

2K1(
1
4 )(m(W ))1/4∥f∥1/2L2(µ)∥ |x|

1/2f∥1/2L2(µ), a = 1/2,

where

K1(a) =
(1− 2a)a−1

2aπa/2a2a
, K2(a) =

(4π)1/4(2a− 1)
1−2a
4a√

sin( π
2a )

.

Proof (i) Let f ∈ L2(µ). The first inequality holds if ∥ |x|af∥L2(µ) = ∞. Assume that

∥ |x|af∥L2(µ) < ∞. By Minkowski’s inequality, for all r > 0,

∥χWB(f)∥L2(Ω) ≤ ∥χWB(fχ|x|<r)∥L2(Ω) + ∥χWB(fχ|x|>r)∥L2(Ω)

≤ ∥χWB(fχ|x|<r)∥L2(Ω) + ∥B(fχ|x|>r)∥F (C).

But

∥χWB(fχ|x|<r)∥L2(Ω)) =
(∫

W

|B(fχ|x|<r)(w)|2dΩ(w)
)1/2

.

By Theorem 2.1 (i), for w ∈ C, we have

|B(fχ|x|<r)(w)| ≤ 21/4e|w|2/2∥fχ|x|<r∥L1(µ).

Thus,

∥χWB(fχ|x|<r)∥L2(Ω) ≤ 21/4(m(W ))1/2∥fχ|x|<r∥L1(µ).

Hence, it follows from Theorem 2.2 that

∥χWB(f)∥L2(Ω) ≤ 21/4(m(W ))1/2∥fχ|x|<r∥L1(µ) + ∥fχ|x|>r∥L2(µ).

On the other hand, by Hölder’s inequality and hypothesis a < 1/2,

∥fχ|x|<r∥L1(µ) ≤ ∥ |x|−aχ|x|<r∥L2(µ)∥ |x|af∥L2(µ)
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≤ 21/4r−a+(1/2)

π1/4(1− 2a)1/2
∥ |x|af∥L2(µ).

Moreover,

∥fχ|x|>r∥L2(µ) ≤ r−a∥ |x|af∥L2(µ).

Thus, we deduce that

∥χWB(f)∥L2(Ω) ≤
[
r−a +

21/2(m(W ))1/2

π1/4(1− 2a)1/2
r−a+(1/2)

]
∥ |x|af∥L2(µ).

We choose r = 2a2√π
1−2a (m(W ))−1, we obtain the first inequality.

(ii) The second inequality holds if ∥f∥L2(µ) = ∞ or ∥ |x|af∥L2(µ) = ∞. Assume that

∥f∥L2(µ) + ∥ |x|af∥L2(µ) < ∞. From [6] and hypothesis a > 1/2, we have

∥f∥L1(µ) ≤
(2π)1/4(2a− 1)

1−2a
4a√

sin( π
2a )

∥f∥1−
1
2a

L2(µ)∥ |x|
af∥

1
2a

L2(µ).

Then, according to this inequality we deduce that

∥χWB(f)∥L2(Ω) ≤ 21/4(m(W ))1/2∥f∥L1(µ)

≤ K2(a)(m(W ))1/2∥f∥1−
1
2a

L2(µ)∥ |x|
af∥

1
2a

L2(µ),

which gives the second inequality.

(iii) Let r > 0. From the inequality ( |x|r )1/4 ≤ 1 + ( |x|r )1/2, it follows that

∥ |x|1/4f∥L2(µ) ≤ r1/4∥f∥L2(µ) + r−1/4∥ |x|1/2f∥L2(µ).

Optimizing in r, we get

∥ |x|1/4f∥L2(µ) ≤ 2∥f∥1/2L2(µ)∥ |x|
1/2f∥1/2L2(µ).

Thus, we deduce that

∥χWB(f)∥L2(Ω) ≤ K1(
1

4
)(m(W ))1/4∥ |x|1/4f∥L2(µ)

≤ 2K1(
1

4
)(m(W ))1/4∥f∥1/2L2(µ)∥ |x|

1/2f∥1/2L2(µ),

which gives the result for a = 1/2. �

Remark 3.2 Let a > 0. If f ∈ L2(µ), then

∥B(f)∥
L

2
1−2a

,2
(Ω)

≤ K1(a)∥ |x|af∥L2(µ), 0 < a < 1/2,

∥B(f)∥L∞,2(Ω) ≤ K2(a)∥f∥
1− 1

2a

L2(µ)∥ |x|
af∥

1
2a

L2(µ), a > 1/2,

∥B(f)∥L4,2(Ω) ≤ 2K1(
1

4
)∥f∥1/2L2(µ)∥ |x|

1/2f∥1/2L2(µ), a = 1/2,

where Ls,q(Ω) is the Lorentz-space defined by the norm

∥f∥Ls,q(Ω) := sup
W⊂C

0<m(W )<∞

(
(m(W ))

1
s−

1
q ∥χW f∥Lq(Ω)

)
.
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We shall use the local uncertainty principle (Theorem 3.1) to obtain the following Heisenberg-

Pauli-Weyl uncertainty principle for the Segal-Bargmann transform B, more precisely we will

show the following theorem.

Theorem 3.3 Let a, b > 0. If f ∈ L2(µ), then

∥f∥L2(µ) ≤ K(a, b)∥ |x|af∥
b

2a+b

L2(µ)∥ |w|
bB(f)∥

2a
2a+b

L2(Ω),

where

K(a, b) =



[
( b
2a )

2a
2a+b + ( 2ab )

b
2a+b

]1/2
(K1(a))

b
2a+b , a ∈ (0, 1

2 ), b > 0,[
b

1
b+1 + b−

b
b+1

] ab+a
2a+b (K2(a))

2ab
2a+b , a > 1/2, b > 0,[

(2b)
1

2b+1 + (2b)−
2b

2b+1
] 2b+1

2b+2 (2K1(
1
4 ))

2b
b+1 , a = 1/2, b > 0.

Here K1(a) and K2(a) are the constants given by Theorem 3.1.

Proof (i) Let 0 < a < 1/2, b > 0 and r > 0. Then

∥B(f)∥2F (C) =

∫
|w|<r

|B(f)(w)|2dΩ(w) +
∫
|w|>r

|B(f)(w)|2dΩ(w).

Firstly, ∫
|w|>r

|B(f)(w)|2dΩ(w) ≤ r−2b∥ |w|bB(f)∥2L2(Ω).

From Theorem 3.1, we get∫
|w|<r

|B(f)(w)|2dΩ(w) ≤ (K1(a))
2r4a∥ |x|af∥2L2(µ).

Combining the precedent relations, by Theorem 2.2 we obtain

∥f∥2L2(µ) ≤ (K1(a))
2r4a∥ |x|af∥2L2(µ) + r−2b∥ |w|bB(f)∥2L2(Ω).

Choosing r = ( b
2a )

1
4a+2b (

∥ |w|bB(f)∥L2(Ω)

K1(a)∥ |x|af∥L2(µ)
)

1
2a+b , we get the first inequality.

(ii) Let a > 1/2, b > 0 and r > 0. From Theorem 3.1, we get∫
|w|<r

|B(f)(w)|2dΩ(w) ≤ (K2(a))
2r2∥f∥2−(1/a)

L2(µ) ∥ |x|af∥1/aL2(µ).

Thus,

∥B(f)∥2F (C) ≤ (K2(a))
2r2∥f∥2−(1/a)

L2(µ) ∥ |x|af∥1/aL2(µ) + r−2b∥ |w|bB(f)∥2L2(Ω).

Choosing r = (
b∥ |w|bB(f)∥2

L2(Ω)

(K2(a))2∥f∥2−(1/a)

L2(µ)
∥ |x|af∥1/a

L2(µ)

)
1

2b+2 , we get the second inequality.

(iii) Let a = 1/2, b > 0 and r > 0. From Theorem 3.1, we get∫
|w|<r

|B(f)(w)|2dΩ(w) ≤ (2K1(
1

4
))2r∥f∥L2(µ)∥ |x|1/2f∥L2(µ).

Therefore,

∥B(f)∥2F (C) ≤ (2K1(
1

4
))2r∥f∥L2(µ)∥ |x|1/2f∥L2(µ) + r−2b∥ |w|bB(f)∥2L2(Ω).

Choosing r = (
b∥ |w|bB(f)∥2

L2(Ω)

2(K1(
1
4 ))

2∥f∥L2(µ)∥ |x|1/2f∥L2(µ)

)
1

2b+1 , we get the third inequality. �
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Remark 3.4 Let f ∈ L2(µ). In particular case (a = b = 1), we obtain the following Heisenberg’s

inequality for the Segal-Bargmann transform B,

∥f∥3L2(µ) ≤ 8
√
π∥ |x|f∥L2(µ)∥ |w|B(f)∥2L2(Ω). (3.1)

Let Λ be all f ∈ L2(µ) such that

∆1(f) =
∥ |x|f∥L2(µ)

∥f∥L2(µ)
, ∆2(f) =

∥ |w|B(f)∥L2(Ω)

∥f∥L2(µ)
.

We obtain a characterization of the region of Heisenberg’s inequality (see Figure 1),

{(∆1(f),∆2(f)), f ∈ Λ} ⊂ {(x, y), x, y > 0, xy2 ≥ 1

8
√
π
}.

Figure 1 Region of the concentrated Heisenberg’s inequality (3.1)

Theorem 3.5 (Nash-type inequality) Let b > 0. If f ∈ L2(µ), then

∥f∥L2(µ) ≤ D(b)∥ |w|bB(f)∥L2(Ω),

where

D(b) =
[
b

1
b+1 + b−

b
b+1

] b+1
2 .

Proof Let f ∈ L2(µ), b > 0 and r > 0. Then

∥B(f)∥2F (C) =

∫
|w|<r

|B(f)(w)|2dΩ(w) +
∫
|w|>r

|B(f)(w)|2dΩ(w).

Firstly, ∫
|w|>r

|B(f)(w)|2dΩ(w) ≤ r−2b∥ |w|bB(f)∥2L2(Ω).

From Theorem 2.1 (ii), we get∫
|w|<r

|B(f)(w)|2dΩ(w) ≤ r2∥f∥2L2(µ).

Combining the precedent relations, by Theorem 2.2 we obtain

∥f∥2L2(µ) ≤ r2∥f∥2L2(µ) + r−2b∥ |w|bB(f)∥2L2(Ω).

Choosing r = b
1

2b+2 (
∥ |w|bB(f)∥L2(Ω)

∥f∥L2(µ)
)

1
b+1 , we get the desired inequality. �
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4. Heisenberg principle involving L1 and L2-norms

In this section we will establish uncertainty principles for the Segal-Bargmann transform B

involving L1 and L2-norms. More precisely we will show the following theorems.

Theorem 4.1 (Clarkson-type inequality) Let a > 0. If f ∈ L1 ∩ L2(µ), then

∥f∥L1(µ) ≤ D1(a)∥f∥
2a

2a+1

L2(µ)∥ |x|
af∥

1
2a+1

L1(µ),

where

D1(a) = (
2

π
)

a
2(2a+1)

[
(2a)

1
2a+1 + (2a)−

2a
2a+1

]
.

Proof Let f ∈ L1 ∩ L2(µ) and r > 0. Then

∥f∥L1(µ) = ∥fχ|x|<r∥L1(µ) + ∥(1− χ|x|<r)f∥L1(µ).

Firstly, ∥(1− χ|x|<r)f∥L1(µ) ≤ r−a∥ |x|af∥L1(µ). By Hölder’s inequality, we get

∥fχ|x|<r∥L1(µ) ≤ (µ(|x| < r))1/2∥f∥L2(µ) ≤
(
r

√
2

π

)1/2∥f∥L2(µ).

Combining the precedent relations, we obtain

∥f∥L1(µ) ≤
(
r

√
2

π

)1/2∥f∥L2(µ) + r−a∥ |x|af∥L1(µ).

Choosing r = (
2a∥ |x|af∥L1(µ)

( 2
π )1/4∥f∥L2(µ)

)
2

2a+1 , we get the desired inequality. �

Theorem 4.2 (Nash-type inequality) Let b > 0. If f ∈ L1 ∩ L2(µ), then

∥f∥L2(µ) ≤ D2(b)∥f∥
b

b+1

L1(µ)∥ |w|
bB(f)∥

1
b+1

L2(Ω),

where

D2(b) =
[√

2(
b√
2
)

1
b+1 + (

b√
2
)−

b
b+1

]1/2
.

Proof Let f ∈ L1 ∩ L2(µ), b > 0 and r > 0. Then

∥B(f)∥2F (C) =

∫
|w|<r

|B(f)(w)|2dΩ(w) +
∫
|w|>r

|B(f)(w)|2dΩ(w).

Firstly, ∫
|w|>r

|B(f)(w)|2dΩ(w) ≤ r−2b∥ |w|bB(f)∥2L2(Ω).

From Theorem 2.1 (i), we get∫
|w|<r

|B(f)(w)|2dΩ(w) ≤
√
2r2∥f∥2L1(µ).

Combining the precedent relations, by Theorem 2.2 we obtain

∥f∥2L2(µ) ≤
√
2r2∥f∥2L1(µ) + r−2b∥ |w|bB(f)∥2L2(Ω).

Choosing r = ( b√
2
)

1
2b+2 (

∥ |w|bB(f)∥L2(Ω)

∥f∥L1(µ)
)

1
b+1 , we get the desired inequality. �

By combining the Clarkson-type inequality (Theorem 4.1) and the Nash-type inequality

(Theorem 4.2) we obtain the following uncertainty inequality of Heisenberg-type.
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Theorem 4.3 Let a, b > 0. If f ∈ L1 ∩ L2(µ), then

(i) ∥f∥
1

2b+1

L1(µ)∥f∥
1

2a+1

L2(µ) ≤ C1∥ |x|af∥
1

2a+1

L1(µ)∥ |w|
2bB(f)∥

1
2b+1

L2(Ω), where C1 = D1(a)D2(2b).

(ii) ∥f∥L2(µ) ≤ C2∥ |x|af∥
2b

2a+2b+1

L1(µ) ∥ |w|2bB(f)∥
2a+1

2a+2b+1

L2(Ω) , where

C2 = (D1(a))
2b(2a+1)
2a+2b+1 (D2(2b))

(2a+1)(2b+1)
2a+2b+1 .

(iii) ∥f∥L1(µ) ≤ C3∥ |x|af∥
2b+1

2a+2b+1

L1(µ) ∥ |w|2bB(f)∥
2a

2a+2b+1

L2(Ω) , where

C3 = (D1(a))
(2a+1)(2b+1)

2a+2b+1 (D2(2b))
2a(2b+1)
2a+2b+1 .

Remark 4.4 The uncertainty principles given by Theorem 2.4, are the analogs of the results

obtained by Laeng-Morpurgo [10] and Morpurgo [11] for the Fourier transform, and the results

obtained by Ghobber [22] for the Dunkl transform. In particular case, if a = b, we obtain the

following Heisenberg’s inequalities for the Segal-Bargmann transform B.

(i) For a > 0 and f ∈ L1 ∩ L2(µ):

∥f∥L1(µ)∥f∥L2(µ) ≤ C∥ |x|af∥L1(µ)∥ |w|2aB(f)∥L2(Ω),

where C = (D1(a)D2(2a))
2a+1. If a = b = 1:

∥f∥L1(µ)∥f∥L2(µ) ≤
(
√
3)9

4
√
π

∥ |x|f∥L1(µ)∥ |w|2B(f)∥L2(Ω). (4.1)

Let Λ be all f ∈ L1 ∩ L2(µ) such that

∆1(f) =
∥ |x|f∥L1(µ)

∥f∥L1(µ)
, ∆2(f) =

∥ |w|2B(f)∥L2(Ω)

∥f∥L2(µ)
.

We obtain a characterization of the region of Heisenberg’s inequality (see Figure 2),

{(∆1(f),∆2(f)), f ∈ Λ} ⊂ {(x, y), x, y > 0, xy ≥ 4
√
π

(
√
3)9

}.

Figure 2 Region of the concentrated Heisenberg’s inequality (4.1)

(ii) For a = b = 1 and f ∈ L1 ∩ L2(µ):

∥f∥5L2(µ) ≤
(
√
2)3(

√
3)21

π
∥ |x|f∥2L1(µ)∥ |w|

2B(f)∥3L2(Ω). (4.2)
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Let Λ be all f ∈ L1 ∩ L2(µ) such that

∆1(f) =
∥ |x|f∥L1(µ)

∥f∥L2(µ)
, ∆2(f) =

∥ |w|2B(f)∥L2(Ω)

∥f∥L2(µ)
.

We obtain a characterization of the region of Heisenberg’s inequality (see Figure 3),

{(∆1(f),∆2(f)), f ∈ Λ} ⊂ {(x, y), x, y > 0, x2y3 ≥ π

(
√
2)3(

√
3)21

}.

Figure 3 Region of the concentrated Heisenberg’s inequality (4.2)

(iii) For a = b = 1 and f ∈ L1 ∩ L2(µ):

∥f∥5L2(µ) ≤
312

√
π(
√
2)11

∥ |x|f∥3L1(µ)∥ |w|
2B(f)∥2L2(Ω). (4.3)

Let Λ be all f ∈ L1 ∩ L2(µ) such that

∆1(f) =
∥ |x|f∥L1(µ)

∥f∥L2(µ)
, ∆2(f) =

∥ |w|2B(f)∥L2(Ω)

∥f∥L2(µ)
.

We obtain a characterization of the region of Heisenberg’s inequality (see Figure 4),

{(∆1(f),∆2(f)), f ∈ Λ} ⊂ {(x, y), x, y > 0, x3y2 ≥
√
π(
√
2)11

312
}.

Figure 4 Region of the concentrated Heisenberg’s inequality (4.3)
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5. Donoho-Stark uncertainty principle

Let E be a measurable subset of R. We say that a function f ∈ Lp(µ), p = 1, 2, is ε-

concentrated on E in Lp(µ)-norm, if

∥f − χEf∥Lp(µ) ≤ ε∥f∥Lp(µ). (5.1)

Let W be a measurable subset of C and let f ∈ L2(µ). We say that B(f) is η-concentrated

on W in L2(Ω)-norm, if

∥B(f)− χWB(f)∥L2(Ω) ≤ η∥B(f)∥F (C). (5.2)

The Donoho-Stark uncertainty principle for the Segal-Bargmann transform B is given by

the following theorem.

Theorem 5.1 (Donoho-Stark-type inequality) Let E be a measurable subset of R, W be a

measurable subset of C and f ∈ L2(µ). If f is ε-concentrated on E in L2(µ)-norm, B(f) is

η-concentrated on W in L2(Ω)-norm and ε+ η < 1, then

µ(E)(m(W ) ≥ 1√
2
(1− η − ε)2. (5.3)

Proof Let f ∈ L2(µ). Assume that µ(E) < ∞ and m(W ) < ∞. From (5.1), (5.2) and Theorem

2.2 it follows that

∥B(f)− χWB(χEf)∥L2(Ω) ≤ ∥B(f)− χWB(f)∥L2(Ω) + ∥χWB(f − χEf)∥L2(Ω)

≤ η∥B(f)∥F (C) + ∥B(f − χEf)∥F (C)

≤ (η + ε)∥f∥L2(µ).

Then the triangle inequality shows that

∥B(f)∥F (C) ≤ ∥χWB(χEf)∥L2(Ω) + ∥B(f)− χWB(χEf)∥L2(Ω)

≤ ∥χWB(χEf)∥L2(Ω) + (η + ε)∥f∥L2(µ).

But

∥χWB(χEf)∥L2(Ω) =
(∫

W

|B(χEf)(w)|2dΩ(w)
)1/2

.

By Theorem 2.1 (i) and Hölder’s inequality we have

|B(χEf)(w)| ≤ 21/4e|w|2/2∥χEf∥L1(µ) ≤ 21/4e|w|2/2∥f∥L2(µ)(µ(E))1/2.

Thus, ∥χWB(χEf)∥L2(Ω) ≤ 21/4(µ(E))1/2(m(W ))1/2∥f∥L2(µ), and

∥B(f)∥F (C) ≤ 21/4(µ(E))1/2(m(W ))1/2∥f∥L2(µ) + (η + ε)∥f∥L2(µ).

By applying Theorem 2.2, we obtain (µ(E))1/2(m(W ))1/2 ≥ 2−1/4(1 − η − ε), which gives the

desired result. �

Remark 5.2 Let ∆1(E) = µ(E), ∆2(W ) = m(W ). From Theorem 5.1, we obtain a characteri-

zation of the region of Donoho-Stark’s inequality (see Figure 5),{
(∆1(E),∆2(W )), E ⊂ R,W ⊂ C

}
⊂

{
(x, y), x, y > 0, xy ≥ 1√

2
(1− η − ε)2

}
.
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Figure 5 Region of the concentrated Donoho-Stark’s inequality (5.3)

Theorem 5.3 (Donoho-Stark-type inequality) Let E be a measurable subset of R, W be a

measurable subset of C and f ∈ L1 ∩L2(µ). If f is ε-concentrated on E in L1(µ)-norm, B(f) is

η-concentrated on W in L2(Ω)-norm and ε, η < 1, then µ(E)m(W ) ≥ 1√
2
(1− ε)2(1− η)2.

Proof Let f ∈ L1 ∩ L2(µ). Assume that µ(E) < ∞ and m(W ) < ∞. From (5.1) we have

∥f∥L1(µ) ≤ ε∥f∥L1(µ) + ∥χEf∥L1(µ)

≤ ε∥f∥L1(µ) + (µ(E))1/2∥f∥L2(µ).

Thus

∥f∥L1(µ) ≤
(µ(E))1/2

1− ε
∥f∥L2(µ). (5.4)

On the other hand, from (5.2) it follows that

∥B(f)∥L2(m) ≤ ∥B(f)− χWB(f)∥L2(Ω) + ∥χWB(f)∥L2(Ω)

≤ η∥B(f)∥F (C) + 21/4(m(W ))1/2∥f∥L1(µ).

Thus by Theorem 2.2,

∥f∥L2(µ) ≤
21/4(m(W ))1/2

1− η
∥f∥L1(µ). (5.5)

Combining (5.4) and (5.5) we obtain the result of this theorem. �

Remark 5.4 The uncertainty principles given by Theorems 5.1 and 5.3, are the analogs of the

results obtained by Donoho-Stark [7] for the Fourier transform, by Kawazoe-Mejjaoli [23] for the

Dunkl transform and by Soltani [24] for the Sturm-Liouville transform.

In the following we establish uncertainty inequality of Matolcsi-Szücs-type for the Segal-

Bargmann transform B.

Theorem 5.5 (Matolcsi-Szücs-type inequality) Let f ∈ L1∩L2(µ). If Af = {x ∈ R : f(x) ̸= 0}
and AB(f) = {w ∈ C : B(f)(w) ̸= 0}, then µ(Af )m(AB(f)) ≥ 1√

2
.

Proof Let f ∈ L1∩L2(µ). We put W = AB(f), then by Theorem 2.1 (i) and Hölder’s inequality

we obtain

∥B(f)∥L2(Ω) = ∥χWB(f)∥L2(Ω) ≤ 21/4(m(W ))1/2∥f∥L1(µ)
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≤ 21/4(m(W ))1/2(µ(Af ))
1/2∥f∥L2(µ).

Then Theorem 2.2 gives the desired result. �

Remark 5.6 The uncertainty principle given by Theorem 5.5 is the analogs of the result obtained

by Matolcsi-Szücs [9] and Benedicks [8] for the Fourier transform.
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