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1. Introduction

Many uncertainty principles have already been proved for the Fourier transform: Heisenberg-
Pauli-Weyl inequality [1-3], Cowling-Price’s inequality [2], local uncertainty inequality [4-6],
Donoho-Stark’s inequality [7], Benedicks inequality [8] and Matolcsi-Sziics inequality [9]. Laeng-
Morpurgo [10] and Morpurgo [11] obtained Heisenberg inequality involving a combination of L!-
norms and L?norms. Folland-Sitaram [12], next Nemri-Soltani [13-15] proved a general forms
of the Heisenberg-Pauli-Weyl inequality and the Donoho-Stark’s inequality. And one expects
that the results in this work will be useful when discussing the uncertainty principles for the
Segal-Bargmann transform.

Let H(C) denote the space of entire functions on C, and L?(2), the space of measurable

functions f on C satisfying
ey = [ 1FPARE) < o

where z = z + iy and dQ(z) := #dmdy.

The Fock space F'(C) (called also Segal-Bargmann space [16]) is the space of functions in
H(C) N L*(), equipped with the norm || f||pc) := [|f|lz2(e). This space was introduced by
Bargmann in [17] and it was the tool of many works [16,18,19]. Some uncertainty principles have
already been proved on the Segal-Bargmann space F(C) by Kehe Zhu in his paper [20].

Let L?(u) be the space of measurable functions on R, for which
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where du(z) = X/%dz. The Segal-Bargmann transform B is defined on L?(u) by

B(f)(w) == 21/4/ exp (— W+ 2" +V2wz) f(z)dp(z), w e C.

R 2

This transform (see [17]) is an isometric isomorphism of L?(u) onto F(C) and has a pointwise
inversion formula. Next, it is the background of some applications in this work; especially,
we give Heisenberg-Pauli-Weyl uncertainty principle, Donoho-Stark uncertainty principle and
Matolcsi-Sziics uncertainty principle for the Segal-Bargmann transform B.

Building on the ideas of Faris [4] and Price [5,6] for the Fourier transform, we show a local
uncertainty principle for the Segal-Bargmann transform B. More precisely, we will show the
following result. Let W be a measurable subset of C such that 0 < m(W) < oo, and a > 0. If
f € L*(p), then

Ki(a)(mW))* [ |2]* fll 2 ) a€(0,3),
baw By <3 Kala)m(W) 217185 el 1 F gy a>1/2,
2K (1) (W) YA 22 FIAG L a=1/2,
where X is the characteristic function of the set W, dm(z) := 2dzdy and K(a), K(a) are

positive constants given explicitly by Theorem 3.1. We shall use the local uncertainty principle for
the Segal-Bargmann transform B to show for it the following Heisenberg-Pauli-Weyl uncertainty

principle

b 24
112200 < K(asb)| 2 FI 500w B I, ab >0,

where K (a,b) is a positive constant given explicitly by Theorem 3.3. Next, by using Clarkson-

type inequality and Nash-type inequality for the Segal-Bargmann transform B we establish for

it Heisenberg uncertainty principle involving L!(z) and L?(u)-norms.

Finally, based on the techniques of Donoho-Stark [7], we will show uncertainty principles of
concentration-type on L?(u) and on L* N L?(u) for the Segal-Bargmann transform B. And based
on the ideas of Ghobber-Jaming [21] we deduce uncertainty principle of Matolcsi-Sziics-type
involving L'(p) and L?(p)-norms for the Segal-Bargmann transform B.

The contents of the paper are as follows. In Section 2, we recall some properties of the Fock
space F'(C) and the Segal-Bargmann transform B. In Section 3, we establish local uncertainty
principle and Heisenberg-Pauli-Weyl uncertainty principle for the Segal-Bargmann transform B.
In Section 4, we show Heisenberg uncertainty principle involving L!(x) and L?(p1)-norms for the
Segal-Bargmann transform B. The last section is devoted to present Donoho-Stark uncertainty

principle and Matolcsi-Sziics uncertainty principle for the Segal-Bargmann transform B.

2. Segal-Bargmann transform

We denote by

e H(C) the space of entire functions on C.
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e dQ(z), the measure defined on C, by

—lzl

dQ(z) = dzdy, z=z+iy.

e L9(0), 1 < g < 0o, the space of measurable functions f on C satisfying

1 fllza(e) == {/c |f(2)\qu(z)r/q < .

We define the pre Hilbert space F(C), to be the space of functions in H(C)NL?(£2), equipped

with the inner product

(.9 rc) = /C F(2)3(2)a0(2),

and the squared norm

113 = /C F()PAR().

The following properties are proved in [17].
(a) If f,g € F(C) with f(2) = >," an2™ and g(z) = Y.~ , bnz", then

(f,9)F@) = Z anbp nl.
n=0

(b) The function K given for w,z € C, by
K(w,z) = e“?,

is the reproducing kernel for the Fock space F(C), that is,
(i) for every w € C, the function z — K(w, z) belongs to F(C);
(ii) for all w € C and f € F/(C), we have

(c) If f € F(C), then
|f(w)| < eV fllpe), weC.

(d) The space F'(C) equipped with the inner product (.,.) p(c) is a Hilbert space; and the
set {%}HGN forms a Hilbertian basis for the space F(C).
We denote by
e (1), 1 < p < oo, the space of measurable functions on R, for which
/p

i = [ [ 17GIPan)] " < o

Here, p is the measure defined on R by

e U the kernel given for w € C and z € R, by

2,2
Ulw, z) := 21/4 exp(—w ;_Z +V2wz).

The kernel U satisfies the following properties [17].



566 Fethi SOLTANI
(a) For w € C and z € R, we have
U(w,z)| < 2M/4elwI*/2, (2.1)

(b) For w € C and z € R, we have

Vw2 =3 hn(z‘)wn,
n—0 nt

NG

where h,, are the Hermite functions given by

/2y

. ol/drog—n,_N\1/2 —2%/2
hn(z) :==2/%(27"nl) e kz o
=0

a2

with [n/2| being the integer part of n/2.

(c¢) For all v,w € C, we have

e’ = / U(v, 2)U(w, z)du(z).
R
(d) For all w € C, the function z — U(w, z) € L?(u), and
U (w, -)H2L2(,L) =elvl, (2.2)

The kernel U gives rise to an integral transform B, which is called the Segal-Bargmann
transform on C, and defined for f in L?(u), by

B(f)(w) = / U(w, ) f(2)duz), w e C.

From relations (2.1) and (2.2) the Segal-Bargmann transform satisfies the following proper-

ties.
Theorem 2.1 (i) For f € L'(u) and w € C we have
[B(f)(w)] < 212 £,
(ii) For f € L?(u) and w € C we have
B)w)| < e/ £ 20

The following theorem is proved in [17].

Theorem 2.2 The Segal-Bargmann transform B is an isometric isomorphism of L*(u) onto
F(C). In particular, we have

IBAHlle© = Ifllz2qn, € L2 ().

Let 8 denote the family of entire functions g such that
|w]®
sup {|g(w)| exp(=— = + Ajw|)} < oo,
weC

for every A > 0. Since {%}%N C B, the family § is dense in F'(C). The family 8 simplifies the
presentation of the inverse operator B~ (see [17]).
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Theorem 2.3 (i) If g € 8, we have

B (g9)(2) = /(Cg(w)U(w,z)e*““‘zdm(w)7 z € R.

(ii) If g € F(C) and z € R, we have
n—oo

B~(g)(2) = lim an(w)U(w,z)e*\w\Qdm(w), in L2(u)-sense,

where the sequence {g,} C 8 and converges to g in F(C).

3. Heisenberg uncertainty principle

In this section we begin by establishing local uncertainty principle for the Segal-Bargmann

transform B, more precisely we will show the following theorem.

Theorem 3.1 Let W be a measurable subset of C such that 0 < m(W) < oo, and a > 0. If
f € L*(p), then

Ky (a)(mW) ] 2] fll 22 ). ae(0,3),
1—L L
Ixw BNz < § Ko@) (mW) 2 a2l I35, a>1/2
2K (1) (m(W)) 4 £ g e V2 F N 0= 172,
where .
(1 —2a)o1 (4m)/4(2a — 1) 7"
K = K =
() 2aga/2q2a ’ 2(a) sin(4-)

Proof (i) Let f € L?(u). The first inequality holds if || |z]®f|/z2(,) = oo. Assume that
| 2| f[|22() < oo. By Minkowski’s inequality, for all 7 > 0,

Ixw B ()2 < IxwB(fX|e|<r)lz2@) + IXW B(fX|2|>r)ll22(0)
< xw B(fXjzj<r) 2 @) + 1B X|z)>r) | F(0)-
But
) 1/2
lw B llaey = [ 1B @)Faw)
By Theorem 2.1 (i), for w € C, we have

2
| B(fXjaj<r)(w)] < 2% V2)| X101 <ol L1 o) -
Thus,
Ixw B(f Xzl <)l L2@) < 24 m(W) 2 X <l 22 o) -

Hence, it follows from Theorem 2.2 that

IxwB()llz2) < 24 (mWV) 2 fx1e1<rllzr ) + 1 X a5l 220)-

On the other hand, by Holder’s inequality and hypothesis a < 1/2,

1 Xat<rllLr ) < 2l Xjaj<rllL2 [l 2] 1220
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91/4,.—a+(1/2)
< m” || fll 22 ()
Moreover,
I Xesrllzzg < el fll 2w -
Thus, we deduce that

21/2(m(W))1/2 —a+(1/2) ]

IxwB(f) 2@ < [r™* + mr | £l 22 () -

We choose r = Q{Lj;/f(m(W))_l, we obtain the first inequality.

(ii) The second inequality holds if [|f[/z2(,) = oo or || |z|*f[/z2(u) = oco. Assume that
| fll2¢wy + I 2] fll L2 () < 0o. From [6] and hypothesis a > 1/2, we have
(2m)V/4(2a — 1) %" oL
<
Il < e 112

2a

|| || fHL2(,L)

Then, according to this inequality we deduce that

Iew B2y < 24 mW)Y21 £l 22 0
1—L

< Ko (@) (m(W)) 2 fll 23 I el f||L2(N

which gives the second inequality.
(iii) Let r > 0. From the inequality (@)1/4 <1+ (@)1/2, it follows that
Y fll2 ey < 740 f ez ey + 742 Y2 ]2 g -
Optimizing in 7, we get
1/2 1/2
214 1l 2y < 21F 1 gy 122 IS
Thus, we deduce that
1
Ixw B(f)llL2() < K1(1)(m(W))1/4H [ fll 2
1
< 2K1 () m(W) LG Il 2 £

which gives the result for a = 1/2. O
Remark 3.2 Let a > 0. If f € L?(u), then

1B Ki(a)|[ 2| fllL2y, 0 <a<1/2,

2__ o <
LT-2a°%(Q)

1—L

[B(f)lLoe2) < Ka(a)|[ fll g2l 2] f||Lz e @>1/2

1/2 1/2
IB(H)zaze) < 2K1(5 >||f||Lé<m||| Y2 fI e a=1/2,

where L*%(Q)) is the Lorentz-space defined by the norm
[flleay == sup  ((m(W))
wce

0<m(W)<oo

1
s

1
“xw fllLo))-
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We shall use the local uncertainty principle (Theorem 3.1) to obtain the following Heisenberg-
Pauli-Weyl uncertainty principle for the Segal-Bargmann transform B, more precisely we will

show the following theorem.
Theorem 3.3 Let a,b> 0. If f € L*(u), then

b _2a
Wl < Kbl 2l FIET | P BT,

where

ay=b—11/2 _b
[(L)75 4 (22)5=5%] (K (a) =5,  ae(0,), b>0,

ab+ta
s 2ab

(Ka(a))2a+e, a>1/2,b>0,

K(a,b) = [boi1 + b 541]

b

1 _ _2b 4264l 11y 26
[(26) 7557 + (2b) 24T ] 272 (2K, (1)1, a=1/2, b> 0.

Here K;(a) and Ks(a) are the constants given by Theorem 3.1.

Proof (i) Let 0 <a<1/2,b>0andr > 0. Then

1Bz ) = / | B(f)(w)|*dQ(w) +/ | B(f)(w)[*dQ(w).

lw|<r Jw|>r
Firstly,
/|w>r |B(f)(w)|2dQ(w) < 7| [w|"B(f)|72(0)-
From Theorem 3.1, we get
[ BP0 < 0
Combining the precedent relations, by Theorem 2.2 we obtain

£y < (B (@) || flI 72 + =2 Hwl B 22 (0)-

Choosing r = (2

a

Il lw” B 20
T (K@ e
(ii) Let a>1/2,b> 0 and r > 0. From Theorem 3.1, we get

~/|w<r \B(f)(w)|2dﬂ(w) < (K2(a))2T2Hf”i;((i)/a)” |1,|af||2/212#)

)401 )ﬁ, we get the first inequality.

Thus,
2—(1/a a 1/a _
1B ey < (Ka(@)r2 1 fl2a i 21 FIEAG + 772wl BOAI 2 (q)-

b BHI?
Choosing r = ( | IwL_(fQ!lﬂm) — )2b1+2, we get the second inequality.
(a2 72 el A

(iii) Let a =1/2,b >0 and r > 0. From Theorem 3.1, we get
1
/l ‘ |B()(w)*dQw) < K1) fll2wl 2 1l 2 -
wi<r
Therefore,

1 -
1Bz < CEL(D) Tl fllz2gn ] 22 Fll g2y + 772wl B Z20-

bl [wl” B 122

Q(Kl(i))QHf”L?(u)H |£‘1/2f“L2(“) ) 2041 we get the third 1nequahty. O

Choosing r = (
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Remark 3.4 Let f € L?(u). In particular case (a = b = 1), we obtain the following Heisenberg’s

inequality for the Segal-Bargmann transform B,

1£1Z200 < 8VAN 2 fll 2o Il [wI BU) 12 (0)- (3.1)
Let A be all f € L?(u) such that

. (REARAIPZIO:

[ lw|B(f)|lL2 )
A = — AT JIERERE)
1) ILfllz2 )

Ao(f) =
)= "l

We obtain a characterization of the region of Heisenberg’s inequality (see Figure 1),

ELINY

{(AL(), Do (), f € A} C {(,y), 2,y > 0,29 > W

34

Figure 1 Region of the concentrated Heisenberg’s inequality (3.1)

Theorem 3.5 (Nash-type inequality) Let b > 0. If f € L?(u), then
£ llz2wy < DO wl"B(f)l| 20,

where
bt

D(b) = [b5HT 4+ b7 w1] =
Proof Let f € L?*(u), b> 0 and r > 0. Then

IB(H ) = / | B(f)(w)[*dQ(w) +/ [B(f)(w)[*dQ(w).

|w|<r Jw|>r
Firstly,
/I [B(f)(w)PdQ(w) < 7| Jw]"B(f)|72(0)-
w|>r

From Theorem 2.1 (ii), we get
/ BP0 < 1 g
w|<r

Combining the precedent relations, by Theorem 2.2 we obtain

107200 < P2 IF1Z2 00 + 2 IHwl" B 172 q)-

b (e B 2
Hf”LZ(u)

Choosing r = b2 )b%l, we get the desired inequality. [J
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4. Heisenberg principle involving L! and L2-norms

In this section we will establish uncertainty principles for the Segal-Bargmann transform B

involving L' and L?-norms. More precisely we will show the following theorems.
Theorem 4.1 (Clarkson-type inequality) Let a > 0. If f € L' N L?(p), then

_2a_ 1
1l < Da(@IAIEE Nl FIETE,
where

D1 (a) = (%)m [(2a)ﬁ + (2(1)_23%]

Proof Let f € L' N L%(p) and r > 0. Then

1Nty = 1 X2 <rll 2wy + 10 = Xjej<r) Fll2r -
Firstly, [[(1 = Xjz|<r)fllz1 () < 77 2| fll L1 (). By Holder’s inequality, we get

2.1/2
HfX\z|<r||L1(p) < (u(lz] < T))1/2||f|‘lj2(#) < (T\/;) Hf||L2(u)~

Combining the precedent relations, we obtain

2,172 _
1l ) < (7“\/;) 12y + 77 2 fll -

2“” |<77|af“L1(“)

W) 2a2+1, we get the desired inequality. [
T I

Choosing r = (
Theorem 4.2 (Nash-type inequality) Let b > 0. If f € L' N L?(p), then

_b_ _1
1£220 < Da® 1T | Wl B Fy.

where

Proof Let f € L' N L?*(u), b > 0 and r > 0. Then

1Bl = / | B(f)(w)[*d(w) +/ |B(f)(w)[*dQ(w).

|w|<r |w|>r

Firstly,

/I ‘ |B(f)(w)*dQ(w) < v~ [w]"B(f)[172(0-

w|>r
From Theorem 2.1 (i), we get
[ B0 < VBRI g
w|<r

Combining the precedent relations, by Theorem 2.2 we obtain

£ 720 < V22T + 72l B 1720
Il |w|bB(f)HL2(Q) 1

Choosing r = (%) 2bl+2( et on )7+1, we get the desired inequality. [J
LY (pn
By combining the Clarkson-type inequality (Theorem 4.1) and the Nash-type inequality

(Theorem 4.2) we obtain the following uncertainty inequality of Heisenberg-type.
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Theorem43 Let a, b>0 IffELlﬁLQ( ), then

_1
Q) 1A IAIED < Calllaf A Wl B iy where O = Di(@)Da(20).

(i) [ fllz2uy < Coll |=[* fllf““”“ Iw|**B(f )Hiéfff“, where

2b(2a+1) (2a+1)(2b+1)

Cy = (D (a)) 2a+26+1 (D2( b)) Zat25+1

2b+4
(i) [ fllzr oy < Csll [ f\\i‘if,ﬁ“ Hwl*B(f )Ilii*éb)“, where

(2a+1)(2b+1) 2a(2b+1)

Cy = (D (@) 55555 (Dy(20)) 58

Remark 4.4 The uncertainty principles given by Theorem 2.4, are the analogs of the results
obtained by Laeng-Morpurgo [10] and Morpurgo [11] for the Fourier transform, and the results
obtained by Ghobber [22] for the Dunkl transform. In particular case, if a = b, we obtain the
following Heisenberg’s inequalities for the Segal-Bargmann transform B.

(i) Fora>0and f € L'NL3(n):

1Ll f L2y < Clll fllLr ol wl** B(f)l 2@,
where C' = (D1(a)D2(2a))?***L. Ifa=b=1:

3)° 2
2l fllzr ol Twl” Bl 22 - (4.1)

(v3
171 <42

Let A be all f € L' N L?(p) such that

[ ] f1l 21 ()
1l

We obtain a characterization of the region of Heisenberg’s inequality (see Figure 2),

W
(v3)?~

[ 1w B(f)llz2(0)
£l 22w

Ai(f) = As(f) =

{(Al(f)vAQ(f))af € A} c {(I,y),x,y > vay >

T T T i
2 3 4 5

x

Figure 2 Region of the concentrated Heisenberg’s inequality (4.1)

(i) Fora=b=1and f € L'NL*(p):

(V2)(V3)!

11172y < e 171 oy 1wl B 220 - (4.2)
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Let A be all f € L* N L?(u) such that

~HwPB()llz2 e

_ el Aol ="
L2(p)

A —
= e

We obtain a characterization of the region of Heisenberg’s inequality (see Figure 3),

(AL Ba(f)), f € A} C {(ayy) sy > 0,07 > W}

1007
90+
80
701

60+

T T T T T T T T T 1
10 20 30 40 50 60 70 80 90 100

Figure 3 Region of the concentrated Heisenberg’s inequality (4.2)

(ili) Fora=b=1and f € L' N L?(u):
12

11172 < Tl 1 g 0P BA1Z @) (4.3)

3
VT(V2)
Let A be all f € L' N L?(p) such that

_ wPB(#)llz2e)

_ Mg Ay = I£1
L2(p)

Aq(f) =
)= e

We obtain a characterization of the region of Heisenberg’s inequality (see Figure 4),

{(AL(), A2(f)), f € A} C {(z,y), 2,y > 0,2°y > %\/3)11}.

1007
904
804
704
604
504
40
304

20+

Figure 4 Region of the concentrated Heisenberg’s inequality (4.3)
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5. Donoho-Stark uncertainty principle

Let E be a measurable subset of R. We say that a function f € LP(u), p = 1,2, is e-

concentrated on F in LP(u)-norm, if

1f = xefllr@) < ellflloe - (5.1)
Let W be a measurable subset of C and let f € L?(u). We say that B(f) is n-concentrated
on W in L%(Q)-norm, if
IB(f) = xwB(f)ll2) < nll B rc)- (5.2)
The Donoho-Stark uncertainty principle for the Segal-Bargmann transform B is given by

the following theorem.

Theorem 5.1 (Donoho-Stark-type inequality) Let E be a measurable subset of R, W be a
measurable subset of C and f € L?(u). If f is e-concentrated on E in L?(u)-norm, B(f) is
n-concentrated on W in L*(Q)-norm and € +n < 1, then

HEYm(V) = 2=(1 == <) (5.3)

Proof Let f € L?(i1). Assume that u(E) < oo and m(W) < co. From (5.1), (5.2) and Theorem
2.2 it follows that
1B(f) = xwB(xef)llr2@) < |B(f) = xwB(Hllr2@) + IxwB(f — xef)llrz @
<l B(H)lre) + I1B(f = xef)lFrc
< m+a)llfllzz -
Then the triangle inequality shows that
1B(N)lre) < IxwB(Xef)llrz@) + 1B(f) = xwB(Xef)llL @)
<lxwBXxef)llrz@ + (+e)lfllrz-
But
) 1/2
o Boce Nz = ( [ 1B w)Raow) "
By Theorem 2.1 (i) and Hélder’s inequality we have
|B(xef)(w)] < 21/46‘1U|2/2||XEf||L1(H) < 21/4e|w‘2/2||f||L2(ﬂ) (W(E))M2.
Thus, [Ixw B(xef)llz2@) < 2Y*((E) /2 (m(W)2|| £ L2 (), and
IBU) ey < 2 (BN (m(W)) 2| fll L2y + (1 + )L F 220
By applying Theorem 2.2, we obtain (u(F))"/2(m(W))Y/2 > 271/4(1 — 5 — &), which gives the
desired result. [

Remark 5.2 Let Aq(E) = pu(E), Ao(W) = m(W). From Theorem 5.1, we obtain a characteri-

zation of the region of Donoho-Stark’s inequality (see Figure 5),

{(Al(E),Ag(W)),E CR,WC (C} C {(x,y),x,y > 0,2y > %(1 —77—5)2}.
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T T T T i
1 2 3 4 5
x

Figure 5 Region of the concentrated Donoho-Stark’s inequality (5.3)

Theorem 5.3 (Donoho-Stark-type inequality) Let E be a measurable subset of R, W be a
measurable subset of C and f € L* N L?(p). If f is e-concentrated on E in L*(u)-norm, B(f) is
n-concentrated on W in L?(Q)-norm and e, < 1, then u(E)m(W) > %(1 —e)?(1—n)%

Proof Let f € L' N L%*(pn). Assume that u(E) < oo and m(W) < oo. From (5.1) we have

[l < ellfllergn + Ixefllw
<ell Fllor + WE) 211 L2 (y-
Thus 12
170 < D g, (5.0
On the other hand, from (5.2) it follows that

IB(F)l2my < I1B(f) = xwB(f)ll2) + IxwB(f)llz2@)
<lIB(H)llre) + 2V (mWV) 2| £l 21 -

Thus by Theorem 2.2,

/4 (TW))1/2
1z < 22D g, (55)

Combining (5.4) and (5.5) we obtain the result of this theorem. [J

Remark 5.4 The uncertainty principles given by Theorems 5.1 and 5.3, are the analogs of the
results obtained by Donoho-Stark [7] for the Fourier transform, by Kawazoe-Mejjaoli [23] for the
Dunkl transform and by Soltani [24] for the Sturm-Liouville transform.

In the following we establish uncertainty inequality of Matolcsi-Sziics-type for the Segal-
Bargmann transform B.

Theorem 5.5 (Matolcsi-Sziics-type inequality) Let f € L' NL*(u). If Ay = {z € R: f(z) # 0}
and Apsy = {w € C: B(f)(w) # 0}, then u(Ag)m(Ap)) > %

Proof Let f € L'NL?*(p). We put W = Apyy, then by Theorem 2.1 (i) and Hélder’s inequality
we obtain

IB(N) 2 = lxw B2 < 27 W) £l
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< 24 (W)Y (A7) Y2l 220

Then Theorem 2.2 gives the desired result. O

Remark 5.6 The uncertainty principle given by Theorem 5.5 is the analogs of the result obtained
by Matolcsi-Sziics [9] and Benedicks [8] for the Fourier transform.
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