Journal of Mathematical Research with Applications Sept., 2017, Vol. 37, No. 5, pp. 563–576 DOI:10.3770/j.issn:2095-2651.2017.05.007 Http://jmre.dlut.edu.cn

Uncertainty Principles for the Segal-Bargmann Transform

Fethi SOLTANI

Department of Mathematics, Faculty of Science, Jazan University, P. O. Box 277, Jazan 45142, Saudi Arabia

Abstract We recall some properties of the Segal-Bargmann transform; and we establish for this transform qualitative uncertainty principles: local uncertainty principle, Heisenberg uncertainty principle, Donoho-Stark's uncertainty principle and Matolcsi-Szücs uncertainty principle.

Keywords Segal-Bargmann space; Segal-Bargmann transform; local uncertainty principle; Heisenberg uncertainty principle; Donoho-Stark's uncertainty principle

MR(2010) Subject Classification 30H20; 32A15

1. Introduction

Many uncertainty principles have already been proved for the Fourier transform: Heisenberg-Pauli-Weyl inequality [1–3], Cowling-Price's inequality [2], local uncertainty inequality [4–6], Donoho-Stark's inequality [7], Benedicks inequality [8] and Matolcsi-Szücs inequality [9]. Laeng-Morpurgo [10] and Morpurgo [11] obtained Heisenberg inequality involving a combination of L^1 norms and L^2 -norms. Folland-Sitaram [12], next Nemri-Soltani [13–15] proved a general forms of the Heisenberg-Pauli-Weyl inequality and the Donoho-Stark's inequality. And one expects that the results in this work will be useful when discussing the uncertainty principles for the Segal-Bargmann transform.

Let $H(\mathbb{C})$ denote the space of entire functions on \mathbb{C} , and $L^2(\Omega)$, the space of measurable functions f on \mathbb{C} satisfying

$$\|f\|_{L^2(\Omega)}^2 := \int_{\mathbb{C}} |f(z)|^2 \mathrm{d}\Omega(z) < \infty,$$

where z = x + iy and $d\Omega(z) := \frac{e^{-|z|^2}}{\pi} dx dy$.

The Fock space $F(\mathbb{C})$ (called also Segal-Bargmann space [16]) is the space of functions in $H(\mathbb{C}) \cap L^2(\Omega)$, equipped with the norm $||f||_{F(\mathbb{C})} := ||f||_{L^2(\Omega)}$. This space was introduced by Bargmann in [17] and it was the tool of many works [16,18,19]. Some uncertainty principles have already been proved on the Segal-Bargmann space $F(\mathbb{C})$ by Kehe Zhu in his paper [20].

Let $L^2(\mu)$ be the space of measurable functions on \mathbb{R} , for which

$$||f||_{L^{2}(\mu)}^{2} := \int_{\mathbb{R}} |f(z)|^{2} \mathrm{d}\mu(z) < \infty,$$

Received September 8, 2016; Accepted February 27, 2017 E-mail address: fethisoltani10@yahoo.com

where $d\mu(z) := \frac{1}{\sqrt{2\pi}} dz$. The Segal-Bargmann transform B is defined on $L^2(\mu)$ by

$$B(f)(w) := 2^{1/4} \int_{\mathbb{R}} \exp\big(-\frac{w^2 + z^2}{2} + \sqrt{2}wz\big) f(z) \mathrm{d}\mu(z), \ w \in \mathbb{C}.$$

This transform (see [17]) is an isometric isomorphism of $L^2(\mu)$ onto $F(\mathbb{C})$ and has a pointwise inversion formula. Next, it is the background of some applications in this work; especially, we give Heisenberg-Pauli-Weyl uncertainty principle, Donoho-Stark uncertainty principle and Matolcsi-Szücs uncertainty principle for the Segal-Bargmann transform B.

Building on the ideas of Faris [4] and Price [5,6] for the Fourier transform, we show a local uncertainty principle for the Segal-Bargmann transform B. More precisely, we will show the following result. Let W be a measurable subset of \mathbb{C} such that $0 < m(W) < \infty$, and a > 0. If $f \in L^2(\mu)$, then

$$\|\chi_W B(f)\|_{L^2(\Omega)} \le \begin{cases} K_1(a)(m(W))^a \| |x|^a f\|_{L^2(\mu)}, & a \in (0, \frac{1}{2}), \\ K_2(a)(m(W))^{1/2} \| f\|_{L^2(\mu)}^{1-\frac{1}{2a}} \| |x|^a f\|_{L^2(\mu)}^{\frac{1}{2a}}, & a > 1/2, \\ 2K_1(\frac{1}{4})(m(W))^{1/4} \| f\|_{L^2(\mu)}^{1/2} \| |x|^{1/2} f\|_{L^2(\mu)}^{1/2}, & a = 1/2, \end{cases}$$

where χ_W is the characteristic function of the set W, $dm(z) := \frac{1}{\pi} dx dy$ and $K_1(a)$, $K_2(a)$ are positive constants given explicitly by Theorem 3.1. We shall use the local uncertainty principle for the Segal-Bargmann transform B to show for it the following Heisenberg-Pauli-Weyl uncertainty principle

$$\|f\|_{L^{2}(\mu)} \leq K(a,b) \| |x|^{a} f\|_{L^{2}(\mu)}^{\frac{b}{2a+b}} \| |w|^{b} B(f)\|_{L^{2}(\Omega)}^{\frac{2a}{2a+b}}, \quad a,b > 0,$$

where K(a, b) is a positive constant given explicitly by Theorem 3.3. Next, by using Clarksontype inequality and Nash-type inequality for the Segal-Bargmann transform B we establish for it Heisenberg uncertainty principle involving $L^{1}(\mu)$ and $L^{2}(\mu)$ -norms.

Finally, based on the techniques of Donoho-Stark [7], we will show uncertainty principles of concentration-type on $L^2(\mu)$ and on $L^1 \cap L^2(\mu)$ for the Segal-Bargmann transform B. And based on the ideas of Ghobber-Jaming [21] we deduce uncertainty principle of Matolcsi-Szücs-type involving $L^1(\mu)$ and $L^2(\mu)$ -norms for the Segal-Bargmann transform B.

The contents of the paper are as follows. In Section 2, we recall some properties of the Fock space $F(\mathbb{C})$ and the Segal-Bargmann transform B. In Section 3, we establish local uncertainty principle and Heisenberg-Pauli-Weyl uncertainty principle for the Segal-Bargmann transform B. In Section 4, we show Heisenberg uncertainty principle involving $L^1(\mu)$ and $L^2(\mu)$ -norms for the Segal-Bargmann transform B. The last section is devoted to present Donoho-Stark uncertainty principle and Matolcsi-Szücs uncertainty principle for the Segal-Bargmann transform B.

2. Segal-Bargmann transform

We denote by

• $H(\mathbb{C})$ the space of entire functions on \mathbb{C} .

Uncertainty principles for the Segal-Bargmann transform

• $d\Omega(z)$, the measure defined on \mathbb{C} , by

$$\mathrm{d}\Omega(z) := \frac{e^{-|z|^2}}{\pi} \mathrm{d}x \mathrm{d}y, \ z = x + iy$$

• $L^q(\Omega), 1 \leq q < \infty$, the space of measurable functions f on \mathbb{C} satisfying

$$||f||_{L^q(\Omega)} := \left[\int_{\mathbb{C}} |f(z)|^q \mathrm{d}\Omega(z)\right]^{1/q} < \infty$$

We define the pre Hilbert space $F(\mathbb{C})$, to be the space of functions in $H(\mathbb{C}) \cap L^2(\Omega)$, equipped with the inner product

$$\langle f,g\rangle_{F(\mathbb{C})} := \int_{\mathbb{C}} f(z)\overline{g(z)}\mathrm{d}\Omega(z),$$

and the squared norm

$$||f||_{F(\mathbb{C})}^2 := \int_{\mathbb{C}} |f(z)|^2 \mathrm{d}\Omega(z).$$

The following properties are proved in [17].

(a) If $f, g \in F(\mathbb{C})$ with $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$, then

$$\langle f,g\rangle_{F(\mathbb{C})} = \sum_{n=0}^{\infty} a_n \overline{b_n} \, n!.$$

(b) The function K given for $w, z \in \mathbb{C}$, by

$$K(w,z) = e^{\overline{w}z},$$

is the reproducing kernel for the Fock space $F(\mathbb{C})$, that is,

- (i) for every $w \in \mathbb{C}$, the function $z \to K(w, z)$ belongs to $F(\mathbb{C})$;
- (ii) for all $w \in \mathbb{C}$ and $f \in F(\mathbb{C})$, we have

$$\langle f, K(w, .) \rangle_{F(\mathbb{C})} = f(w).$$

(c) If $f \in F(\mathbb{C})$, then

$$|f(w)| \le e^{|w|^2/2} ||f||_{F(\mathbb{C})}, \ w \in \mathbb{C}.$$

(d) The space $F(\mathbb{C})$ equipped with the inner product $\langle ., . \rangle_{F(\mathbb{C})}$ is a Hilbert space; and the set $\{\frac{w^n}{\sqrt{n!}}\}_{n \in \mathbb{N}}$ forms a Hilbertian basis for the space $F(\mathbb{C})$.

We denote by

• $L^p(\mu), 1 \leq p < \infty$, the space of measurable functions on \mathbb{R} , for which

$$\|f\|_{L^p(\mu)} := \left[\int_{\mathbb{R}} |f(z)|^p \mathrm{d}\mu(z)\right]^{1/p} < \infty.$$

Here, μ is the measure defined on \mathbb{R} by

$$\mathrm{d}\mu(z) := \frac{1}{\sqrt{2\pi}} \mathrm{d}z.$$

• U the kernel given for $w \in \mathbb{C}$ and $z \in \mathbb{R}$, by

$$U(w,z) := 2^{1/4} \exp(-\frac{w^2 + z^2}{2} + \sqrt{2}wz).$$

The kernel U satisfies the following properties [17].

(a) For $w \in \mathbb{C}$ and $z \in \mathbb{R}$, we have

$$|U(w,z)| \le 2^{1/4} e^{|w|^2/2}.$$
(2.1)

(b) For $w \in \mathbb{C}$ and $z \in \mathbb{R}$, we have

$$U(w,z) = \sum_{n=0}^{\infty} \frac{h_n(z)}{\sqrt{n!}} w^n,$$

where h_n are the Hermite functions given by

$$h_n(z) := 2^{1/4} (2^{-n} n!)^{1/2} e^{-z^2/2} \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^k}{k! (n-2k)!} (2z)^{n-2k},$$

with $\lfloor n/2 \rfloor$ being the integer part of n/2.

(c) For all $v, w \in \mathbb{C}$, we have

$$e^{vw} = \int_{\mathbb{R}} U(v,z)U(w,z)\mathrm{d}\mu(z).$$

(d) For all $w \in \mathbb{C}$, the function $z \to U(w, z) \in L^2(\mu)$, and

$$||U(w,.)||_{L^{2}(\mu)}^{2} = e^{|w|^{2}}.$$
(2.2)

The kernel U gives rise to an integral transform B, which is called the Segal-Bargmann transform on \mathbb{C} , and defined for f in $L^2(\mu)$, by

$$B(f)(w) := \int_{\mathbb{R}} U(w,z) f(z) \mathrm{d} \mu(z), \ \ w \in \mathbb{C}.$$

From relations (2.1) and (2.2) the Segal-Bargmann transform satisfies the following properties.

Theorem 2.1 (i) For $f \in L^1(\mu)$ and $w \in \mathbb{C}$ we have

$$|B(f)(w)| \le 2^{1/4} e^{|w|^2/2} ||f||_{L^1(\mu)}.$$

(ii) For $f \in L^2(\mu)$ and $w \in \mathbb{C}$ we have

$$|B(f)(w)| \le e^{|w|^2/2} ||f||_{L^2(\mu)}.$$

The following theorem is proved in [17].

Theorem 2.2 The Segal-Bargmann transform B is an isometric isomorphism of $L^2(\mu)$ onto $F(\mathbb{C})$. In particular, we have

$$||B(f)||_{F(\mathbb{C})} = ||f||_{L^2(\mu)}, \quad f \in L^2(\mu).$$

Let β denote the family of entire functions g such that

$$\sup_{w\in\mathbb{C}}\left\{|g(w)|\exp(-\frac{|w|^2}{4}+\lambda|w|)\right\}<\infty,$$

for every $\lambda > 0$. Since $\{\frac{w^n}{\sqrt{n!}}\}_{n \in \mathbb{N}} \subset \beta$, the family β is dense in $F(\mathbb{C})$. The family β simplifies the presentation of the inverse operator B^{-1} (see [17]).

Uncertainty principles for the Segal-Bargmann transform

Theorem 2.3 (i) If $g \in \beta$, we have

$$B^{-1}(g)(z) = \int_{\mathbb{C}} g(w) \overline{U(w,z)} e^{-|w|^2} \mathrm{d}m(w), \quad z \in \mathbb{R}$$

(ii) If $g \in F(\mathbb{C})$ and $z \in \mathbb{R}$, we have

$$B^{-1}(g)(z) = \lim_{n \to \infty} \int_{\mathbb{C}} g_n(w) \overline{U(w,z)} e^{-|w|^2} \mathrm{d}m(w), \text{ in } L^2(\mu) \text{-sense},$$

where the sequence $\{g_n\} \subset \beta$ and converges to g in $F(\mathbb{C})$.

3. Heisenberg uncertainty principle

In this section we begin by establishing local uncertainty principle for the Segal-Bargmann transform B, more precisely we will show the following theorem.

Theorem 3.1 Let W be a measurable subset of \mathbb{C} such that $0 < m(W) < \infty$, and a > 0. If $f \in L^2(\mu)$, then

$$\|\chi_W B(f)\|_{L^2(\Omega)} \leq \begin{cases} K_1(a)(m(W))^a \| |x|^a f\|_{L^2(\mu)}, & a \in (0, \frac{1}{2}), \\ K_2(a)(m(W))^{1/2} \| f\|_{L^2(\mu)}^{1-\frac{1}{2a}} \| |x|^a f\|_{L^2(\mu)}^{\frac{1}{2a}}, & a > 1/2, \\ 2K_1(\frac{1}{4})(m(W))^{1/4} \| f\|_{L^2(\mu)}^{1/2} \| |x|^{1/2} f\|_{L^2(\mu)}^{1/2}, & a = 1/2, \end{cases}$$

where

$$K_1(a) = \frac{(1-2a)^{a-1}}{2^a \pi^{a/2} a^{2a}}, \quad K_2(a) = \frac{(4\pi)^{1/4} (2a-1)^{\frac{1-2a}{4a}}}{\sqrt{\sin(\frac{\pi}{2a})}}.$$

Proof (i) Let $f \in L^2(\mu)$. The first inequality holds if $|| |x|^a f ||_{L^2(\mu)} = \infty$. Assume that $|| |x|^a f ||_{L^2(\mu)} < \infty$. By Minkowski's inequality, for all r > 0,

$$\begin{aligned} \|\chi_W B(f)\|_{L^2(\Omega)} &\leq \|\chi_W B(f\chi_{|x|< r})\|_{L^2(\Omega)} + \|\chi_W B(f\chi_{|x|> r})\|_{L^2(\Omega)} \\ &\leq \|\chi_W B(f\chi_{|x|< r})\|_{L^2(\Omega)} + \|B(f\chi_{|x|> r})\|_{F(\mathbb{C})}. \end{aligned}$$

But

$$\|\chi_W B(f\chi_{|x|< r})\|_{L^2(\Omega))} = \left(\int_W |B(f\chi_{|x|< r})(w)|^2 \mathrm{d}\Omega(w)\right)^{1/2}.$$

By Theorem 2.1 (i), for $w \in \mathbb{C}$, we have

$$|B(f\chi_{|x|< r})(w)| \le 2^{1/4} e^{|w|^2/2} ||f\chi_{|x|< r}||_{L^1(\mu)}.$$

Thus,

$$\|\chi_W B(f\chi_{|x|< r})\|_{L^2(\Omega)} \le 2^{1/4} (m(W))^{1/2} \|f\chi_{|x|< r}\|_{L^1(\mu)}.$$

Hence, it follows from Theorem 2.2 that

$$\|\chi_W B(f)\|_{L^2(\Omega)} \le 2^{1/4} (m(W))^{1/2} \|f\chi_{|x| < r}\|_{L^1(\mu)} + \|f\chi_{|x| > r}\|_{L^2(\mu)}.$$

On the other hand, by Hölder's inequality and hypothesis a < 1/2,

$$||f\chi_{|x|< r}||_{L^{1}(\mu)} \leq ||x|^{-a}\chi_{|x|< r}||_{L^{2}(\mu)}||x|^{a}f||_{L^{2}(\mu)}$$

$$\leq \frac{2^{1/4}r^{-a+(1/2)}}{\pi^{1/4}(1-2a)^{1/2}} \| \, |x|^a f \|_{L^2(\mu)}.$$

Moreover,

$$\|f\chi_{|x|>r}\|_{L^{2}(\mu)} \leq r^{-a} \| \|x\|^{a} f\|_{L^{2}(\mu)}.$$

Thus, we deduce that

$$\|\chi_W B(f)\|_{L^2(\Omega)} \le \left[r^{-a} + \frac{2^{1/2} (m(W))^{1/2}}{\pi^{1/4} (1-2a)^{1/2}} r^{-a+(1/2)}\right] \||x|^a f\|_{L^2(\mu)}$$

We choose $r = \frac{2a^2\sqrt{\pi}}{1-2a}(m(W))^{-1}$, we obtain the first inequality. (ii) The second inequality holds if $||f||_{L^2(\mu)} = \infty$ or $||x|^a f||_{L^2(\mu)} = \infty$. Assume that

 $||f||_{L^{2}(\mu)} + ||x|^{a} f||_{L^{2}(\mu)} < \infty$. From [6] and hypothesis a > 1/2, we have

$$\|f\|_{L^{1}(\mu)} \leq \frac{(2\pi)^{1/4}(2a-1)^{\frac{1-2a}{4a}}}{\sqrt{\sin(\frac{\pi}{2a})}} \|f\|_{L^{2}(\mu)}^{1-\frac{1}{2a}} \|x|^{a}f\|_{L^{2}(\mu)}^{\frac{1}{2a}}$$

Then, according to this inequality we deduce that

$$\begin{aligned} |\chi_W B(f)||_{L^2(\Omega)} &\leq 2^{1/4} (m(W))^{1/2} ||f||_{L^1(\mu)} \\ &\leq K_2(a) (m(W))^{1/2} ||f||_{L^2(\mu)}^{1-\frac{1}{2a}} ||x|^a f||_{L^2(\mu)}^{\frac{1}{2a}}, \end{aligned}$$

which gives the second inequality.

(iii) Let r > 0. From the inequality $\left(\frac{|x|}{r}\right)^{1/4} \le 1 + \left(\frac{|x|}{r}\right)^{1/2}$, it follows that

$$|| |x|^{1/4} f ||_{L^{2}(\mu)} \leq r^{1/4} || f ||_{L^{2}(\mu)} + r^{-1/4} || |x|^{1/2} f ||_{L^{2}(\mu)}$$

Optimizing in r, we get

$$|||x|^{1/4}f||_{L^{2}(\mu)} \leq 2||f||_{L^{2}(\mu)}^{1/2}||x|^{1/2}f||_{L^{2}(\mu)}^{1/2}$$

Thus, we deduce that

$$\begin{aligned} \|\chi_W B(f)\|_{L^2(\Omega)} &\leq K_1(\frac{1}{4})(m(W))^{1/4} \| \|x\|^{1/4} f\|_{L^2(\mu)} \\ &\leq 2K_1(\frac{1}{4})(m(W))^{1/4} \|f\|_{L^2(\mu)}^{1/2} \| \|x\|^{1/2} f\|_{L^2(\mu)}^{1/2}, \end{aligned}$$

which gives the result for a = 1/2. \Box

Remark 3.2 Let a > 0. If $f \in L^2(\mu)$, then

$$\begin{split} \|B(f)\|_{L^{\frac{2}{1-2a},2}(\Omega)} &\leq K_1(a) \| \|x\|^a f\|_{L^2(\mu)}, \quad 0 < a < 1/2, \\ \|B(f)\|_{L^{\infty,2}(\Omega)} &\leq K_2(a) \|f\|_{L^2(\mu)}^{1-\frac{1}{2a}} \| \|x\|^a f\|_{L^2(\mu)}^{\frac{1}{2a}}, \quad a > 1/2, \\ \|B(f)\|_{L^{4,2}(\Omega)} &\leq 2K_1(\frac{1}{4}) \|f\|_{L^2(\mu)}^{1/2} \| \|x\|^{1/2} f\|_{L^2(\mu)}^{1/2}, \quad a = 1/2 \end{split}$$

where $L^{s,q}(\Omega)$ is the Lorentz-space defined by the norm

$$\|f\|_{L^{s,q}(\Omega)} := \sup_{\substack{W \subset \mathbb{C} \\ 0 < m(W) < \infty}} \left((m(W))^{\frac{1}{s} - \frac{1}{q}} \|\chi_W f\|_{L^q(\Omega)} \right).$$

We shall use the local uncertainty principle (Theorem 3.1) to obtain the following Heisenberg-Pauli-Weyl uncertainty principle for the Segal-Bargmann transform B, more precisely we will show the following theorem.

Theorem 3.3 Let a, b > 0. If $f \in L^2(\mu)$, then

$$||f||_{L^{2}(\mu)} \leq K(a,b) ||x|^{a} f||_{L^{2}(\mu)}^{\frac{2}{a+b}} ||w|^{b} B(f)||_{L^{2}(\Omega)}^{\frac{2}{a+b}},$$

where

$$K(a,b) = \begin{cases} \left[\left(\frac{b}{2a}\right)^{\frac{2a}{2a+b}} + \left(\frac{2a}{b}\right)^{\frac{b}{2a+b}} \right]^{1/2} (K_1(a))^{\frac{b}{2a+b}}, & a \in (0,\frac{1}{2}), \ b > 0 \\ \left[b^{\frac{1}{b+1}} + b^{-\frac{b}{b+1}} \right]^{\frac{ab+a}{2a+b}} (K_2(a))^{\frac{2ab}{2a+b}}, & a > 1/2, \ b > 0, \\ \left[(2b)^{\frac{1}{2b+1}} + (2b)^{-\frac{2b}{2b+1}} \right]^{\frac{2b+1}{2b+2}} (2K_1(\frac{1}{4}))^{\frac{2b}{b+1}}, & a = 1/2, \ b > 0. \end{cases}$$

Here $K_1(a)$ and $K_2(a)$ are the constants given by Theorem 3.1.

Proof (i) Let 0 < a < 1/2, b > 0 and r > 0. Then

$$||B(f)||_{F(\mathbb{C})}^{2} = \int_{|w| < r} |B(f)(w)|^{2} \mathrm{d}\Omega(w) + \int_{|w| > r} |B(f)(w)|^{2} \mathrm{d}\Omega(w).$$

Firstly,

$$\int_{|w|>r} |B(f)(w)|^2 \mathrm{d}\Omega(w) \le r^{-2b} ||w|^b B(f)||^2_{L^2(\Omega)}.$$

From Theorem 3.1, we get

$$\int_{|w| < r} |B(f)(w)|^2 \mathrm{d}\Omega(w) \le (K_1(a))^2 r^{4a} || |x|^a f ||_{L^2(\mu)}^2.$$

Combining the precedent relations, by Theorem 2.2 we obtain

$$||f||_{L^{2}(\mu)}^{2} \leq (K_{1}(a))^{2} r^{4a} ||x|^{a} f||_{L^{2}(\mu)}^{2} + r^{-2b} ||w|^{b} B(f)||_{L^{2}(\Omega)}^{2}.$$

Choosing $r = (\frac{b}{2a})^{\frac{1}{4a+2b}} (\frac{\||w|^b B(f)\|_{L^2(\Omega)}}{K_1(a)\| \|x\|^a f\|_{L^2(\mu)}})^{\frac{1}{2a+b}}$, we get the first inequality. (ii) Let a > 1/2, b > 0 and r > 0. From Theorem 3.1, we get

$$\int_{|w| < r} |B(f)(w)|^2 \mathrm{d}\Omega(w) \le (K_2(a))^2 r^2 ||f||_{L^2(\mu)}^{2-(1/a)} ||x|^a f||_{L^2(\mu)}^{1/a}.$$

Thus,

$$\|B(f)\|_{F(\mathbb{C})}^{2} \leq (K_{2}(a))^{2} r^{2} \|f\|_{L^{2}(\mu)}^{2-(1/a)} \||x|^{a} f\|_{L^{2}(\mu)}^{1/a} + r^{-2b} \||w|^{b} B(f)\|_{L^{2}(\Omega)}^{2}.$$

Choosing $r = \left(\frac{b \| \| w \|^b B(f) \|_{L^2(\Omega)}^2}{(K_2(a))^2 \| f \|_{L^2(\mu)}^{2-(1/a)} \| \| x \|^a f \|_{L^2(\mu)}^{1/a}}\right)^{\frac{1}{2b+2}}$, we get the second inequality. (iii) Let a = 1/2, b > 0 and r > 0. From Theorem 3.1, we get

$$\int_{|w| < r} |B(f)(w)|^2 \mathrm{d}\Omega(w) \le (2K_1(\frac{1}{4}))^2 r \|f\|_{L^2(\mu)} \||x|^{1/2} f\|_{L^2(\mu)}.$$

Therefore,

$$||B(f)||_{F(\mathbb{C})}^2 \le (2K_1(\frac{1}{4}))^2 r ||f||_{L^2(\mu)} ||x|^{1/2} f||_{L^2(\mu)} + r^{-2b} ||w|^b B(f)||_{L^2(\Omega)}^2.$$

Choosing $r = \left(\frac{b \| \|w\|^b B(f)\|_{L^2(\Omega)}^2}{2(K_1(\frac{1}{4}))^2 \|f\|_{L^2(\mu)} \| \|x\|^{1/2} f\|_{L^2(\mu)}}\right)^{\frac{1}{2b+1}}$, we get the third inequality. \Box

Remark 3.4 Let $f \in L^2(\mu)$. In particular case (a = b = 1), we obtain the following Heisenberg's inequality for the Segal-Bargmann transform B,

$$\|f\|_{L^{2}(\mu)}^{3} \leq 8\sqrt{\pi} \| \|x\|_{L^{2}(\mu)} \| \|w\|_{B}(f)\|_{L^{2}(\Omega)}^{2}.$$
(3.1)

Let Λ be all $f \in L^2(\mu)$ such that

$$\Delta_1(f) = \frac{\||x|f\|_{L^2(\mu)}}{\|f\|_{L^2(\mu)}}, \quad \Delta_2(f) = \frac{\||w|B(f)\|_{L^2(\Omega)}}{\|f\|_{L^2(\mu)}}$$

We obtain a characterization of the region of Heisenberg's inequality (see Figure 1),

Figure 1 Region of the concentrated Heisenberg's inequality (3.1)

Theorem 3.5 (Nash-type inequality) Let b > 0. If $f \in L^2(\mu)$, then

$$||f||_{L^{2}(\mu)} \leq D(b) ||w|^{b} B(f)||_{L^{2}(\Omega)}$$

where

$$D(b) = \left[b^{\frac{1}{b+1}} + b^{-\frac{b}{b+1}}\right]^{\frac{b+1}{2}}.$$

Proof Let $f \in L^2(\mu)$, b > 0 and r > 0. Then

$$||B(f)||_{F(\mathbb{C})}^{2} = \int_{|w| < r} |B(f)(w)|^{2} \mathrm{d}\Omega(w) + \int_{|w| > r} |B(f)(w)|^{2} \mathrm{d}\Omega(w).$$

Firstly,

$$\int_{|w|>r} |B(f)(w)|^2 \mathrm{d}\Omega(w) \le r^{-2b} ||w|^b B(f)||^2_{L^2(\Omega)}$$

From Theorem 2.1 (ii), we get

$$\int_{|w| < r} |B(f)(w)|^2 \mathrm{d}\Omega(w) \le r^2 ||f||_{L^2(\mu)}^2.$$

Combining the precedent relations, by Theorem 2.2 we obtain

$$||f||_{L^{2}(\mu)}^{2} \leq r^{2} ||f||_{L^{2}(\mu)}^{2} + r^{-2b} ||w|^{b} B(f)||_{L^{2}(\Omega)}^{2}.$$

Choosing $r = b^{\frac{1}{2b+2}} \left(\frac{\| |w|^b B(f) \|_{L^2(\Omega)}}{\| f \|_{L^2(\mu)}} \right)^{\frac{1}{b+1}}$, we get the desired inequality. \Box

4. Heisenberg principle involving L^1 and L^2 -norms

In this section we will establish uncertainty principles for the Segal-Bargmann transform B involving L^1 and L^2 -norms. More precisely we will show the following theorems.

Theorem 4.1 (Clarkson-type inequality) Let a > 0. If $f \in L^1 \cap L^2(\mu)$, then

$$||f||_{L^{1}(\mu)} \leq D_{1}(a) ||f||_{L^{2}(\mu)}^{\frac{2a}{2a+1}} ||x|^{a} f||_{L^{1}(\mu)}^{\frac{1}{2a+1}}$$

where

$$D_1(a) = \left(\frac{2}{\pi}\right)^{\frac{a}{2(2a+1)}} \left[(2a)^{\frac{1}{2a+1}} + (2a)^{-\frac{2a}{2a+1}} \right].$$

Proof Let $f \in L^1 \cap L^2(\mu)$ and r > 0. Then

$$\|f\|_{L^{1}(\mu)} = \|f\chi_{|x| < r}\|_{L^{1}(\mu)} + \|(1 - \chi_{|x| < r})f\|_{L^{1}(\mu)}$$

Firstly, $\|(1-\chi_{|x|< r})f\|_{L^1(\mu)} \leq r^{-a} \||x|^a f\|_{L^1(\mu)}$. By Hölder's inequality, we get

$$\|f\chi_{|x|< r}\|_{L^{1}(\mu)} \leq (\mu(|x|< r))^{1/2} \|f\|_{L^{2}(\mu)} \leq \left(r\sqrt{\frac{2}{\pi}}\right)^{1/2} \|f\|_{L^{2}(\mu)}.$$

Combining the precedent relations, we obtain

$$\|f\|_{L^{1}(\mu)} \leq \left(r\sqrt{\frac{2}{\pi}}\right)^{1/2} \|f\|_{L^{2}(\mu)} + r^{-a} \||x|^{a} f\|_{L^{1}(\mu)}.$$

Choosing $r = \left(\frac{2a \| \|x\|^a f\|_{L^1(\mu)}}{(\frac{2}{\pi})^{1/4} \|f\|_{L^2(\mu)}}\right)^{\frac{2}{2a+1}}$, we get the desired inequality. \Box

Theorem 4.2 (Nash-type inequality) Let b > 0. If $f \in L^1 \cap L^2(\mu)$, then

$$||f||_{L^{2}(\mu)} \leq D_{2}(b) ||f||_{L^{1}(\mu)}^{\frac{b}{b+1}} ||w|^{b} B(f)||_{L^{2}(\Omega)}^{\frac{1}{b+1}}$$

where

$$D_2(b) = \left[\sqrt{2}\left(\frac{b}{\sqrt{2}}\right)^{\frac{1}{b+1}} + \left(\frac{b}{\sqrt{2}}\right)^{-\frac{b}{b+1}}\right]^{1/2}.$$

Proof Let $f \in L^1 \cap L^2(\mu)$, b > 0 and r > 0. Then

$$\|B(f)\|_{F(\mathbb{C})}^2 = \int_{|w| < r} |B(f)(w)|^2 \mathrm{d}\Omega(w) + \int_{|w| > r} |B(f)(w)|^2 \mathrm{d}\Omega(w).$$

Firstly,

$$\int_{|w|>r} |B(f)(w)|^2 \mathrm{d}\Omega(w) \le r^{-2b} ||w|^b B(f)||^2_{L^2(\Omega)}.$$

From Theorem 2.1 (i), we get

$$\int_{|w| < r} |B(f)(w)|^2 \mathrm{d}\Omega(w) \le \sqrt{2}r^2 ||f||^2_{L^1(\mu)}$$

Combining the precedent relations, by Theorem 2.2 we obtain

$$\|f\|_{L^{2}(\mu)}^{2} \leq \sqrt{2}r^{2}\|f\|_{L^{1}(\mu)}^{2} + r^{-2b}\|\|w\|^{b}B(f)\|_{L^{2}(\Omega)}^{2}.$$

Choosing $r = \left(\frac{b}{\sqrt{2}}\right)^{\frac{1}{2b+2}} \left(\frac{\||w|^{b}B(f)\|_{L^{2}(\Omega)}}{\|f\|_{L^{1}(\mu)}}\right)^{\frac{1}{b+1}}$, we get the desired inequality. \Box By combining the Clarkson-type inequality (Theorem 4.1) and the Nash-type inequality

By combining the Clarkson-type inequality (Theorem 4.1) and the Nash-type inequality (Theorem 4.2) we obtain the following uncertainty inequality of Heisenberg-type.

- **Theorem 4.3** Let a, b > 0. If $f \in L^1 \cap L^2(\mu)$, then (i) $\|f\|_{L^1(\mu)}^{\frac{1}{2b+1}} \|f\|_{L^2(\mu)}^{\frac{1}{2a+1}} \le C_1 \||x|^a f\|_{L^1(\mu)}^{\frac{1}{2a+1}} \||w|^{2b} B(f)\|_{L^2(\Omega)}^{\frac{1}{2b+1}}$, where $C_1 = D_1(a)D_2(2b)$. (ii) $\|f\|_{L^2(\mu)} \le C_2 \||x|^a f\|_{L^1(\mu)}^{\frac{2b}{2a+2b+1}} \||w|^{2b} B(f)\|_{L^2(\Omega)}^{\frac{2a+1}{2a+2b+1}}$, where

$$C_{2} = (D_{1}(a))^{\frac{2b(2a+1)}{2a+2b+1}} (D_{2}(2b))^{\frac{(2a+1)(2b+1)}{2a+2b+1}}$$

(iii) $||f||_{L^{1}(\mu)} \leq C_{3} ||x|^{a} f||_{L^{1}(\mu)}^{\frac{2b+1}{2a+2b+1}} ||w|^{2b} B(f)||_{L^{2}(\Omega)}^{\frac{2a}{2a+2b+1}}$, where
$$C_{3} = (D_{1}(a))^{\frac{(2a+1)(2b+1)}{2a+2b+1}} (D_{2}(2b))^{\frac{2a(2b+1)}{2a+2b+1}}$$

Remark 4.4 The uncertainty principles given by Theorem 2.4, are the analogs of the results obtained by Laeng-Morpurgo [10] and Morpurgo [11] for the Fourier transform, and the results obtained by Ghobber [22] for the Dunkl transform. In particular case, if a = b, we obtain the following Heisenberg's inequalities for the Segal-Bargmann transform B.

(i) For a > 0 and $f \in L^1 \cap L^2(\mu)$:

$$||f||_{L^{1}(\mu)} ||f||_{L^{2}(\mu)} \leq C ||x|^{a} f||_{L^{1}(\mu)} ||w|^{2a} B(f)||_{L^{2}(\Omega)},$$

where $C = (D_1(a)D_2(2a))^{2a+1}$. If a = b = 1:

$$\|f\|_{L^{1}(\mu)}\|f\|_{L^{2}(\mu)} \leq \frac{(\sqrt{3})^{9}}{4\sqrt{\pi}}\|\|x\|f\|_{L^{1}(\mu)}\|\|w\|^{2}B(f)\|_{L^{2}(\Omega)}.$$
(4.1)

Let Λ be all $f \in L^1 \cap L^2(\mu)$ such that

$$\Delta_1(f) = \frac{\| \|x\|f\|_{L^1(\mu)}}{\|f\|_{L^1(\mu)}}, \quad \Delta_2(f) = \frac{\| \|w\|^2 B(f)\|_{L^2(\Omega)}}{\|f\|_{L^2(\mu)}}$$

We obtain a characterization of the region of Heisenberg's inequality (see Figure 2),

$$\{(\Delta_{1}(f), \Delta_{2}(f)), f \in \Lambda\} \subset \{(x, y), x, y > 0, xy \ge \frac{4\sqrt{\pi}}{(\sqrt{3})^{9}}\}.$$

Figure 2 Region of the concentrated Heisenberg's inequality (4.1)

(ii) For a = b = 1 and $f \in L^1 \cap L^2(\mu)$:

$$\|f\|_{L^{2}(\mu)}^{5} \leq \frac{(\sqrt{2})^{3}(\sqrt{3})^{21}}{\pi} \|\|x\|f\|_{L^{1}(\mu)}^{2} \|\|w\|^{2} B(f)\|_{L^{2}(\Omega)}^{3}.$$
(4.2)

Uncertainty principles for the Segal-Bargmann transform

Let Λ be all $f\in L^1\cap L^2(\mu)$ such that

$$\Delta_1(f) = \frac{\||x|f\|_{L^1(\mu)}}{\|f\|_{L^2(\mu)}}, \quad \Delta_2(f) = \frac{\||w|^2 B(f)\|_{L^2(\Omega)}}{\|f\|_{L^2(\mu)}}.$$

We obtain a characterization of the region of Heisenberg's inequality (see Figure 3),

$$\{(\Delta_1(f), \Delta_2(f)), f \in \Lambda\} \subset \{(x, y), x, y > 0, x^2y^3 \ge \frac{\pi}{(\sqrt{2})^3(\sqrt{3})^{21}}\}.$$

Figure 3 Region of the concentrated Heisenberg's inequality (4.2)

(iii) For
$$a = b = 1$$
 and $f \in L^1 \cap L^2(\mu)$:
 $\|f\|_{L^2(\mu)}^5 \le \frac{3^{12}}{\sqrt{\pi}(\sqrt{2})^{11}} \|\|x\|f\|_{L^1(\mu)}^3 \|\|w\|^2 B(f)\|_{L^2(\Omega)}^2.$ (4.3)

Let Λ be all $f\in L^1\cap L^2(\mu)$ such that

$$\Delta_1(f) = \frac{\||x|f\|_{L^1(\mu)}}{\|f\|_{L^2(\mu)}}, \quad \Delta_2(f) = \frac{\||w|^2 B(f)\|_{L^2(\Omega)}}{\|f\|_{L^2(\mu)}}.$$

We obtain a characterization of the region of Heisenberg's inequality (see Figure 4),

Figure 4 Region of the concentrated Heisenberg's inequality (4.3)

5. Donoho-Stark uncertainty principle

Let E be a measurable subset of \mathbb{R} . We say that a function $f \in L^p(\mu)$, p = 1, 2, is ε concentrated on E in $L^p(\mu)$ -norm, if

$$\|f - \chi_E f\|_{L^p(\mu)} \le \varepsilon \|f\|_{L^p(\mu)}.$$
(5.1)

Let W be a measurable subset of \mathbb{C} and let $f \in L^2(\mu)$. We say that B(f) is η -concentrated on W in $L^2(\Omega)$ -norm, if

$$||B(f) - \chi_W B(f)||_{L^2(\Omega)} \le \eta ||B(f)||_{F(\mathbb{C})}.$$
(5.2)

The Donoho-Stark uncertainty principle for the Segal-Bargmann transform B is given by the following theorem.

Theorem 5.1 (Donoho-Stark-type inequality) Let E be a measurable subset of \mathbb{R} , W be a measurable subset of \mathbb{C} and $f \in L^2(\mu)$. If f is ε -concentrated on E in $L^2(\mu)$ -norm, B(f) is η -concentrated on W in $L^2(\Omega)$ -norm and $\varepsilon + \eta < 1$, then

$$\mu(E)(m(W) \ge \frac{1}{\sqrt{2}}(1 - \eta - \varepsilon)^2.$$
 (5.3)

Proof Let $f \in L^2(\mu)$. Assume that $\mu(E) < \infty$ and $m(W) < \infty$. From (5.1), (5.2) and Theorem 2.2 it follows that

$$\begin{split} \|B(f) - \chi_W B(\chi_E f)\|_{L^2(\Omega)} &\leq \|B(f) - \chi_W B(f)\|_{L^2(\Omega)} + \|\chi_W B(f - \chi_E f)\|_{L^2(\Omega)} \\ &\leq \eta \|B(f)\|_{F(\mathbb{C})} + \|B(f - \chi_E f)\|_{F(\mathbb{C})} \\ &\leq (\eta + \varepsilon) \|f\|_{L^2(\mu)}. \end{split}$$

Then the triangle inequality shows that

$$||B(f)||_{F(\mathbb{C})} \leq ||\chi_W B(\chi_E f)||_{L^2(\Omega)} + ||B(f) - \chi_W B(\chi_E f)||_{L^2(\Omega)}$$

$$\leq ||\chi_W B(\chi_E f)||_{L^2(\Omega)} + (\eta + \varepsilon) ||f||_{L^2(\mu)}.$$

But

$$\|\chi_W B(\chi_E f)\|_{L^2(\Omega)} = \left(\int_W |B(\chi_E f)(w)|^2 \mathrm{d}\Omega(w)\right)^{1/2}.$$

By Theorem 2.1 (i) and Hölder's inequality we have

$$|B(\chi_E f)(w)| \le 2^{1/4} e^{|w|^2/2} \|\chi_E f\|_{L^1(\mu)} \le 2^{1/4} e^{|w|^2/2} \|f\|_{L^2(\mu)} (\mu(E))^{1/2}.$$

Thus, $\|\chi_W B(\chi_E f)\|_{L^2(\Omega)} \le 2^{1/4} (\mu(E))^{1/2} (m(W))^{1/2} \|f\|_{L^2(\mu)}$, and

$$||B(f)||_{F(\mathbb{C})} \le 2^{1/4} (\mu(E))^{1/2} (m(W))^{1/2} ||f||_{L^2(\mu)} + (\eta + \varepsilon) ||f||_{L^2(\mu)}.$$

By applying Theorem 2.2, we obtain $(\mu(E))^{1/2}(m(W))^{1/2} \ge 2^{-1/4}(1-\eta-\varepsilon)$, which gives the desired result. \Box

Remark 5.2 Let $\Delta_1(E) = \mu(E)$, $\Delta_2(W) = m(W)$. From Theorem 5.1, we obtain a characterization of the region of Donoho-Stark's inequality (see Figure 5),

$$\left\{ (\Delta_1(E), \Delta_2(W)), E \subset \mathbb{R}, W \subset \mathbb{C} \right\} \subset \left\{ (x, y), x, y > 0, xy \ge \frac{1}{\sqrt{2}} (1 - \eta - \varepsilon)^2 \right\}.$$

Figure 5 Region of the concentrated Donoho-Stark's inequality (5.3)

Theorem 5.3 (Donoho-Stark-type inequality) Let E be a measurable subset of \mathbb{R} , W be a measurable subset of \mathbb{C} and $f \in L^1 \cap L^2(\mu)$. If f is ε -concentrated on E in $L^1(\mu)$ -norm, B(f) is η -concentrated on W in $L^2(\Omega)$ -norm and $\varepsilon, \eta < 1$, then $\mu(E)m(W) \geq \frac{1}{\sqrt{2}}(1-\varepsilon)^2(1-\eta)^2$.

Proof Let $f \in L^1 \cap L^2(\mu)$. Assume that $\mu(E) < \infty$ and $m(W) < \infty$. From (5.1) we have

$$\begin{split} \|f\|_{L^{1}(\mu)} &\leq \varepsilon \|f\|_{L^{1}(\mu)} + \|\chi_{E}f\|_{L^{1}(\mu)} \\ &\leq \varepsilon \|f\|_{L^{1}(\mu)} + (\mu(E))^{1/2} \|f\|_{L^{2}(\mu)}. \end{split}$$

Thus

$$\|f\|_{L^{1}(\mu)} \leq \frac{(\mu(E))^{1/2}}{1-\varepsilon} \|f\|_{L^{2}(\mu)}.$$
(5.4)

On the other hand, from (5.2) it follows that

$$||B(f)||_{L^{2}(m)} \leq ||B(f) - \chi_{W}B(f)||_{L^{2}(\Omega)} + ||\chi_{W}B(f)||_{L^{2}(\Omega)}$$

$$\leq \eta ||B(f)||_{F(\mathbb{C})} + 2^{1/4} (m(W))^{1/2} ||f||_{L^{1}(\mu)}.$$

Thus by Theorem 2.2,

$$\|f\|_{L^{2}(\mu)} \leq \frac{2^{1/4} (m(W))^{1/2}}{1 - \eta} \|f\|_{L^{1}(\mu)}.$$
(5.5)

Combining (5.4) and (5.5) we obtain the result of this theorem. \Box

Remark 5.4 The uncertainty principles given by Theorems 5.1 and 5.3, are the analogs of the results obtained by Donoho-Stark [7] for the Fourier transform, by Kawazoe-Mejjaoli [23] for the Dunkl transform and by Soltani [24] for the Sturm-Liouville transform.

In the following we establish uncertainty inequality of Matolcsi-Szücs-type for the Segal-Bargmann transform B.

Theorem 5.5 (Matolcsi-Szücs-type inequality) Let $f \in L^1 \cap L^2(\mu)$. If $A_f = \{x \in \mathbb{R} : f(x) \neq 0\}$ and $A_{B(f)} = \{w \in \mathbb{C} : B(f)(w) \neq 0\}$, then $\mu(A_f)m(A_{B(f)}) \geq \frac{1}{\sqrt{2}}$.

Proof Let $f \in L^1 \cap L^2(\mu)$. We put $W = A_{B(f)}$, then by Theorem 2.1 (i) and Hölder's inequality we obtain

$$||B(f)||_{L^{2}(\Omega)} = ||\chi_{W}B(f)||_{L^{2}(\Omega)} \le 2^{1/4} (m(W))^{1/2} ||f||_{L^{1}(\mu)}$$

$$\leq 2^{1/4} (m(W))^{1/2} (\mu(A_f))^{1/2} ||f||_{L^2(\mu)}.$$

Then Theorem 2.2 gives the desired result. \Box

Remark 5.6 The uncertainty principle given by Theorem 5.5 is the analogs of the result obtained by Matolcsi-Szücs [9] and Benedicks [8] for the Fourier transform.

Conflict of Interests The author declares that there is no conflict of interests regarding the publication of this paper.

References

- [1] A. BONAMI, B. DEMANGE, P. JAMING. Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoamericana, 2003, **19**(1): 23–55.
- M. COWLING, J. F. PRICE. Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality. SIAM J. Math. Anal., 1984, 15(1): 151–165.
- [3] I. I. HIRSCHMAN. A note on entropy. Amer. J. Math., 1957, 79: 152–156.
- [4] W. G. FARIS. Inequalities and uncertainty inequalities. J. Mathematical Phys., 1978, 19(2): 461-466.
- [5] J. F. PRICE. Inequalities and local uncertainty principles. J. Math. Phys., 1983, 24(7): 1711–1714.
- [6] J. F. PRICE. Sharp local uncertainty principles. Studia Math., 1987, 85: 37-45.
- [7] D. L. DONOHO, P. B. STARK. Uncertainty principles and signal recovery. SIAM J. Appl. Math., 1989, 49(3): 906–931.
- [8] M. BENEDICKS. On Fourier transforms of functions supported on sets of finite Lebesgue measure. J. Math. Anal. Appl., 1985, 106(1): 180–183.
- [9] T. MATOLCSI, J. SZÚCS. Intersection des mesures spectrales conjuguées. C. R. Acad. Sci. Paris Sér. A-B, 1973, 277: A841–A843.
- [10] E. LAENG, C. MORPURGO. An uncertainty inequality involving L1-norms. Proc. Amer. Math. Soc., 1999, 127(12): 3565–3572.
- [11] C. MORPURGO. Extremals of some uncertainty inequalities. Bull. London Math. Soc., 2001, 33(1): 52–58.
- [12] G. B. FOLLAND, A. SITARAM. The uncertainty principle; A Mathematical Survey. J. Fourier Anal. Appl., 1997, 3(3): 207–238.
- [13] A. NEMRI, F. SOLTANI. L^p uncertainty principles for the Fourier transform with numerical aspect. Appl. Anal., 2016, 95(5): 931–943.
- [14] F. SOLTANI, A. NEMRI. Analytical and numerical approximation formulas for the Fourier multiplier operators. Complex Anal. Oper. Theory, 2015, 9(1): 121–138.
- [15] F. SOLTANI, A. NEMRI. Analytical and numerical applications for the Fourier multiplier operators on $\mathbb{R}^n \times (0, \infty)$. Appl. Anal., 2015, **94**(8): 1545–1560.
- [16] C. A. BERGER, L. A. COBURN. Toeplitz operators on the Segal-Bargmann space. Trans. Amer. Math. Soc., 1987, 301(2): 813–829.
- [17] V. BARGMANN. On a Hilbert space of analytic functions and an associated integral transform. Comm. Pure Appl. Math., 1961, 14: 187–214.
- [18] F. SOLTANI. Toeplitz and translation operators on the q-Fock spaces. Adv. Pure Math., 2011, 1: 325–333.
- [19] F. SOLTANI. Operators and Tikhonov regularization on the Fock space. Int. Trans. Spec. Funct., 2014, 25(4): 283–294.
- [20] Kehe ZHU. Uncertainty principles for the Fock space. Preprint 2015, arXiv: 1501.02754V1.
- [21] S. GHOBBER, P. JAMING. Uncertainty principles for integral operators. Studia Math., 2014, 220(3): 197–220.
- [22] S. GHOBBER. Uncertainty principles involving L¹-norms for the Dunkl transform. Int. Trans. Spec. Funct., 2013, 24(6): 491–501.
- [23] T. KAWAZOE, H. MEJJAOLI. Uncertainty principles for the Dunkl transform. Hiroshima Math. J., 2010, 40(2): 241–268.
- [24] F. SOLTANI. Donoho-Stark uncertainty principle associated with a singular second-order differential operator. Int. J. Anal. Appl., 2014, 4(1): 1–10.