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Abstract In a paper published in Acta Mathematica Sinica (2016, 59(4)) we obtained some

representation theorems for the conjugate spaces of some l0 type F -normed spaces. In this pa-

per, for a sequence of normed spaces {Xi}, we study the representation problems of conjugate

spaces of some l0({Xi}) type F -normed spaces, obtain the algebraic representation continued

equalities

(l0({Xi}))∗
A
= (c000({Xi}))∗

A
= c00({X∗

i }),

(l0(X))∗
A
= (c0(X))∗

A
= (c00(X))∗

A
= (c000(X))∗

A
= c00(X

∗),

and the topological representation ((c000({Xi}))∗, sw∗) = c000({X∗
i }), where sw∗ is the sequen-

tial weak star topology. For the sequences of inner product spaces and number fields with the

usual topology, the concrete forms of the basic representation theorems are obtained at last.

Keywords l0({Xi}) type F -normed space; locally convex space; locally bounded space;

sequential weak star topology; representation theorem
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1. Introduction

Representation theory is one of core problems for many branches of mathematics [1–3]. For

some l0 type F -normed scalar-valued sequence spaces, we obtained in [3] some representation

theorems of their conjugate spaces. Extending scalar-valued sequence spaces to vector-valued

sequence spaces, this paper studies the representation problem of conjugate spaces of some

l0({Xi}) type F -normed vector-valued sequence spaces.

Let X be a vector space over number field K (R or C). An F -norm on X is a function

∥ · ∥ : X → R+ satisfying the following conditions:

(n1) ∥x∥ = 0 ⇔ x = θ (zero element);

(n2) ∥ax∥ ≤ ∥x∥, x ∈ X, a ∈ K, |a| ≤ 1;

(n3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥, x, y ∈ X;

(n4) lima→0 ∥ax∥ → 0, x ∈ X.

If ∥ · ∥ is an F -norm, then it induces on X a metrizable vector topology, and (X, ∥ · ∥) is called
an F -normed space. If the monotonicity (n2) is replaced by the absolute homogeneity
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(n′2) ∥ax∥ = |a|∥x∥, x ∈ X, a ∈ K,

then ∥ · ∥ is called a norm and (X, ∥ · ∥) a normed space. If condition (n2) is replaced by the

p-absolute homogeneity (0 < p ≤ 1)

(n′′2) ∥ax∥ = |a|p∥x∥, x ∈ X, a ∈ K,

then ∥ · ∥ is called a p-norm and (X, ∥ · ∥) a p-normed space.

The difference between an F -norm and a norm is just the absolute homogeneity. However,

this small gap makes F -normed spaces much more complicated than normed spaces.

Let (Xi, ∥ · ∥i) be a sequence of normed spaces over K. Then on the Cartesian product∏∞
i=1 Xi, the function

∥x∥0 =
∞∑
i=1

1

2i
∥ξi∥i

1 + ∥ξi∥i
, x = (ξi) ∈

∞∏
i=1

Xi (1.1)

satisfies the conditions (n1), (n2) and (n4) clearly. From the inequality

u+ v

1 + u+ v
≤ u

1 + u
+

v

1 + v
, u, v ∈ R+

and the monotonicity of u
1+u on R+, the function ∥ · ∥0 also satisfies the inequality ∥x + y∥0 ≤

∥x∥0+∥y∥0 for any x, y ∈
∏∞

i=1 Xi, so ∥·∥0 is an F -norm on
∏∞

i=1 Xi. From now on, the symbol

l0({Xi}) is used to denote the vector space
∏∞

i=1 Xi with the F -norm ∥ · ∥0, i.e.,

l0({Xi}) =
( ∞∏

i=1

Xi, ∥ · ∥0
)
. (1.2)

Let us make clear the meanings of other symbols used in the following. For a sequence

(Xi, ∥ · ∥i) of normed space, let

c00({Xi}) =
{
x = (ξi) ∈

∞∏
i=1

Xi : ∃n ∈ N such that ξi = θ for i > n
}
.

When (Xi, ∥ · ∥i) ≡ (X, ∥ · ∥), a same normed space, we use l0(X) to denote l0({Xi}), and let

c(X) =
{
x = (ξi) ∈ XN : (ξi) is convergent in X

}
,

c0(X) =
{
x = (ξi) ∈ XN : (ξi) is convergent to θ in X

}
,

c00(X) =
{
x = (ξi) ∈ XN : ∃n ∈ N such that ξi = θ for i > n

}
.

Now as vector spaces, we have the natural inclusion relations c00({Xi}) ⊂ l0({Xi}) and

c00(X) ⊂ c0(X) ⊂ c(X) ⊂ l0(X);

as topological vector spaces, the symbols c00({Xi}), c00(X), c0(X) and c(X) are used to denote

the corresponding normed spaces with the norm defined by

∥x∥∞ = sup
i

∥ξi∥, x = (ξi). (1.3)

The symbols l0({Xi}), c000({Xi}) and l0(X), c000(X), c00(X), c0(X) are used to denote the cor-

responding F -normed spaces with the F -norm ∥ · ∥0, respectively, referred to as l0({Xi}) type

spaces. When (Xi, ∥ · ∥i) ≡ (K, | · |), the symbols l0, c0, c00, c
0
00 stand for the corresponding
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scalar-valued sequence spaces with F -norm ∥·∥0, the symbols c, c0, c00 denote the corresponding

vector spaces or normed spaces with norm ∥ · ∥∞, respectively.

If (X∗
i , ∥ · ∥i) is used to denote the conjugate space of (Xi, ∥ · ∥i) with the norm defined by

∥f∥i = sup
∥ξi∥i≤1

∥f(ξi)∥, f ∈ X∗
i ,

then c000({X∗
i }) is the F -normed space with F -norm ∥ · ∥0 and c00({X∗

i }) is the corresponding

normed space with norm ∥ · ∥∞, respectively. The meanings of c000(X
∗) and c00(X

∗) are self-

evident.

By the same arguments used in [4,5] it is easy to obtain:

Proposition 1.1 The convergence in l0({Xi}) type spaces is equivalent to coordinate-wise

convergence, i.e., for x(m) = (ξ
(m)
i ), x(0) = (ξ

(0)
i ) ∈ l0({Xi}) (or c000({Xi}), etc.),

lim
m→∞

x(m) = x(0) ⇔ lim
m→∞

ξ
(m)
i = ξ

(0)
i , i = 1, 2, . . . . (1.4)

The following proposition reveals the intrinsic properties of l0({Xi}) type spaces.

Proposition 1.2 Every l0({Xi}) type space is locally convex, but non-locally bounded.

Proof It follows from Proposition 1.1 that the topology on l0({Xi}) is just the product topology
on

∏∞
i=1 Xi. Then by the local convexity of Xi and the fact that the product space of locally

convex spaces is still locally convex [5, p.52] we know that l0({Xi}) is also locally convex, and

the family of convex sets{ n∏
j=1

Dij ×
∏
k ̸=ij

Xk : n ∈ N, Dij is some convex θ-neighborhood in Xij

}
(1.5)

constitutes the θ-neighborhood basis of l0({Xi}).
The image of any bounded set under continuous linear mapping is also bounded. If B

is a bounded convex set in
∏∞

i=1 Xi, then its image Pi(B) under any natural projection Pi :∏∞
i=1 Xi → Xi is also bounded, so for each i = 1, 2, . . ., there exists a bounded set Bi in Xi such

that B ⊂
∏∞

i=1 Bi. Thus by (1.5) we know that there is not any bounded θ-neighborhood in∏∞
i=1 Xi, so l0({Xi}), or

∏∞
i=1 Xi equipped with the product topology, is non-locally bounded.

The same arguments can be used to verify the same conclusion for other l0({Xi}) type spaces.

�
For a p-normed space (X, ∥ · ∥), if its conjugate space X∗ is nontrivial, then the function

∥f∥ = sup
∥x∥≤1

|f(x)|, f ∈ X∗ (1.6)

makes (X∗, ∥·∥) into a new normed space. In this case, it is very important to study the isometric

representation of (X∗, ∥ · ∥). For l0({Xi}) type spaces, the local convexity makes their conjugate

spaces large enough to separate the points of them [4,6], but the non-local boundedness means

that it is impossible to equip them with any p-norm [5, p.73]. Thus it is also impossible to endow

their conjugate spaces with any (F - )norm via equation (1.6), so there is no sense in studying

the isometrical representation of their conjugate spaces. But now we can do the following two
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things: (a) looking for the algebraic representation of their conjugate spaces; (b) looking for the

topological representation of their conjugate spaces equipped with some natural topologies.

On the conjugate spaces of l0({Xi}) type spaces, there are two most natural vector topolo-

gies, one is the weak star topology w∗ induced by the pointwise convergence of nets

fλ
w∗

→ f ⇔ fλ(x) → f(x), ∀x ∈ l0({Xi})(etc.), (1.7)

where fλ, f ∈ (l0({Xi}))∗(etc.) (λ ∈ Λ), the other is the sequential weak star topology sw∗

induced by the pointwise convergence of sequences

fn
sw∗

→ f ⇔ fn(x) → f(x), ∀x ∈ l0({Xi})(etc.) (1.8)

where fn, f ∈ (l0({Xi}))∗(etc.) (n ∈ N). The weak star topology w∗ is the most common vector

topology on conjugate spaces [4–6]. On the conjugate spaces of l0({Xi}) type spaces, it is not

difficult to verify that the family of sets

B = {((fn), f) : fn, f ∈ (l0({Xi}))∗(etc.), fn(x) → f(x), ∀x ∈ l0({Xi})(etc.)}

satisfies the axiom of convergence classes, so by [7, chap.2, Theorem 9] there exits a unique

topology sw∗ on (l0({Xi}))∗ (etc.) such that the sequence fn
sw∗

→ f if and only if ((fn), f) ∈ B.
It is not difficult to see that the sequential weak star topology sw∗ is a vector topology with

countable θ-neighborhood basis, so the continuity of operators with respect to this topology

could be dealt with via sequences. We ought to note that the weak star topology has no such

advantage.

In the next section, we study the algebraic representation problems of conjugate spaces of

l0({Xi}) type spaces, obtain the algebraic representation continued equalities

(l0({Xi}))∗
A
= (c000({Xi}))∗

A
= c00({X∗

i })

and

(l0(X))∗
A
= (c0(X))∗

A
= (c00(X))∗

A
= (c000(X))∗

A
= c00(X

∗).

In the third section, with respect to the sequential weak star topology sw∗, we obtain the

topological representation ((c000({Xi}))∗, sw∗) = c000({X∗
i }). For the sequences of inner product

spaces and number fields with the usual topology, the concrete forms of the basic representation

theorems are obtained at last.

2. The algebraic representation theorems

Theorem 2.1 Let (Xi, ∥ · ∥i) be a sequence of normed spaces. Then the conjugate space

(l0({Xi}))∗ is algebraically isomorphic to c00({X∗
i }), i.e., we have the algebraic representation

(l0({Xi}))∗
A
= c00({X∗

i }). (2.1)

Proof Note that the space l0({Xi}) is the Cartesian product
∏∞

i=1 Xi with the F -norm ∥ · ∥0.
For the standard basis sequence

ei = (0, . . . , 0,
ith
1 , 0, . . .), i ∈ N,
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of lp (0 < p < ∞), and ξi ∈ Xi, let

ξiei = (θ, . . . , θ,
ith

ξi , θ, . . .) ∈
∞∏
i=1

Xi, i = 1, 2, . . . .

For every x = (ξi) ∈ l0({Xi}), as

∥x−
n∑

i=1

ξiei∥0 =∥(θ, . . . , θ, ξn+1, ξn+2, . . .)∥0

=

∞∑
i=n+1

1

2i
∥ξi∥i

1 + ∥ξi∥i
≤

∞∑
i=n+1

1

2i
→ 0, n → ∞, (2.2)

it could be represented as the series

x = lim
n→∞

n∑
i=1

ξiei =
∞∑
i=1

ξiei. (2.3)

Let

X̂i = {ξiei = (θ, . . . , θ,
ith

ξi , θ . . .) : ξi ∈ Xi}

be the subspace of l0({Xi}) =
∏∞

i=1 Xi corresponding to Xi. Then the canonical projection Pi is

a topological isomorphism between (X̂i, ∥ · ∥0) and (Xi, ∥ · ∥i) (not isometric isomorphism). Now

for every f ∈ (l0({Xi}))∗, by the continuity of f we have

f(x) =

∞∑
i=1

f(ξiei) =

∞∑
i=1

fi(ξi), x =

∞∑
i=1

ξiei ∈ l0({Xi}), (2.4)

where fi = f ◦ P−1
i ∈ X∗

i is uniquely determined by f . We assert that the sequence (fi) ∈
c00({X∗

i }). If not, then there is a sequence of strictly monotone natural numbers ij → ∞ such

that fij ̸= θ. Take ξij ∈ Xij such that fij (ξij ) = 1 for each ij , and ξi = θ ∈ Xi if i ̸= ij , let

x = (ξi) ∈ l0({Xi}), then by (2.4) there exists the contradiction

f(x) =

∞∑
j=1

fij (ξij ) = +∞,

so (fi) ∈ c00({X∗
i }). Now define T : (l0({Xi}))∗ → c00({X∗

i }) by

T (f) = (fi), f ∈ (l0({Xi}))∗, (2.5)

then T is a linear mapping. If f, g ∈ (l0({Xi}))∗ and f ̸= g, then there is an i such that fi ̸= gi,

so T is an injection from (l0({Xi}))∗ to c00({X∗
i }).

On the other hand, for any F = (f1, f2, . . . ,
nth

fn , θ, . . .) ∈ c00({X∗
i }), where fn ̸= θ, define

fF (x) =
n∑

i=1

fi(ξi), x = (ξi) ∈ l0({Xi}), (2.6)

then fF is a linear functional on l0({Xi}). If a sequence x(m) = (ξ
(m)
i ) → θ in l0({Xi}), then

ξ
(m)
i → θ (m → ∞) for any i by Proposition 1.1, so

lim
m→∞

fF (x
(m)) = lim

m→∞

n∑
i=1

fi(ξ
(m)
i ) = 0,
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i.e., fF is continuous or fF ∈ (l0({Xi}))∗. Finally, by fF ◦ P−1
i = fi we know that TfF = F ,

namely, T is also a surjection. This proves that the mapping T defined by (2.5) is an algebra

isomorphism between (l0({Xi}))∗ and c00({X∗
i }), or we have the algebraic representation (2.1).

�

Theorem 2.2 Let (X, ∥ · ∥) be a normed space. Then we have the algebraic representation

continued equalities

(l0(X))∗
A
= (c0(X))∗

A
= (c00(X))∗

A
= (c000(X))∗

A
= c00(X

∗). (2.7)

Proof The continued equalities (2.7) is clearly equivalent to

c00(X
∗) = (l0(X))∗ ⊂ (c0(X))∗ ⊂ (c00(X))∗ ⊂ (c000(X))∗ ⊂ c00(X

∗). (2.8)

The equality on the left-hand side of (2.8) follows Theorem 2.1. If E ⊂ F and f ∈ F ∗, then its

restriction f |E ∈ E∗, and in this sense we have F ∗ ⊂ E∗. Thus by the natural inclusion relations

l0(X) ⊃ c0(X) ⊃ c00(X) ⊃ c000(X) (2.9)

we have the three inclusion relations in the middle of (2.8). For any f ∈ (c000(X))∗, we assert

that the sequence T (f) = (fi) = (f ◦ P−1
i ) ∈ c00(X

∗), so we have the inclusion relation at the

right end of (2.8). If not, there is an infinite subsequence θ ̸= fij ∈ X∗. For each fij , take

ξij ∈ X such that fij (ξij ) = 1. Consider the sequence

x(j) = (θ, . . . , θ,
ijth

ξij , θ, . . .) ∈ c000(X), j = 1, 2, . . . ,

one has x(j) → θ (j → ∞) in c000(X) (under the F -norm ∥ · ∥0), but

f(x(j)) = fij (ξij ) = 1 ̸→ 0, j → ∞,

which contradicts the continuity of f on c000(X). This proves the relation (c000(X))∗ ⊂ c00(X
∗)

and the continued equalities (2.7). �
For a general sequence of normed spaces (Xi, ∥ · ∥i), removing the objects (c0({Xi}))∗ and

(c00({Xi}))∗ in the continued equalities (2.7) that may have no sense, using the same arguments

we can show:

Theorem 2.3 Let (Xi, ∥ · ∥i) be a sequence of normed spaces. Then we have the algebraic

representation continued equalities

(l0({Xi}))∗
A
= (c000({Xi}))∗

A
= c00({X∗

i }). (2.10)

3. The topological representation theorems

By Theorem 2.3 we know that under the linear mapping T , the conjugate spaces (l0({Xi}))∗

and (c000({Xi}))∗ are algebraically isomorphic to a same vector space c00({X∗
i }). As topological

vector spaces, the symbol c00({X∗
i }) denotes the normed space with the norm ∥ · ∥∞, c000({X∗

i })
the F -normed space with the F -norm ∥ · ∥0. In this section, for the linear mapping T from
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((l0({Xi}))∗, sw∗) and ((c000({Xi}))∗, sw∗) to c00({X∗
i }) and c000({X∗

i }), we study the continuity

of T and T−1, to find the conditions that make T a topological isomorphism.

Theorem 3.1 Let (Xi, ∥ · ∥i) be a sequence of finite dimensional normed spaces. Then the

mapping T : ((l0({Xi}))∗, sw∗) → c00({X∗
i }) defined by (2.5) is continuous, but its inverse T−1

is not.

Proof Let us show the continuity of T first. Suppose f (m) ∈ (l0({Xi}))∗ is a non-zero sequence

satisfying f (m) sw∗

→ θ，we need to show that its image

F (m) = Tf (m) = (f
(m)
1 , . . . , f (m)

nm
, θ, . . .), where f (m)

nm
̸= θ

converges to θ in c00({X∗
i }), i.e., limm→∞ ∥F (m)∥∞ = 0. If not, there is a number ε0 > 0 and a

strictly monotone sequence mk of natural numbers such that

∥F (mk)∥∞ > 2ε0, k = 1, 2, . . . .

As f (mk) sw∗

→ θ(k → ∞)，assume without loss of generality that

∥F (m)∥∞ > 2ε0, m = 1, 2, . . . . (3.1)

We will construct two strictly monotone sequences (mk) and (ik) of natural numbers to find

contradictions.

(i) Take m1 = 1. By ∥F (m1)∥∞ > 2ε0, there is a natural number i1 with m1 ≤ i1 ≤ nm1

such that

∥f (m1)
i1

∥i1 > 2ε0.

(ii) By f (m) sw∗

→ θ we have

lim
m→∞

f
(m)
i (ξi) = lim

m→∞
f (m)(ξiei) = 0 (3.2)

for every i = 1, 2, . . . , nm1 and ξi ∈ Xi. The fact of dimXi < ∞ implies that the conjugate

space X∗
i is also finite-dimensional; the reflexivity of Xi means that the weak star topology and

the weak topology on X∗
i are equivalent, so by [8, p.215] we know that the norm topology and

the weak star topology on X∗
i are equivalent (This property of finite dimensional space will also

be used later). Thus the equality (3.2) means that the equality limm→∞ ∥f (m)
i ∥i = 0 holds

uniformly for every i = 1, 2, . . . , nm1 . Then there is a natural number m2 > m1 such that

nm1∑
i=1

∥f (m2)
i ∥i < ε0.

By ∥F (m2)∥∞ > 2ε0, there is a natural number i2 with nm1 < i2 ≤ nm2 such that

∥f (m2)
i2

∥i2 > 2ε0.

(iii) By f (m) sw∗

→ θ and dimXi < ∞ we know that limm→∞ ∥f (m)
i ∥i = 0 holds uniformly for

every i = 1, 2, . . . , nm2，so there is a natural number m3 > m2 such that

nm2∑
i=1

∥f (m3)
i ∥i < ε0.
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Again by ∥F (m3)∥∞ > 2ε0, there is a natural number i3 with nm2 < i3 ≤ nm3 such that

∥f (m3)
i3

∥i3 > 2ε0.

Via mathematical induction we can construct two strictly monotone sequences (mk) (m1 =

1) and (ik) of natural numbers with

nmk−1
< ik ≤ nmk

, k = 1, 2, . . . (3.3)

such that
nmk−1∑
i=1

∥f (mk)
i ∥i < ε0, (3.4)

and

∥f (mk)
ik

∥ik > 2ε0 (3.5)

hold at the same time. For each ik, by inequality (3.5) there is a ξik ∈ Xik with ∥ξik∥ik = 1 such

that

|f (mk)
ik

(ξik)| > 2ε0.

Take x(0) = (ξi) ∈ l0({Xi}), here

ξi =

{
ξik , i = ik,

θ, i ̸= ik,

then for any mk we have

|f (mk)(x(0))| =
∣∣∣ nmk∑
i=1

f
(mk)
i (ξi)

∣∣∣ ≥ |f (mk)
ik

(ξik)| −
nmk−1∑
i=1

|f (mk)
i (ξi)|

≥ |f (mk)
ik

(ξik)| −
nmk−1∑
i=1

∥f (mk)
i ∥i > 2ε0 − ε0 = ε0.

This contradicts the assumption of f (m) sw∗

→ θ, so T is a continuous linear operator from

((l0({Xi}))∗, sw∗) onto c00({X∗
i }).

Let us verify the discontinuity of T−1 now. For each natural number i, take an fi ∈ X∗
i

with ∥fi∥i = 1. Then the sequence

F (m) = (
1

m
f1, . . . ,

mth
1

m
fm, θ, . . .) ∈ c00({X∗

i }), m = 1, 2, . . . ,

satisfies

∥F (m)∥∞ = sup
1≤i≤m

∥ 1

m
fi∥i =

1

m
→ 0, m → ∞,

i.e., F (m) → θ in c00({X∗
i }). For each i, by ∥fi∥i = 1, there is a ξi ∈ Xi such that |fi(ξi)| > 1

2 .

Then for element

x =
( f1(ξ1)

|f1(ξ1)|
ξ1,

f2(ξ2)

|f2(ξ2)|
ξ2, . . . ,

fi(ξi)

|fi(ξi)|
ξi, . . .

)
∈ l0({Xi}),
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by equality (2.6) we have

T−1F (m)(x) =

m∑
i=1

1

m
|fi(ξi)| >

1

2
,

i.e., T−1F (m)
sw∗

̸→ θ (m → ∞). This proves the discontinuity of T−1. �
The inequality (3.3) means that the sequences (nmk

) and (ik) of natural numbers are fas-

tened to each other tightly, so the above construction methods could be called zipper methods.

Theorem 3.2 Let (Xi, ∥ · ∥i) be a sequence of finite dimensional normed spaces. Then the

mapping T : ((l0({Xi}))∗, sw∗) → c000({X∗
i }) defined by (2.5) is continuous, but its inverse T−1

is not.

Proof Suppose f (m) ∈ (l0({Xi}))∗ is a non-zero sequence satisfying f (m) sw∗

→ θ. Then by

Theorem 3.1 its image

F (m) = Tf (m) = (f
(m)
1 , . . . , f (m)

nm
, θ, . . .),where f (m)

nm
̸= θ

satisfies limm→∞ ∥F (m)∥∞ = 0. By the relation between the F -norm ∥ · ∥0 and the norm ∥ · ∥∞
we have limm→∞ ∥F (m)∥0 = 0, so Tf (m) → θ holds in c000({X∗

i }), or T is continuous now.

Similar to the second part of proof of Theorem 3.1, the sequence

F (m) = (
1

m
f1, . . . ,

mth
1

m
fm, θ, . . .), m = 1, 2, . . . ,

also converges to θ in c000({X∗
i }), where fi ∈ X∗

i with ∥fi∥i = 1. Then for ξi ∈ Xi with |fi(ξi)| > 1
2

and the element

x =
( f1(ξ1)

|f1(ξ1)|
ξ1,

f2(ξ2)

|f2(ξ2)|
ξ2, . . . ,

fi(ξi)

|fi(ξi)|
ξi, . . .

)
∈ l0({Xi}),

by equality (2.6) we have

T−1F (m)(x) =
m∑
i=1

1

m
|fi(ξi)| >

1

2
,

so T−1F (m)
sw∗

̸→ θ (m → ∞). This completes the proof of discontinuity of T−1. �
Theorems 3.1 and 3.2 told us that the algebra isomorphism T : (l0({Xi}))∗ → c00({X∗

i }) hid-
den in the equations (2.1) and (2.10) is not the topological isomorphism between ((l0({Xi}))∗, sw∗)

and c00({X∗
i }) or c000({X∗

i }). Now we hope to find the conditions under which the algebra i-

somorphism T : (c000({Xi}))∗ → c00({X∗
i }) hidden in the equation (2.10) could be lifted to the

topological isomorphism between ((c000({Xi}))∗, sw∗) and c00({X∗
i }) or c000({X∗

i }).

Theorem 3.3 Let (Xi, ∥ · ∥i) be a sequence of normed spaces. Then the mapping T :

((c000({Xi}))∗, sw∗) → c00({X∗
i }) defined by (2.5) is discontinuous, but its inverse T−1 is contin-

uous.

Proof Take fi ∈ X∗
i with ∥fi∥i = 1 for any i ∈ N. Let

F (m) = (θ, . . . , θ,
mth

fm , θ, . . .) ∈ c00({X∗
i }).
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Then Theorem 2.3 shows that the sequence f (m) = T−1F (m) ∈ (c000({Xi}))∗. For a given

x = (ξ1, . . . , ξn, θ, . . .) ∈ c000({Xi}), we have f (m)(x) = 0 for any m > n by (2.6), so the sequence

f (m) converges to θ in ((c000({Xi}))∗, sw∗). But by ∥Tf (m)∥∞ = ∥F (m)∥∞ ≡ 1 we know that its

imagine Tf (m) does not converge to θ in c00({X∗
i }), so T is not continuous.

Assume the functional sequence F (m) = (f
(m)
1 , f

(m)
2 , . . . , f

(m)
nm , θ, . . .) converges to θ in

c00({X∗
i }), i.e.,

∥F (m)∥∞ = sup
1≤i≤nm

∥f (m)
i ∥i → 0, m → ∞.

Then for any given x = (ξ1, ξ2, . . . , ξn, θ, . . .) ∈ c000({Xi}),

|T−1F (m)(x)| ≤
n∑

i=1

|f (m)
i (ξi)| ≤

n∑
i=1

∥f (m)
i ∥i∥ξi∥i

≤ ∥F (m)∥∞
n∑

i=1

∥ξi∥i → 0, m → ∞.

Hence the sequence T−1F (m) converges to θ in ((c000({Xi}))∗, sw∗), or T−1 is a continuous linear

operator from c00({X∗
i }) to ((c000({Xi}))∗, sw∗. �

Theorem 3.4 Let (Xi, ∥ · ∥i) be a sequence of finite dimensional normed spaces. Then the

mapping T : ((c000({Xi}))∗, sw∗) → c000({X∗
i }) defined by (2.5) is a topological isomorphism, or

we have the topological representation

((c000({Xi}))∗, sw∗) = c000({X∗
i }). (3.6)

Proof To prove the continuity of the mapping T , suppose f (m) ∈ (c000({Xi}))∗ is a non-zero

sequence satisfying f (m) sw∗

→ θ. If its imagine

Tf (m) = (f
(m)
1 , f

(m)
2 , . . . , f (m)

nm
, θ, . . .)

does not converge to θ in c000({X∗
i }), then by Proposition 1.1 there exits some coordinate se-

quence, without loss of generality in assuming the first coordinate sequence (f
(m)
1 ) that does not

converge to θ in norm. By the assumption that X1 is finite dimensional and the reason used

in the proof of Theorem 3.1 we know that the norm topology and the weak star topology on

X∗
1 are equivalent. Thus by ∥f (m)

1 ∥1 ̸→ 0 there is some ξ1 ∈ X1 such that f
(m)
1 (ξ1) ̸→ 0. Take

x = (ξ1, θ, . . .) ∈ c000({Xi}), then f (m)(x) = f
(m)
1 (ξ1) ̸→ 0, which contradicts the assumption

that f (m) converges to θ in ((c000({Xi}))∗, sw∗).

To prove the continuity of the inverse mapping T−1, suppose a sequence

F (m) = (f
(m)
1 , f

(m)
2 , . . . , f (m)

nm
, θ, . . .) ∈ c000({X∗

i })

tends to θ, or ∥F (m)∥0 → 0 (m → ∞), then by Proposition 1.1 ∥f (m)
i ∥i → 0 (m → ∞) for every

i ∈ N. Thus for any given x = (ξ1, ξ2, . . . , ξn, 0, . . .) ∈ c000({Xi}),

|T−1F (m)(x)| ≤
n∑

i=1

|f (m)
i (ξi)| ≤

n∑
i=1

∥f (m)
i ∥i∥ξi∥i → 0, m → ∞.
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This shows the sequence T−1F (m) converges to θ in ((c000({Xi}))∗, sw∗), i.e., the mapping T is

the topological isomorphism between ((c000({Xi}))∗, sw∗) and c000({X∗
i }). �

From above four theorems we can obtain the following corollary immediately:

Corollary 3.5 Let (X, ∥ · ∥) be a finite dimensional normed space.

(i) The mapping T : ((l0(X))∗, sw∗) → c00(X
∗) is continuous, but T−1 is not;

(ii) The mapping T : ((l0(X))∗, sw∗) → c000(X
∗) is continuous, but T−1 is not;

(iii) The mapping T : ((c000(X))∗, sw∗) → c00(X
∗) is not continuous, but T−1 is;

(iv) The mapping T : ((c000(X))∗, sw∗) → c000(X
∗) is a topological isomorphism, i.e., we

have the topological representation

((c000(X))∗, sw∗) = c000(X
∗). (3.7)

4. The applications of the basic representation theorems

Inner product spaces and number fields with the usual topology are two typical classes of

normed spaces. For these two classes of normed spaces, let us find the concrete forms of the

basic representation theorems obtained in previous sections.

Theorem 4.1 (i) Let (Xi, ⟨·, ·⟩i) be a sequence of inner product space. Then we have the

algebraic representation continued equalities

(l0({Xi}))∗
A
= (c000({Xi}))∗

A
= c00({Xi}), (4.1)

i.e., any f ∈ (l0({Xi}))∗ (or f ∈ (c000({Xi}))∗) corresponds to a unique

y = (ζ1, ζ1, . . . , ζnf
, θ, . . .) ∈ c00({Xi})

such that

f(x) =

nf∑
i=1

⟨ξi, ζi⟩i, x = (ξi) ∈ l0({Xi}) (or x ∈ c000({Xi})). (4.2)

(ii) For an inner product space (X, ⟨·, ·⟩), we have the algebraic representation continued

equalities

(l0(X))∗
A
= (c0(X))∗

A
= (c00(X))∗

A
= (c000(X))∗

A
= c00(X). (4.3)

(iii) Let (Xi, ⟨·, ·⟩i) be a sequence of finite dimensional inner product spaces. Then we have

the topological representation

((c000({Xi}))∗, sw∗) = c000({Xi}). (4.4)

Proof By the self-conjugate property of inner product spaces and the general form of continuous

linear functionals on them [9, p.104], the conclusion (i) follows Theorems 2.1 and 2.3, (ii) follows

Theorem 2.2, (iii) follows Theorem 3.4. �

Theorem 4.2 (i) In the sense of isomorphism we have the algebraic representation continued

equalities

(l0)∗
A
= (c0)∗

A
= (c00)

∗ A
= (c000)

∗ A
= c00, (4.5)
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i.e., any f ∈ (l0)∗ (or f ∈ (c0)∗, etc.) corresponds to a unique

y = (ζ1, ζ1, . . . , ζnf
, θ, . . .) ∈ c00

such that

f(x) =

nf∑
i=1

ξiζi, x = (ξi) ∈ l0 (or x ∈ c0, etc.). (4.6)

(ii) In the sense of isomorphism we have the topological representation

((c000)
∗, sw∗) = c000. (4.7)

Proof The number field K with the usual topology is just an inner product space under the mul-

tiplication ⟨ξ, ζ⟩ = ξ ·ζ, so by the latter two conclusions of Theorem 4.1 we get the corresponding

results of this theorem. �
The conjugate spaces of l0({Xi}) type spaces with weak star topology w∗ have no count-

able θ-neighborhood basis, their topological representation should be more complicated, we will

discuss it in another paper.
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