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1. Introduction

Throughout this paper, denote N = {1, 2, 3, . . .} and Z+ = {0, 1, 2, . . .}. A dynamical system

is a pair (M,f), where M is a compact metric space with a metric d and f : M −→ M is a

continuous surjection. The orbit of x ∈ M is the set {fn(x) : n ∈ N} which is denoted by

Orb(x, f). We say that f is topologically transitive if for any non-empty open subsets U and V

of M , there exists a natural number k such that fk(U) ∩ V ̸= ∅.
The pseudo-orbit shadowing is one of the most important tools to explore dynamical prop-

erties of discrete dynamical systems, which is close to the stability of dynamical system. It orig-

inated from the works of Anosov [1] and Bowen [2]. For any δ > 0, a sequence {xi}ni=0 ⊂ M is

said to be a δ-pseudo-orbit of f if d(f(xi), xi+1)) < δ for any 0 ≤ i < n. A sequence {xi}∞i=0 ⊂ M

is called to be ε-shadowed by a point z ∈ X if d(f i(z), xi) < ε for each i ∈ Z+. From different

understandings on pseudo-orbit and shadowing way, several generalized definitions of shadowing

have been developed (for example, average shadowing property [3], limit shadowing property

[4], asymptotic average shadowing property [5], ergodic shadowing property [6], d-shadowing

property [7], d-shadowing property [7] and F-shadowing property [8], and so on). In this paper,

we prove that every nonuniformly expanding map with d-shadowing property is topologically

transitive. Firstly, we present some basic definitions of shadowing.
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2. Preliminaries

In this section, some basic concepts and notations are introduced.

Definition 2.1 ([3]) For δ > 0, a sequence {xi}∞i=0 ⊂ M is called a δ-average pesudo-orbit of f

if there exists N > 0 such that for any n > N and any k ∈ Z+,

1

n

n−1∑
i=0

d(f(xi+k), xi+k+1) < δ.

A dynamical system (M,f) has the average shadowing property (abbreviated ASP) if for any

ε > 0, there exists δ > 0 such that every δ-average pseudo-orbit {xi}∞i=0 is ε-shadowed in average

by some point z ∈ M , that is

lim sup
n→∞

1

n

n−1∑
i=0

d(f i(z), xi) < ε.

Definition 2.2 ([5]) A sequence {xi}∞i=0 ⊂ M is called an asymptotic average pesudo-orbit of

f if

lim
n→∞

1

n

n−1∑
i=0

d(f(xi), xi+1) = 0.

A dynamical system (M,f) has the asymptotic average shadowing property (abbreviated AASP)

if every asymptotic average pesudo-orbit {xi}∞i=0 ⊂ M is asymptotic shadowed in average by a

point z ∈ M , i.e.,

lim
n→∞

1

n

n−1∑
i=0

d(f i(z), xi) = 0.

In 2010, Fakhari and Ghane [6] introduced the concept of δ-ergodic pseudo-orbit.

Definition 2.3 ([6]) For δ > 0, a sequence {xi}∞i=0 ⊂ M is called a δ-ergodic pesudo-orbit of f

if

lim
n→∞

1

n
|{0 ≤ i < n : d(f(xi), xi+1) < δ}| = 1.

{xi}∞i=0 ⊂ M is δ-ergodic shadowed by a point z ∈ M if

lim
n→∞

1

n
|{0 ≤ i < n : d(f i(z), xi) < δ}| = 1.

Definition 2.4 ([7]) Let (M,f) be a dynamical system. If for any ε > 0 there exists δ > 0 such

that every δ-ergodic pseudo-orbit {xi}∞i=0 is ε-shadowed by a point z ∈ M in such a way that

either

(i) lim infn→∞
1
n |{0 ≤ i < n : d(f i(z), xi) < ε}| > 0, or

(ii) lim supn→∞
1
n |{0 ≤ i < n : d(f i(z), xi) < ε}| > 1

2 ,

then we say that f has the d-shadowing property in case (i) and d-shadowing property in case

(ii).

For any A ⊂ Z+, the upper density of A is defined by

d(A) := lim sup
n→∞

1

n
|A ∩ {0, 1, . . . , n− 1}|. (1)
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Replacing lim sup with lim inf in (1) gives the definition of d(A), the lower density of A. If there

exists a number d(A) such that d(A) = d(A) = d(A) then we say that the set A has density

d(A). Fix any α ∈ [0, 1) and denote by Mα (resp., M α) the family consisting of sets A ⊂ Z+

with d(A) > α (resp., d(A) > α).

Let α ∈ [0, 1). If for any ε > 0 and any δ-ergodic pseudo-orbit {xi}∞i=0 of f , there exists a

point z ∈ X such that

{i ∈ Z+ : d(f i(z), xi) < ε} ∈ M α (resp., {i ∈ Z+ : d(f i(z), xi) < ε} ∈ Mα),

then f has the M α-shadowing property (resp., Mα-shadowing property) [9]. It is easy to see

that the M
1
2 -shadowing property and M0-shadowing property are d-shadowing and d-shadowing,

respectively.

Kulczycki et al. [10] explored the relation between asymptotic average shadowing and average

shadowing. Wu [9] obtained the following result:

AASP =⇒ ASP ⇐⇒ Mα-shadowing (∀α ∈ [0, 1)) =⇒ d-shadowing + d-shadowing. (2)

For the asymptotic average shadowing property, Bahabadi [12] proved the following.

Theorem 2.5 If C1 local diffeomorphism f is nonuniformly expanding and has the asymptotic

average shadowing property, then f is transitive.

Inspired by (2) and Theorem 2.5, it is natural to ask:

Question 2.6 Can the hypothesis of AASP in Theorem 2.5 be reduced to ASP, d-shadowing

or d-shadowing?

This paper shall give a positive answer to Question 2.6 in section four.

3. Nonuniformly expanding

Let f : M −→ M be a homeomorphism which is a C1 locally diffeomorphism and M a

C∞ compact manifold with a Riemannain metric d. f is expanding if there exists a Riemannian

metric ∥ · ∥ on TM and λ > 1 such that

∥ Dfn(x)ν ∥≥ λn ∥ ν ∥, ∀x ∈ M, ν ∈ TxM.

f is nonuniformly expanding on a set H ⊂ M if there is a λ > 0 such that

lim inf
n→∞

1

n

n−1∑
j=0

log ∥ Df(f j(x))−1 ∥< −λ, ∀x ∈ H.

For σ < 1, we say that n is a σ-hyperbolic time if for all 1 ≤ k ≤ n,

n−1∏
j=n−k

∥Df(f j(x))−1∥ ≤ σk.

A σ-hyperbolic times for x ∈ M is said to have positive frequency if there exists some θ > 0 such

that for any large n ∈ N there exist l ≥ θn and integers 1 ≤ n1 < n2 < · · · < nl ≤ n which are
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σ-hyperbolic times for x, in fact we have

1

n
|{0 < k < n : k is a hyperbolic time for x}| > θ.

A C1 local diffeomorphism f is nonuniformly expanding if it is nonuniformly expanding on

a set of full Lebesgue measure. The following propositions are essential.

Proposition 3.1 ([12]) For 0 < σ < 1, there exists δ > 0 such that if n is a σ-hyperbolic time

for x, then there exists a neighborhood Vn of x such that:

(a) fn maps Vn deffeomorphically on to the ball of radius δ around fn(x).

(b) For 1 ≤ k < n and y, z ∈ Vn, d(f
n−k(y), fn−k(z)) ≤ σ

k
2 d(fn(y), fn(z)).

Proposition 3.2 ([12]) If f is a nonuniformly expanding map, then there are 0 < σ < 1 and

θ > 0 such that the frequency of σ-hyperbolic times for a set H of full Lebesgue measure is

greater than θ.

4. Main results

Lemma 4.1 ([7]) B ⊂ Z+ has positive lower density if and only if for any sequence A with

d(A) = 1, A ∩B ̸= ∅. In particular, d(A ∩B) > 0.

Theorem 4.2 If C1 local diffeomorphism f is nonuniformly expanding and has the d-shadowing

property, then f is topologically transitive.

Proof Assume that f is a nonuniformly expanding map and let H ⊂ M be a set of full measure.

Given any two fixed open subsets U and V of M , then H∩U ̸= ∅ and H∩V ̸= ∅. Take x ∈ H∩U

and y ∈ H ∩ V and choose ε > 0 such that Nε(x) := {z ∈ M : d(z, x) < ε} ⊂ U and Nε(y) ⊂ V .

There exists ζ > 0 such that if d(p, q) < ζ then d(f−1(p), f−1(q)) < ε.

Let D denote the diameter of M . It follows from Proposition 3.2 that there exist 0 < σ < ζ
D

and 0 < θ < 1 such that the frequency of σ-hyperbolic times for the set H is greater than θ.

Let nx and ny be σ-hyperbolic time for x and y, respectively. Proposition 3.1 implies that there

exist 0 < δ < ε
2 , neighborhood Vnx of x and Vny of y such that fnu maps Vnu diffeomorphically

on to the ball of radius δ around fn(u) for u ∈ {x, y}.
Take a0 = A0 = 0, a1 = A1 = 2, and an = 2a0+a1+···+an−1 , An = a0 + a1 + · · · + an for

n ≥ 2. Choose A = [0, A1] ∪ [A2, A3] ∪ · · · ∪ [A2n, A2n+1] ∪ · · · , B = [A1, A2] ∪ [A3, A4] ∪ · · · ∪
[A2n+1, A2n+2]∪· · · , and C = {0, A1, A2, · · · }. It can be verified that d(C) = 0, d(A) = d(B) = 1

and d(A) = d(B) = 0. Define a sequence {xi}∞i=0 by

xi = f i−A2n(x), A2n ≤ i < A2n+1;

xi = f i−A2n+1(y), A2n+1 ≤ i < A2n+2.

It is easy to see that {xi}∞i=0 is an ergodic pseudo-orbit of f . The d-shadowing property of f

implies that there exists a point z ∈ X such that

lim inf
n→∞

1

n
|{0 ≤ i < n : d(f i(z), xi) < δ}| > 0. (3)
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Let E = {i ∈ Z+ : d(f i(z), xi) < δ}. Applying Lemma 4.1 implies that d(E ∩ A) > 0 and

d(E ∩ B) > 0. This implies that there exist infinitely many σ-hyperbolic times nx such that

corresponding to every nx there exists a positive integer mx such that d(fmx(z), fnx(x)) < δ

and that there exist infinitely many σ-hyperbolic times ny such that corresponding to every ny

there exists a positive integer my such that d(fmy (z), fny (y)) < δ.

Since fnu maps Vnu diffeomorphically on to the ball of radius δ around fnu for u ∈ {x, y},
applying Proposition 3.1 implies that for any p, q ∈ Vnu ,

d(f(p), f(q)) ≤ σ
n−1
2 d(fn(p), fn(q)) < σ

n−1
2 D < ζ.

Then d(p, q) < ε. This implies that Vnx ⊂ U and Vny ⊂ V . Therefore, for any u ∈ {x, y},
fmu(z) ∈ fnu(Vu). This means that f is topologically transitive. �

Similarly to the proof of Theorem 4.2, for the d-shadowing property, we have the following

result.

Theorem 4.3 If C1 local diffeomorphism f is nonuniformly expanding and has the d-shadowing

property, then f is topologically transitive.

Corollary 4.4 If C1 local diffeomorphism f is nonuniformly expanding and has the average

shadowing property, then f is topologically transitive.

Corollary 4.5 If C1 local diffeomorphism f is nonuniformly expanding and has the Mα-

shadowing property for some α ∈ [0, 1), then f is topologically transitive.

Corollary 4.6 If C1 local diffeomorphism f is nonuniformly expanding and has the M α-

shadowing property for some α ∈ [ 12 , 1), then f is topologically transitive.

Theorem 4.7 If C1 local diffeomorphism f is nonuniformly expanding and has the average

shadowing property, then f is weakly mixing.

Proof Since f is uniformly expanding and has the average shadowing property, it can be verified

that f × f is uniformly expanding and has the average shadowing property. Applying Corollary

4.4, f × f is transitive. Then f is weakly mixing. �
In general, it is difficult to investigate the asymptotic average shadowing property, average

shadowing property, d-shadowing property and d-shadowing property of f . However, the transi-

tivity of f is easily verified. This is the motivation of this paper. If f is nonuniformly expanding

and not transitive, then f does not have asymptotic average shadowing, average shadowing, d-

shadowing or d-shadowing.
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