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Abstract Fuzzy graph theory is used for solving real-world problems in different fields, in-

cluding theoretical computer science, engineering, physics, combinatorics and medical sciences.

In this paper, we present conepts of bipolar neutrosophic multigraphs, bipolar neutrosophic

planar graphs, bipolar neutrosophic dual graphs, and study some of their related properties.

We also describe applications of bipolar neutrosophic graphs in road network and electrical

connections.
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1. Introduction

Fuzzy graph theory has a number of applications in modeling real time systems where the

level of information inherent in the system varies with different levels of precision. Fuzzy models

are becoming useful because of their aim in reducing the differences between the traditional

numerical models used in engineering and sciences and the symbolic models used in expert

systems. Kaufmann defined first fuzzy graph [1], then Rosenfeld [2] discussed several basic graph-

theoretic concepts, including bridges, cut-nodes, connectedness, trees and cycles. Bhattacharya

[3] gave some remarks on fuzzy graphs, and Sunitha and Vijayakumar [4] characterized fuzzy

trees. Abdul-jabbar et al. [5] introduced the concept of a fuzzy dual graph and discussed some

of its interesting properties. Samanta and Pal [6,7] introduced and investigated the concept of

fuzzy planar graphs and studied several properties. On the other hand, Alshehri and Akram

[8] introduced the concept of intuitionistic fuzzy planar graphs. Akram et al. [9] discussed the

concept of bipolar fuzzy planar graphs. Dhavaseelan et al. [4] defined strong neutrosophic graphs.

Akram and Shahzadi [10] introduced the notions of neutrosophic graphs and neutrosophic soft

graphs. Akram and Sarwar [11] considered bipolar neutrosophic graphs with applications. They

also have shown that Broumi et al. [12]’s definition is incorrect. In this paper, we introduce the

notions of bipolar single-valued neutrosophic multigraphs, bipolar single-valued neutrosophic

planar graphs, bipolar single-valued neutrosophic dual graphs, and investigate some of their

interesting properties. We also describe applications of bipolar neutrosophic graphs in road

network and electrical connections.
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2. Bipolar neutrosophic planar graphs

Smarandache [13] introduced neutrosophic sets as a generalization of fuzzy sets and intu-

itionistic fuzzy sets.

Definition 2.1 ([13]) A neutrosophic set C on a non-empty set X is characterized by a truth

membership function TC : X → [0, 1], indeterminacy membership function IC : X → [0, 1] and a

falsity membership function FC : X → [0, 1]. There is no restriction on the sum of TC(x), IC(x)

and FC(x) for all x ∈ X .

Deli et al. [14] defined bipolar neutrosophic (BN) sets a generalization of bipolar fuzzy sets.

Definition 2.2 ([14]) A BN set on a nonempty set X is an object of the form

C = {(y, TP
C (x), IPC (x), FP

C (x), TN
C (x), INC (x), FN

C (x)) : y ∈ X}

where, TP
C , IPC , FP

C : Y → [0, 1] and TN
C , INC , FN

C : Y → [−1, 0]. The positive values TP
C (x),

IPC (x), FP
C (x) denote respectively the truth, indeterminacy and false membership degrees of an

element y ∈ Y whereas TN
C (x), INC (x), FN

C (x) denote the implicit counter property of the truth,

indeterminacy and false membership degrees of the element y ∈ X corresponding to the bipolar

neutrosophic set C.

We define BN multisets based on the concept of Ye and Ye [15].

Definition 2.3 Let X be a nonempty set with generic elements in X denoted by x. A BN multi-

set C drawn from X is characterized by the three positive functions: count truth-membership of

CTP
C , count indeterminacy-membership of CIPC , and count falsity-membership of CFP

C such that

CTP
C (x) : X → R+, CIPC (x) : X → R+, CFP

C (x) : X → R+ for x ∈ X , where R+ is the set of all

real number multisets in the real unit interval [0, 1], and three negative functions: count truth-

membership of CTN
C , count indeterminacy-membership of CINC , and count falsity-membership

of CFN
C such that CTN

C (x) : X → R−, CINC (x) : X → R−, CFN
C (x) : X → R− for x ∈ X , where

R− is the set of all real number multisets in the real unit interval [−1, 0]. Then, a bipolar sin-

gle valued neutrosophic multiset A is denoted by A = {〈x, ((T 1)PC(x), (T
2)PC(x), . . . , (T

q)PC(x)),

((I1)PC(x), (I
2)PC(x), . . . , (I

q)PC(x)), ((F
1)PC(x), (F

2)PC(x), . . . , (F
q)PC(x)), (T

1)NC (x), (T 2)NC (x), . . .,

(T q)NC (x)), ((I1)NC (x), (I2)NC (x), . . ., (Iq)NC (x)), ((F 1)NC (x), (F 2)NC (x), . . ., (F q)NC (x))〉|x ∈ X},

where the positive truth, indeterminacy and falsity-membership sequences ((T 1)PC(x), (T
2)PC(x),

. . ., (T q)PC(x)), ((I
1)PC(x), (I

2)PC(x), . . . , (I
q)PC(x)), ((F

1)PC(x), (F
2)PC(x), . . . , (F

q)PC(x)) may be in

decreasing or increasing order, and sum of (T i
C)

P (x), (Ii)PC(x), (F
i)PC(x) ∈ [0, 1] satisfies the con-

dition 0 ≤ sup(T i)PC(x)+ sup(Ii)PC(x)+ sup(F i)PC(x) ≤ 3 for x ∈ X and i = 1, 2, . . . , q, the nega-

tive truth, indeterminacy and falsity-membership sequences ((T 1)PC(x), (T
2)PC(x), . . . , (T

q)PC(x)),

((I1)NC (x), (I2)NC (x), . . . , (Iq)NC (x)), ((F 1)NC (x), (F 2)NC (x), . . . , (F q)NC (x)) may be in decreasing or

increasing order, and sum of (T i
C)

N (x), (Ii)NC (x), (F i)NC (x) ∈ [−1, 0] satisfies the condition

−3 ≤ inf(T i)NC (x) + inf(Ii)NC (x) + inf(F i)NC (x) ≤ 0 for x ∈ X and i = 1, 2, . . . , q. For conve-

nience, a BN multiset C can be denoted by the simplified form:

C = {〈x, (T )PC(x)i, (I)
P
C(x)i, (F )PC(x)i, (T )

N
C (x)i, (I)

N
C (x)i, (F )NC (x)i〉|x ∈ X, i = 1, 2, . . . , q}.
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We now define the concept of bipolar neutrosophic graphs.

Definition 2.4 A bipolar neutrosophic graph on a nonempty set X is a pair G = (C,D), where

C is a bipolar neutrosophic set on X and D is a bipolar neutrosophic relation in X such that

(a) TP
D (yz) ≤ min(TP

C (y), TP
C (z));

(b) IPD(yz) ≤ min(IPC (y), IPC (z));

(c) FP
D (yz) ≤ max(FP

C (y), FP
C (z));

(d) TN
D (yz) ≥ max(TN

C (y), TN
C (z));

(e) IND (yz) ≥ max(INC (y), INC (z));

(f) FN
D (yz) ≥ min(FN

C (y), FN
C (z))

for all y, z ∈ X . Note that D is called a BN relation on C.

Example 2.5 Consider a bipolar neutrosophic graph G = (C,D) on X = {x, y, z} as shown in

Figure 2.1.
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Figure 2.1 Bipolar neutrosophic graph

Definition 2.6 Let C = (TP
C , IPC , FP

C , TN
C , INC , FN

C ) be a BN set on V and letD = {(xy, TP
D (xy)i,

IPD(xy)i, F
P
D (xy)i, T

N
D (xy)i, I

N
D (xy)i, F

N
D (xy)i), i = 1, 2, . . . ,m|xy ∈ V × V } be a BN multiset

of V × V such that

(g) TP
D (xy)i ≤ min{TP

C (x), TP
C (y)};

(h) TN
D (xy)i ≥ max{TN

C (x), TN
C (y)};

(i) IPD(xy)i ≤ min{IPC (x), IPC (y)};

(j) IND (xy)i ≥ max{INC (x), INC (y)};

(k) FP
D (xy)i ≤ max{FP

C (x), FP
C (y)};

(l) FN
D (xy)i ≥ min{FN

C (x), FN
C (y)}

for all i = 1, 2, . . . ,m. Then G = (C,D) is called a BN multigraph.

There may be more than one edge between the vertices x and y. The positive values TP
D (xy)i,

IPD(xy)i, F
P
D (xy)i represent truth, indeterminacy and falsity of the edge xy in G, whereas the

negative values TN
D (xy)i, I

N
D (xy)i, F

N
D (xy)i represent the implicit counter property of the truth,
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indeterminacy and false membership degrees of the edge xy in G. m denotes the number of edges

between the vertices. In BN multigraph G, D is said to be BN multiedge set.

Example 2.7 Let G∗ = (V,E), where V = {a, b, c, d}, E = {ab, ab, ab, bc, bd}. Let C = (TP
C ,

IPC , FP
C , TN

C , INC , FN
C ) be a BN set on V and D = (TP

D , IPD , FP
D , TN

D , IND , FN
D ) be a BN multiedge

set on E ⊆ V × V defined in Tables 2.1 and 2.2.

C a b c d

TP
C 0.5 0.4 0.5 0.4

IPC 0.3 0.2 0.4 0.3

FP
C 0.3 0.4 0.3 0.4

TN
C −0.5 −0.4 −0.5 −0.4

INC −0.3 −0.2 −0.4 −0.3

FN
C −0.3 −0.4 −0.3 −0.4

D ab ab ab bc bd

TP
D 0.2 0.1 0.2 0.3 0.1

IPD 0.2 0.1 0.2 0.1 0.2

FP
D 0.2 0 0.2 0.3 0.2

TN
D −0.2 −0.1 −0.2 −0.3 −0.1

IND −0.2 −0.1 −0.2 −0.1 −0.2

FN
D −0.2 −0 −0.2 −0.3 −0.2

Table 2.1 Single-valued neutrosophic set C Table 2.2 BN multiedge set D

By direct calculations, we see from Figure 2.2 that it is a BN multigraph.

a(0.5, 0.3, 0.3,−0.5,−0.3,−0.3)
c(0.5, 0.4, 0.3,−0.5,−0.4,−0.3)

(0.2, 0.2, 0.2,−0.2,−0.2,−0.2)

(0.2, 0.2, 0.2,−0.2,−0.2,−0.2)

d(0.4, 0.3, 0.4,−0.4,−0.3,−0.4)

b(0
.4,

0.2
, 0.

4,−
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,−
0.4

)

(0.1, 0.2, 0.2,−0.1,−0.2,−0.2)

(0.1, 0.1, 0,−0.1,−0.1, 0)
b b b

b

(0.3, 0.1, 0.3,−0.3,−0.1,−0.3)

Figure 2.2 Neutrosophic multigraph

Definition 2.8 Let D = {(xy, TP
D (xy)i, I

P
D(xy)i, F

P
D (xy)i, T

N
D (xy)i, I

N
D (xy)i, F

N
D (xy)i), i =

1, 2, . . . ,m|xy ∈ V × V } be a BN multiedge set in BN multigraph G. The degree of a vertex

x ∈ V , denoted by deg(x), is defined by

deg(x) = (

m∑

i=1

TP
D (xy)i,

m∑

i=1

IPD(xy)i,

m∑

i=1

FP
D (xy)i,

m∑

i=1

TN
D (xy)i,

m∑

i=1

IND (xy)i,

m∑

i=1

FN
D (xy)i).

Example 2.9 In Example 2.7, the degree of vertices a, b, c, d are deg(a) = (0.5, 0.5, 0.4,−0.5,−0.5,−0.4),

deg(b) = (0.9, 0.8, 0.9,−0.9,−0.8,−0.9), deg(c) = (0.3, 0.1, 0.3,−0.3,−0.1,−0.3) and deg(d) =

(0.1, 0.2, 0.2,−0.1,−0.2,−0.2).

Definition 2.10 Let D = {(xy, TP
D (xy)i, I

P
D(xy)i, F

P
D (xy)i, T

N
D (xy)i, I

N
D (xy)i, F

N
D (xy)i), i =
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1, 2, . . . ,m|xy ∈ V × V } be a BN multiedge set in BN multigraph G. A multiedge xy of G is

strong if the following conditions are satisfied:

(m) 1
2 min{TP

C (x), TP
C (y)} ≤ TP

D (xy)i;

(n) 1
2 max{TN

C (x), TN
C (y)} ≥ TN

D (xy)i;

(o) 1
2 min{IPC (x), IPC (y)} ≤ IPD(xy)i;

(p) 1
2 max{INC (x), INC (y)} ≥ IND (xy)i;

(q) 1
2 max{FP

C (x), FP
C (y)} ≥ FP

D (xy)i;

(r) 1
2 min{FN

C (x), FN
C (y)} ≤ FN

D (xy)i

for all i = 1, 2, . . . ,m.

Definition 2.11 Let D = {(xy, TP
D (xy)i, I

P
D(xy)i, F

P
D (xy)i, T

N
D (xy)i, I

N
D (xy)i, F

N
D (xy)i), i =

1, 2, . . . ,m|xy ∈ V × V } be a BN multiedge set in BN multigraph G. A BN multigraph G is

complete if the following conditions are satisfied:

(s) min{TP
C (x), TP

C (y)} = TP
D (xy)i;

(t) max{TN
C (x), TN

C (y)} = TN
D (xy)i;

(u) min{IPC (x), IPC (y)} = IPD(xy)i;

(v) max{INC (x), INC (y)} = IND (xy)i;

(w) max{FP
C (x), FP

C (y)} = FP
D (xy)i;

(x) min{FN
C (x), FN

C (y)} = FN
D (xy)i

for all i = 1, 2, . . . ,m and for all x, y ∈ V .

Example 2.12 Consider a BN multigraph G as shown in Figure 2.3. By routine calculations,

it is easy to see that Figure 2.3 is a BN complete multigraph.
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Figure 2.3 Bipolar neutrosophic complete multigraph

Suppose that geometric insight for BN graphs has only one crossing between single valued

neutrosophic edges (ab, TP
D (ab)i, I

P
D(ab)i, F

P
D (ab)i, T

N
D (ab)i, I

N
D (ab)i, F

N
D (ab)i) and (cd, TP

D (cd)i,

IPD(cd)i, F
P
D (cd)i, T

N
D (cd)i, I

N
D (cd)i, F

N
D (cd)i). We note that:

• If (ab, TP
D (ab)i, I

P
D(ab)i, F

P
D (ab)i, T

N
D (ab)i, I

N
D (ab)i, F

N
D (ab)i) = (1, 1, 1,−1,−1,−1) and

(cd, TP
D (cd)i, I

P
D(cd)i, F

P
D (cd)i, T

N
D (cd)i, I

N
D (cd)i, F

N
D (cd)i) = (0, 0, 0, 0, 0, 0) or (ab, TP

D (ab)i, I
P
D(ab)i,

FP
D (ab)i, T

N
D (ab)i, I

N
D (ab)i, FN

D (ab)i) = (0, 0, 0, 0, 0, 0), (cd, TP
D (cd)i, I

P
D(cd)i, F

P
D (cd)i, T

N
D (cd)i,

IND (cd)i, F
N
D (cd)i) = (1, 1, 1,−1,−1,−1), then BN graph has no crossing,

• If (ab, TP
D (ab)i, I

P
D(ab)i, F

P
D (ab)i, T

N
D (ab)i, I

N
D (ab)i, F

N
D (ab)i) = (1, 1, 1,−1,−1,−1) and

(cd, TP
D (cd)i, I

P
D(cd)i, F

P
D (cd)i, T

N
D (cd)i, I

N
D (cd)i, F

N
D (cd)i) = (1, 1, 1,−1,−1,−1), then there ex-
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ists a crossing for the representation of the graph.

Definition 2.13 The strength of the BN edge ab can be measured by the value

Sab = ((STP )ab, (SIP )ab, (SFP )ab, (STN )ab, (SIN )ab, (SFN )ab)

= (
TP
D (ab)i

min(TP
C (a), TP

C (b))
,

IPD(ab)i

min(IPC (a), IPC (b))
,

FP
D (ab)i

max(FP
C (a), FP

C (b))
,

TN
D (ab)i

max(TN
C (a), TN

C (b))
,

IND (ab)i
max(INC (a), INC (b))

,
FN
D (ab)i

min(FN
C (a), FN

C (b))
).

Definition 2.14 Let G be a BN multigraph. An edge ab is said to be a BN strong if

(STP )ab ≥ 0.5, (SIP )ab ≥ 0.5, (SFP )ab ≥ 0.5, (STN )ab ≤ −0.5, (SIN )ab ≤ −0.5, (SFN )ab ≤ −0.5

otherwise, we call weak edge.

Definition 2.15 LetG = (C,D) be a BNmultigraph such thatD contains two edges (ab, TP
D (ab)i,

IPD(ab)i, F
P
D (ab)i, T

N
D (ab)i, I

N
D (ab)i, F

N
D (ab)i) and (cd, TP

D (cd)j , I
P
D(cd)j , F

P
D (cd)j , T

N
D (cd)j , I

N
D (cd)j ,

FN
D (cd)j) intersected at a point P , where i and j are fixed integers. We define the intersecting

value at the point Q by

SQ =((ST P )Q, (SIP )Q, (SFP )Q, (ST N )Q, (SIN )Q, (SFN )Q)

=(
(STP )ab + (STP )cd

2
,
(SIP )ab + (SIP )cd

2
,
(SFP )ab + (SFP )cd

2
,

(STN )ab + (STN )cd
2

,
(SIN )ab + (SIN )cd

2
,
(SFN )ab + (SFN )cd

2
).

If the number of point of intersections in a BN multigraph increases, planarity decreases. Thus

for BN multigraph, SQ is inversely proportional to the planarity. We now introduce the concept

of a BN planar graph.

Definition 2.16 Let G be a BN multigraph and Q1, Q2, . . . , Qz be the points of intersection

between the edges for a certain geometrical representation. G is said to be a BN planar graph

with BN planarity value f = (fTP , fIP , fFP , fTN , fIN , fFN ), where

f =(fTP , fIP , fFP , fTN , fIN , fFN )

=(
1

1 + {(STP )Q1
+ (STP )Q2

+ · · ·+ (STP )Qz
}
,

1

1 + {(SIP )Q1
+ (SIP )Q2

+ · · ·+ (SIP )Qz
}
,

1

1 + {(SFP )Q1
+ (SFP )Q2

+ · · ·+ (SFP )Qz
}
,

1

−1− {(STN )Q1
+ (STN )Q2

+ · · ·+ (STN )Qz
}
,

1

−1− {(SIN )Q1
+ (SIN )Q2

+ · · ·+ (SIN )Qz
}
,

1

−1− {(SFN )Q1
+ (SFN )Q2

+ · · ·+ (SFN )Qz
}
).

Clearly, f = (fTP , fIP , fFP , fTN , fIN , fFN ) is bounded and 0 < fTP ≤ 1, 0 < fIP ≤ 1, 0 <

fFP ≤ 1, −1 < fTN ≤ 0, −1 < fIN ≤ 0, −1 < fFN ≤ 0.

If there is no point of intersection for a certain geometrical representation of a BN planar

graph, then its BN planarity value is (1, 1, 1,−1,−1,−1). We conclude that every BN graph is

a BN planar graph with certain BN planarity value.
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Example 2.17 Consider a multigraph G∗ = (V,E) such that V = {a, b, c, d, e},

E = {ab, ac, ad, ad, bc, bd, cd, ce, ae, de, be}.

Let C = (TP
C , IPC , FP

C , TN
C , INC , FN

C ) be a BN set of V and let D = (TP
D , IPD , FP

D , TN
D , IND , FN

D ) be

a BN multiedge set of V × V defined in Tables 2.3 and 2.4.

A a b c d e

TP
C 0.5 0.4 0.3 0.6 0.6

IPC 0.5 0.4 0.3 0.6 0.6

FP
C 0.2 0.1 0.1 0.2 0.1

TN
C −0.5 −0.4 −0.3 −0.6 −0.6

INC −0.5 −0.4 −0.3 −0.6 −0.6

FN
C −0.2 −0.1 −0.1 −0.2 −0.1

Table 2.3 BN set C

B ab ac ad ad bc bd cd ae ce de be

TP
D 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2

IPD 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2

FP
D 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

TN
D −0.2 −0.2 −0.2 −0.3 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2

IND −0.2 −0.2 −0.2 −0.3 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2

FN
D −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1

Table 2.4 BN multiedge set D

b b

bb

a(0.5, 0.5, 0.2,−0.5,−0.5,−0.2) b(0.4, 0.4, 0.1,−0.4,−0.4,−0.1)

d(0.6, 0.6, 0.2,−0.6,−0.6,−0.2)c(0.3, 0.3, 0.1,−0.3,−0.3,−0.1)

(0.2, 0.2, 0.1,−0.2,−0.2,−0.1)

(0
.2
,
0
.2
,
0
.1
,
−
0
.2
,
−
0
.2
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Figure 2.4 Neutrosophic planar graph

The BN multigraph as shown in Figure 2.4 has two points of intersection P1 and P2. P1 is a

point between the edges (ad, 0.2, 0.2, 0.1,−0.2,−0.2,−0.1) and (bc, 0.2, 0.2, 0.1,−0.2,−0.2,−0.1)
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and P2 is between (ad, 0.3, 0.3, 0.1,−0.3,−0.3,−0.1) and (bc, 0.2, 0.2, 0.1,−0.2,−0.2,−0.1). For

the edge (ad, 0.2, 0.2, 0.1,−0.2,−0.2,−0.1), Sad = (0.4, 0.4, 0.5,−0.4,−0.4,−0.5). For the edge

(ad, 0.3, 0.3, 0.1,−0.3,−0.3,−0.1), Sad = (0.6, 0.6, 0.5,−0.6,−0.6,−0.5) and for the edge (bc, 0.2,

0.2, 0.1,−0.2,−0.2,−0.1), Sbc = (0.6667, 0.6667, 1,−0.6667,−0.6667,−1).

For the first point of intersection P1, intersecting value SP1
is (0.5334, 0.5334, 0.75,−0.5334,

−0.5334,−0.75) and that for the second point of intersection P2,SP2
= (0.63335, 0.63335, 0.75,

−0.63335,−0.63335,−0.75). Therefore, the BN planarity value for the BN multigraph shown in

Figure 2.4 is (0.461, 0.461, 0.4,−0.461,−0.461,−0.4).

Theorem 2.18 Let G be a BN complete multigraph. The planarity value, f = (fTP , fIP , fFP ,

fTN , fIN , fFN ) of G is given by fTP = 1
1+nQ

, fIP = 1
1+nQ

and fFP = 1
1+nQ

such that fTP +fIP +

fFP ≤ 3, fTN = 1
−1−nQ

, fIN = 1
−1−nQ

and fFN = 1
−1−nQ

such that −3 ≤ fTN + fIN + fFN ≤ 0

where nQ is the number of points of intersection between the edges in G.

Definition 2.19 A BN planar graph G is called strong BN planar graph if the BN planarity

value f = (fTP , fIP , fFP , fTN , fIN , fFN ) of the graph is fTP ≥ 0.5, fIP ≥ 0.5, fFP ≤ 0.5,

fTN ≤ −0.5, fIN ≤ −0.5, fFP ≥ −0.5.

Theorem 2.20 Let G be a strong BN planar graph. The number of points of intersection

between strong edges in G is at most one.

Proof Let G be a strong BN planar graph. Assume that G has at least two points of intersection

P1 and P2 between two strong edges in G. For any strong edge

(ab, TP
D (ab)i, I

P
D(ab)i, F

P
D (ab)i, T

N
D (ab)i, I

N
D (ab)i, F

N
D (ab)i),

TP
D (ab)i ≥

1

2
min{TP

C (a), TP
C (b)}, IPD(ab)i ≥

1

2
min{IPC (a), IPC (b)}, FP

D (ab)i ≤
1

2
max{FP

C (a), FP
C (b)},

TN
D (ab)i ≤

1

2
max{TN

C (a), TN
C (b)}, IND (ab)i ≤

1

2
max{INC (a), INC (b)}, FN

D (ab)i ≥
1

2
min{FN

C (a), FN
C (b)}.

This shows that (STP )ab ≥ 0.5, (SIP )ab ≥ 0.5, (SFP )ab ≤ 0.5, (STN )ab ≤ −0.5, (SIN )ab ≤

−0.5, (SFN )ab ≥ −0.5. Thus for two intersecting strong edges

(ab, TP
D (ab)i, I

P
D(ab)i, F

P
D (ab)i, T

N
D (ab)i, I

N
D (ab)i, F

N
D (ab)i)

and (cd, TP
D (cd)j , I

P
D(cd)j , F

P
D (cd)j , T

N
D (cd)j , I

N
D (cd)j , F

N
D (cd)j),

(STP )ab + (STP )cd
2

≥ 0.5,
(SIP )ab + (SIP )cd

2
≥ 0.5,

(SFP )ab + (SFP )cd
2

≤ 0.5,

(STN )ab + (STN )cd
2

≤ −0.5,
(SIN )ab + (SIN )cd

2
≤ −0.5,

(SFN )ab + (SFN )cd
2

≥ −0.5.

That is,

(STP )Q1
≥ 0.5, (SIP )Q1

≥ 0.5, (SFP )Q1
≤ 0.5, (STN )Q1

≤ −0.5, (SIN )Q1
≤ −0.5, (SFN )Q1

≥ −0.5.

Similarly,

(STP )Q2
≥ 0.5, (SIP )Q2

≥ 0.5, (SFP )Q2
≤ 0.5, (STN )Q2

≤ −0.5, (SIN )Q2
≤ −0.5, (SFN )Q2

≥ −0.5.
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This implies that 1 + (STP )Q1
+ (STP )Q2

≥ 2, 1 + (SIP )Q1
+ (SIP )Q2

≥ 2, 1 + (SFP )Q1
+

(SFP )Q2
≤ 2, −1 + (STN )Q1

+ (STN )Q2
≤ −2, −1 + (SIN )Q1

+ (SIN )Q2
≤ −2, −1 + (SFN )Q1

+

(SFN )Q2
≥ −2. Therefore,

fTP =
1

1 + (STP )Q1
+ (STP )Q2

≤ 0.5, fIP =
1

1 + (SIP )Q1
+ (SIP )Q2

≤ 0.5,

fFP =
1

1 + (SFP )Q1
+ (SFP )Q2

≥ 0.5, fTN =
1

−1 + (STN )Q1
+ (STN )Q2

≥ −0.5,

fIN =
1

−1 + (SIN )Q1
+ (SIN )Q2

≥ −0.5, fFN =
1

−1 + (SFN )Q1
+ (SFN )Q2

≤ −0.5.

It contradicts the fact that the BN graph is a strong BN planar graph. Thus the number of

the points of intersection between strong edges cannot be two. Obviously, if the number of the

points of intersection of strong BN edges increases, the BN planarity value decreases. Similarly,

if the number of the points of intersection of strong edges is one, then the BN planarity value

fTP > 0.5, fIP > 0.5, fIP > 0.5, fTN < −0.5, fIN < −0.5, fIN < −0.5 . Any BN planar graph

without any crossing between edges is a strong BN planar graph. Thus, we conclude that the

maximum number of the points of intersection between the strong edges in G is one. �

Face of a BN planar graph is an important parameter. Face of a BN graph is a region

bounded by BN edges. Every BN face is characterized by BN edges in its boundary. If all the

edges in the boundary of a BN face have TP , IP , FP , TN , IN and FN values (1, 1, 1,−1,−1,−1)

and (0, 0, 0, 0, 0, 0), respectively, it becomes crisp face. If one of such edges is removed or has TP ,

IP , FP , TN , IN and FN values (0, 0, 0, 0, 0, 0) and (1, 1, 1,−1,−1,−1), respectively, the BN face

does not exist. So the existence of a BN face depends on the minimum value of strength of BN

edges in its boundary. A BN face and its TP , IP , FP , TN , IN , and FN values of a BN graph

are defined below.

Definition 2.21 LetG be a BN planar graph andD = {(xy, TP
D (xy)i, I

P
D(xy)i, F

P
D (xy)i, T

N
D (xy)i,

IND (xy)i, F
N
D (xy)i), i = 1, 2, . . . ,m|xy ∈ V × V }. A BN face of G is a region, bounded by the set

of BN edges E′ ⊂ E, of a geometric representation of G. The truth, indeterminacy and falsity

values of the BN face are:

(i) min{
TP
D (xy)i

min{TP
C
(x),TP

C
(y)}

, i = 1, 2, . . . ,m|xy ∈ E′};

(ii) max{
TN
D (xy)i

max{TN
C

(x),TN
C

(y)}
, i = 1, 2, . . . ,m|xy ∈ E′};

(iii) min{
IP
D(xy)i

min{IP
C
(x),IP

C
(y)}

, i = 1, 2, . . . ,m|xy ∈ E′};

(iv) max{
IN
D (xy)i

max{IN
C
(x),IN

C
(y)}

, i = 1, 2, . . . ,m|xy ∈ E′};

(v) max{
FP

D (xy)i
max{FP

C
(x),FP

C
(y)}

, i = 1, 2, . . . ,m|xy ∈ E′};

(vi) min{
FN

D (xy)i
min{FN

C
(x),FN

C
(y)}

, i = 1, 2, . . . ,m|xy ∈ E′}.

Definition 2.22 A BN face is called strong BN face if its positive true and indeterminacy value

is greater than 0.5 but false value is less than 0.5, and negative true and indeterminacy value is

less than −0.5 but false value is greater than −0.5. Otherwise, face is weak. Every BN planar

graph has an infinite region which is called outer BN face. Other faces are called inner BN faces.
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Example 2.23 Consider a BN planar graph as shown in Figure 2.5. The BN planar graph has

the following faces:

• BN face F1 is bounded by the edges (v1v2, 0.5, 0.5, 0.1,−0.5,−0.5,−0.1), (v2v3, 0.6, 0.6, 0.1,

−0.6,−0.6,−0.1), (v1v3, 0.5, 0.5, 0.1,−0.5,−0.5,−0.1);

• outer BN face F2 surrounded by edges (v1v3, 0.5, 0.5, 0.1,−0.5,−0.5,−0.1), (v1v4, 0.5, 0.5,

0.1,−0.5,−0.5,−0.1), (v2v4, 0.6, 0.6, 0.1,−0.6,−0.6,−0.1), (v2v3, 0.6, 0.6, 0.1,−0.6,−0.6,−0.1);

• BN face F3 is bounded by the edges (v1v2, 0.5, 0.5, 0.1,−0.5,−0.5,−0.1), (v2v4, 0.6, 0.6, 0.1,

−0.6,−0.6,−0.1), (v1v4, 0.5, 0.5, 0.1,−0.5,−0.5,−0.1).

Clearly, the positive truth, indeterminacy and falsity values of a BN face F1 are 0.833,

0.833 and 0.333, respectively, and the negative truth, indeterminacy and falsity values of a BN

face F1 are −0.833, −0.833 and −0.333, respectively. The positive truth, indeterminacy and

falsity values of a BN face F3 are 0.833, 0.833 and 0.333, respectively, and the negative truth,

indeterminacy and falsity values of a BN face F3 are −0.833, −0.833 and −0.333, respectively.

Thus F1 and F3 are strong BN faces.
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Figure 2.5 Faces in BN planar graph

We now introduce dual of BN planar graph. In BN dual graph, vertices are corresponding to the

strong BN faces of the BN planar graph and each BN edge between two vertices is corresponding

to each edge in the boundary between two faces of BN planar graph. The formal definition is

given below.

Definition 2.24 Let G be a BN planar graph and let

D = {(xy, TP
D (xy)i, I

P
D(xy)i, F

P
D (xy)i, T

N
D (xy)i, I

N
D (xy)i, F

N
D (xy)i), i = 1, 2, . . . ,m|xy ∈ V ×V }.

Let F1, F2, . . . , Fk be the strong BN faces of G. The BN dual graph of G is a BN planar graph

G′ = (V ′, C′, D′), where V ′ = {xi, i = 1, 2, . . . , k}, and the vertex xi of G′ is considered for



Bipolar neutrosophic planar graphs 641

the face Fi of G. The truth-membership, indeterminacy and false-truth-membership values of

vertices are given by the mapping C′ = (TP
C′ , IPC′ , FP

C′ , TN
C′ , INC′ , FN

C′) : V ′ → [0, 1]× [0, 1]× [0, 1]×

[−1, 0]× [−1, 0]× [−1, 0] such that

TP
C′(xi) = max{TP

D′(uv)i, i = 1, 2, . . . , p|uv is an edge of the boundary of the strong BN face Fi},

TN
C′(xi) = min{TN

D′(uv)i, i = 1, 2, . . . , p|uv is an edge of the boundary of the strong BN face Fi},

IPC′(xi) = max{IPD′(uv)i, i = 1, 2, . . . , p|uv is an edge of the boundary of the strong BN face Fi},

INC′(xi) = min{IND′(uv)i, i = 1, 2, . . . , p|uv is an edge of the boundary of the strong BN face Fi},

FP
C′(xi) = min{FP

D′(uv)i, i = 1, 2, . . . , p|uv is an edge of the boundary of the strong BN face Fi},

FN
C′(xi) = max{FN

D′(uv)i, i = 1, 2, . . . , p|uv is an edge of the boundary of the strong BN face Fi}.

There may exist more than one common edges between two faces Fi and Fj of G. Thus

there may be more than one edges between two vertices xi and xj in BN dual graph G′. Let

(TP )lD(xixj), (I
P )lD(xixj) and (FP )lD(xixj) denote the positive truth, indeterminacy and falsity

membership values of the l-th edge between xi and xj , and let (TN)lD(xixj), (I
N )lD(xixj) and

(FN )lD(xixj) denote the negative truth, indeterminacy and falsity membership values of the l-th

edge between xi and xj . The positive and negative truth, indeterminacy and falsity values of the

BN edges of the BN dual graph are given by TP
D′(xixj)l = (TP )lD(uv)j , I

P
D′ (xixj)l = (IP )lD(uv)j ,

FP
D′(xixj)l = (FP )lD(uv)j , T

N
D′(xixj)l = (TN)lD(uv)j , I

N
D′(xixj)l = (IN )lD(uv)j , F

N
D′(xixj)l =

(FN )lD(uv)j , where (uv)l is an edge in the boundary between two strong BN faces Fi and Fj

and l = 1, 2, . . . , s, where s is the number of common edges in the boundary between Fi and

Fj or the number of edges between xi and xj . If there is any strong pendant edge in the BN

planar graph, then there will be a self loop in G′ corresponding to this pendant edge. The edge

truth- membership, indeterminacy-membership and falsity-membership value of the self loop is

equal to the truth- membership, indeterminacy-membership and falsity-membership value of the

pendant edge. Single-valued neutrosophic dual graph of BN planar graph does not contain point

of intersection of edges for a certain representation, so it is BN planar graph with planarity value

(1, 1, 1,−1,−1,−1). Thus the BN face of BN dual graph can be similarly described as in BN

planar graphs.

Example 2.25 Consider a BN planar graph G = (V,A,B) as shown in Figure 2.6 such

that V = {a, b, c, d}, C = (a, 0.6, 0.6, 0.2,−0.6,−0.6,−0.2), (b, 0.7, 0.7, 0.2,−0.7,−0.7,−0.2),

(c, 0.8, 0.8, 0.2,−0.8,−0.8,−0.2), (d, 0.9, 0.9, 0.1,−0.9,−0.9,−0.1), and D = {(ab, 0.5, 0.5, 0.01,

−0.5,−0.5,−0.01), (ac, 0.4, 0.4, 0.01,−0.4,−0.4,−0.01), (ad, 0.55, 0.55, 0.01,−0.55,−0.55,−0.01),

(bc, 0.45, 0.45, 0.01,−0.45,−0.45,−0.01), (bc, 0.6, 0.6, 0.01,−0.6,−0.6,−0.01), (cd, 0.7, 0.7, 0.01,

−0.7,−0.7,−0.01)}.

The BN planar graph has the following faces:

• BN face F1 is bounded by (ab, 0.5, 0.5, 0.01,−0.5,−0.5,−0.01), (ac, 0.4, 0.4, 0.01,−0.4,−0.4,

−0.01), (bc, 0.45, 0.45, 0.01,−0.45,−0.45,−0.01);
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• BN face F2 is bounded by (ad, 0.55, 0.55, 0.01,−0.55,−0.55,−0.01), (cd, 0.7, 0.7, 0.01,−0.7,

−0.7,−0.01), (ac, 0.4, 0.4, 0.01,−0.4,−0.4,−0.01);

• BN face F3 is bounded by (bc, 0.45, 0.45, 0.01,−0.45,−0.45,−0.01), (bc, 0.6, 0.6, 0.01,−0.6,

−0.6,−0.01);

• outer BN face F4 is surrounded by (ab, 0.5, 0.5, 0.01,−0.5,−0.5,−0.01), (bc, 0.6, 0.6, 0.01,

−0.6,−0.6,−0.01), (cd, 0.7, 0.7, 0.01,−0.7,−0.7,−0.01), (ad, 0.55, 0.55, 0.01,−0.55,−0.55,−0.01).

bb

b b

bc

bc

bc

bc

a b

cd

x1

x2
x3

x4

Figure 2.6 Neutrosophic dual graph

Routine calculations show that all faces are strong BN faces. For each strong BN face, we

consider a vertex for the BN dual graph. So the vertex set V ′ = {x1, x2, x3, x4}, where the vertex

xi is taken corresponding to the strong BN face Fi, i = 1, 2, 3, 4. Thus

TP
C′(x1) = max{0.5, 0.4, 0.45} = 0.5, TP

C′(x2) = max{0.55, 0.7, 0.4} = 0.7,

TN
C′(x1) = min{−0.5,−0.4,−0.45}= −0.5, TN

C′(x2) = min{−0.55,−0.7,−0.4}= −0.7,

IPC′(x1) = max{0.5, 0.4, 0.45} = 0.5, IPC′(x2) = max{0.55, 0.7, 0.4} = 0.7,

INC′(x1) = min{−0.5,−0.4,−0.45}= −0.5, INC′(x2) = min{−0.55,−0.7,−0.4}= −0.7,

FP
C′(x1) = min{0.01, 0.01, 0.01}= 0.01, FP

C′(x2) = min{0.01, 0.01, 0.01}= 0.01,

FN
C′(x1) = max{−0.01,−0.01,−0.01}= −0.01, FN

C′(x2) = max{−0.01,−0.01,−0.01}= −0.01,

TP
C′(x3) = max{0.45, 0.6} = 0.6, TP

C′(x4) = max{0.5, 0.6, 0.7, 0.55}= 0.7,

TN
C′(x3) = min{−0.45,−0.6} = −0.6, TN

C′(x4) = min{−0.5,−0.6,−0.7,−0.55}= −0.7,

IPC′(x3) = max{0.45, 0.6} = 0.6, IPC′(x4) = max{0.5, 0.6, 0.7, 0.55}= 0.7,

FP
C′(x3) = min{0.01, 0.01} = 0.01, FP

C′(x4) = min{0.01, 0.01, 0.01, 0.01}= 0.01,

FN
C′(x3) = max{−0.01,−0.01} = −0.01, FN

C′(x4) = max{−0.01,−0.01,−0.01,−0.01}= −0.01.

There are two common edges ad and cd between the faces F2 and F4 in G. Hence between

the vertices x2 and x4, there exist two edges in the BN dual graph of G. Truth-membership,

indeterminacy-membership and falsity-membership values of these edges are given by

TP
D′(x2x4) = TP

D (cd) = 0.7, TP
D′(x2x4) = TP

D (ad) = 0.55, IPD′ (x2x4) = IPD(cd) = 0.7,
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IPD′(x2x4) = IPD(ad) = 0.55, FP
D′(x2x4) = FP

D (cd) = 0.01, FP
D′(x2x4) = FP

D (ad) = 0.01,

TN
D′(x2x4) = TN

D (cd) = −0.7, TN
D′(x2x4) = TN

D (ad) = −0.55, IND′ (x2x4) = IND (cd) = −0.7,

IND′(x2x4) = IND (ad) = −0.55, FN
D′(x2x4) = FN

D (cd) = −0.01, FN
D′ (x2x4) = FN

D (ad) = −0.01.

The truth- membership, indeterminacy-membership and falsity-membership values of other edges

of the BN dual graph are calculated as

TP
D′(x1x3) = TP

D (bc) = 0.45, TP
D′(x1x2) = TP

D (ac) = 0.4, TP
D′(x1x4) = TP

D (ab) = 0.5,

TP
D′(x3x4) = TP

D′(bc) = 0.6, TN
D′(x1x3) = TN

D (bc) = −0.45, TN
D′(x1x2) = TN

D (ac) = −0.4,

TN
D′(x1x4) = TN

D (ab) = −0.5, TN
D′(x3x4) = TN

D′(bc) = −0.6, IPD′ (x1x3) = IPD(bc) = 0.45,

IPD′(x1x2) = IPD(ac) = 0.4, IPD′(x1x4) = IPD(ab) = 0.5, IPD′(x3x4) = IPD′ (bc) = 0.6,

IND′(x1x3) = IND (bc) = −0.45, IND′(x1x2) = IND (ac) = −0.4, IND′(x1x4) = IND (ab) = −0.5,

IND′(x3x4) = IND′(bc) = −0.6, FP
D′(x1x3) = TP

D (bc) = 0.01, FP
D′(x1x2) = FP

D (ac) = 0.01,

FP
D′(x1x4) = FP

D (ab) = 0.01, FP
D′(x3x4) = FP

D (bc) = 0.01 FN
D′(x1x3) = TN

D (bc) = 0.01,

FN
D′ (x1x2) = FN

D (ac) = 0.01, FN
D′(x1x4) = FN

D (ab) = 0.01, FN
D′(x3x4) = FN

D (bc) = 0.01.

Thus the edge set of BN dual graph is D′ = {(x1x3, 0.45, 0.45, 0.01,−0.45,−0.45,−0.01), (x1x2,

0.4, 0.4, 0.01,−0.4,−0.4,−0.01), (x1x4, 0.5, 0.5, 0.01,−0.5,−0.5,−0.01), (x3x4, 0.6, 0.6, 0.01,−0.6,

−0.6,−0.01), (x2x4, 0.7, 0.7, 0.01,−0.7,−0.7,−0.01), (x2x4, 0.55, 0.55, 0.01,−0.55,−0.55,−0.01)}.

In Figure 2.6, the BN dual graph G′ = (V ′, C′, D′) of G is drawn by dotted line.

Weak edges in planar graphs are not considered for any calculation in BN dual graphs. We

state the following Theorem without its proof.

Theorem 2.26 Let G = (V,C,D) be a BN planar graph without weak edges and the BN dual

graph of G be G′ = (V ′, C′, D′). The truth- membership indeterminacy-membership and falsity-

membership values of BN edges of G′ are equal to truth- membership, indeterminacy-membership

and falsity-membership values of the BN edges of G.

3. Applications

Graph is considered an important part of Mathematics for solving countless real World

problems in information technology, psychology, engineering, combinatorics and medical sciences.

Everything in this World is connected, for instance, cities and countries are connected by roads,

railways are linked by railway lines, flight networks are connected by air, electrical devices are

connected by wires, pages on internet by hyperlinks, components of electric circuits by various

paths, and many more. Scientists, analysts and engineers are trying to optimize these networks

to find a way to save millions of lives by reducing traffic accidents, plane crashes and circuit

shots. Planar graphs are used to find such graphical representations of networks without any

crossing or minimum number of crossings. But there is always an uncertainty and degree of
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indeterminacy in data which can be dealt using bipolar neutrosophic graphs. We now present

applications of bipolar neutrosophic graphs in road networks.

1. Road network model to monitor traffic: Roads are a mean of frequent and unacceptable

number of fatalities every year. Road accidents are increasing due to dense traffic, negligence of

drivers and speed of vehicles. Traffic accidents can be minimized by modeling road networks to

monitor the traffic, apply quick emergency services and to take action against the speedily going

vehicles quickly. The practical approach of bipolar neutrosophic planar graphs can be applied

to construct road networks, as these are the combination of vertices and edges along with the

degree of truth, indeterminacy and falsity. The method for the construction of road network is

given in Algorithm 1.

Algorithm 1

1. Input the n number of location L1, L2, . . . , Ln.

2. Input the bipolar neutrosophic set of cities.

3. Input the adjacency matrix of ξ = [ξij ]n×n of cities.

4. do i from 1 → n

5. do j from 1 → n

6. if (i < j, ξij 6= (0, 0, 1, 0, 0,−1)) then

7. Draw an edge between Li and Lj .

8. B(LiLj) = ξij

9. end if

10. end do

11. end do

Consider the problem of road networks between 6 locations L1, L2, L3, L4, L5, L6. The degree of

memberships of cities and roads between cities is given in Tables 3.1 and 3.2.

The positive degree of membership T p(x) of each vertex x represents the percentage that

vehicles traveling to or from this city are dense, Ip(x) and F p(x) represent the indeterminacy

and falsity in this percentage. The negative degree of membership T n(x) represents the per-

centage that traffic is not dense, In(x) and Fn(x) represent the indeterminacy and falsity in

this percentage. The positive degree of memberships of each edge xy indicate the percentage

of truth, indeterminacy and falsity of road accidents through this road. The negative degree

of memberships of xy show the percentage of truth, indeterminacy and falsity that the road is

safer. The bipolar neutrosophic model of road connections between the cities is shown in Figure

3.1. This bipolar neutrosophic model can be used to check and monitor the percentage of annual
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accidents. Also, by monitoring and taking special security actions, the total number of accidents

can be minimized.

A L1 L2 L3 L4 L5 L6

T
p
A 0.7 0.5 0.8 0.6 0.5 0.4

I
p
A 0.4 0.4 0.2 0.1 0.4 0.5

F
p
A 0.2 0.3 0.2 0.1 0.4 0.5

T n
A −0.2 −0.3 −0.2 −0.1 −0.4 −0.5

InA −0.4 −0.4 −0.2 −0.1 −0.4 −0.5

Fn
A −0.7 −0.5 −0.8 −0.6 −0.5 −0.4

Table 3.1 Bipolar neutrosophic set of cities

A L1L3 L1L6 L2L3 L2L4 L3L5 L5L6 L2L5 L3L6 L4L6

T
p
B 0.4 0.4 0.5 0.5 0.5 0.4 0.5 0.4 0.4

I
p
B 0.2 0.4 0.2 0.1 0.2 0.4 0.4 0.2 0.1

F
p
B 0.2 0.5 0.3 0.1 0.4 0.4 0.3 0.5 0.5

T n
B −0.2 −0.2 −0.3 −0.1 −0.2 −0.4 −0.3 −0.2 −0.1

InB −0.4 −0.4 −0.2 −0.1 −0.2 −0.4 −0.4 −0.2 −0.1

Fn
B −0.7 −0.4 −0.8 −0.6 −0.8 −0.4 −0.5 −0.8 −0.6

Table 3.2 Bipolar neutrosophic set of roads
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Figure 3.1 Bipolar neutrosophic road model

2. Electrical connections: Graph theory is extensively used in designing circuit connections

and installation of wires in order to prevent crossing which can cause dangerous electrical hazards.

The twisted and crossing wires are a serious safety risk to human life. There is a need to install

electrical wires to reduce crossing. Bipolar neutrosophic planar graphs can be used to model

electrical connections and to study the degree of damage that can cause due to the connection.

Consider the problem of setting electrical wires between 5 electrical utilities and power plugs

E1, E2, E3, E4, E5 in a factory as shown in Figure 3.2.
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Figure 3.2 Electrical connections
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Figure 3.3 Bipolar neutrosophic planar graph

The positive degree of membership T p(Ei) of each vertex Ei represents the percentage of

faults and electrical sparks of utility or power plug Ei, I
p(Ei) and F p(Ei) represent the inde-

terminacy and falsity in this percentage. The negative degree of membership T n(Ei) represents

the percentage that Ei is update and safer, In(x) and Fn(x) represent the indeterminacy and

falsity in this percentage. The positive degree of memberships of each edge EiEj indicate the

percentage of truth, indeterminacy and falsity of electrical hazards through this connection. The

negative degree of memberships of EiEj show the percentage of truth, indeterminacy and falsity

that the connection is safer. The crossing of wires can be reduced if we change the geometrical

representation of Figure 3.2. The other representation is shown in Figure 3.3 which has only

one crossing, at point P1, between the edges E1E4 and E2E5. The electrical damage at crossing

point P1 can be reduced by using better electrical wires between E1 and E4, E2 and E5.
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The method for the construction of bipolar neutrosophic planar graph is given in Algorithm

2.

Algorithm 2

1. Input the n number of utilities E1, E2, . . . , En and p number of connections e1, e2, . . . , ep.

2. Input the bipolar neutrosophic set of utilities.

3. Input the points of intersection P1, P2, . . . , Pr.

4. do i from 1 → r

5. Pi is a point of intersection between ej and ek.

6. Change the graphical representation of one of the edges ej and ek.

7. if There is no new point of intersection in this representation then

8. Keep this graphical representation.

9. else

10. Keep the previous graphical representation.

11. end if

12. end do
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