The Crossing Numbers of Join of a Subdivision of $K_{2,3}$ with P_{n} and C_{n}

Zhenhua SU
Department of Mathematics, Huaihua University, Hunan 418008, P. R. China

Abstract

Adding a new vertex to any edge of the complete bipartite graph $K_{2,3}$ gives a subdivision of $K_{2,3}$ (6 -vertices graph). In the paper, we get the crossing numbers of the join graph of the specific 6 -vertices graph H with n isolated vertices as well as with the path P_{n} on n vertices and with the cycle C_{n}.

Keywords crossing number; join graph; path; cycle
MR(2010) Subject Classification 05C10; 05C38

1. Introduction

Let G be a simple graph, whose vertex set and edge set are denoted by $V(G)$ and $E(G)$, respectively. A drawing of G is a representation of G in the plane such that its vertices are represented by distinct points and its edges by simple continuous arcs connecting the corresponding point pairs. For simplicity, we assume that in a drawing (a) no edge passes through any vertex other than its end-point, (b) no two edges touch each other, (c) no three edges cross at the same point.

The crossing number, $\operatorname{cr}(G)$ is the smallest number of edge crossings in any drawing of G. It is easy to see that a drawing with minimum number of crossings (an optimal drawing) is always a good drawing, meaning that (i) no edge crosses itself, (ii) no two edges cross more than once, and (iii) no two edges are incident with the same vertex cross.

Let ϕ be a drawing of graph G. We denote the number of crossings in ϕ by $\mathrm{cr}_{\phi}(G)$. For definitions not explained in this paper, readers are referred to [1]. By definition and notation about crossing numbers, it is easy to get the following properties:

Property 1.1 Let D be a good drawing of G, and A, B, C be mutually edge-disjoint subgraphs of G. Then
(i) $\operatorname{cr}_{D}(A \cup B, C)=\operatorname{cr}_{D}(A, C)+\operatorname{cr}_{D}(B, C)$.
(ii) $\operatorname{cr}_{D}(A \cup B)=\operatorname{cr}_{D}(A)+\operatorname{cr}_{D}(A, B)+\operatorname{cr}_{D}(B)$.

Property 1.2 (i) Let H be a subgraph of G. Then $\operatorname{cr}(H) \leq \operatorname{cr}(G)$.
(ii) If H is isomorphic to G. Then $\operatorname{cr}(H)=\operatorname{cr}(G)$.

[^0]In general, computing the crossing number of graphs is an NP-complete problem. At present, there are only some classes of special graphs whose crossing numbers are known. For example, these include the complete bipartite graph $K_{m, n}$ (see $[2,3]$) and the complete tripartite graph $K_{m, n, s}$ (see [4]) and so on. It is a very important result of $K_{m, n}$, in 1970 Kleitman [3] proved that:

$$
\operatorname{cr}\left(K_{m, n}\right)=Z(m, n)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor, \quad m \leq 6, m \leq n .
$$

The join product of G and H, denoted by $G+H$, is obtained from vertex-disjoint copies of G and H by adding all edges between $V(G)$ and $V(H)$. Let $n K_{1}$ denote the graph on n isolated vertices, and let P_{n} and C_{n} be the path and cycle on n vertices, respectively. Recently, the crossing numbers of join product become more and more concerning. In 2007, Klešč [5] and Tang [6] obtained the crossing numbers of join of $P_{n}+P_{n}, P_{n}+C_{n}$ and $C_{n}+C_{n}$, respectively. And in [7] the crossing numbers of $G+P_{n}$ and $G+C_{n}$ are also known for a special graph G of order six. The up to date results of crossing numbers of G of order six with P_{n} and C_{n} are given in $[7,8]$.

Let $u v$ be an edge of graph G. Add a new vertex w to the edge of $u v$ and make $u w$ and $w v$ replace the edge $u v$ while the other vertices of G remain unchanged. This step is called a subdivision of an edge of graph G. Adding a new vertex w to any edge of the complete graph $K_{2,3}$ gives a subdivision of $K_{2,3}$ (see Figure 1). For convenience, we denote the subdivision graph by H, obviously H is a specific 6 -vertices graph. In the paper, on the basis of result of crossing number of complete bipartite graph $\operatorname{cr}\left(K_{6, n}\right)=Z(6, n)$ by Kleitman, together with the special structure of graph H, we get the crossing numbers of the join graph of H with n isolated vertices as well as with the path P_{n} on n virtices and with the cycle C_{n}.

Figure 1 A subdivision of $K_{2,3}$ (the graph H) Figure 2 A good drawing of $H+n K_{1}$

2. The graph $H+n K_{1}$

In the graph of $H+n K_{1}$, denote $V(H)=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}, V\left(n K_{1}\right)=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$. Let for $i=1,2, \ldots, n, T^{i}$ denote the subgraph of H which consists of the six edges incident with the vertex t_{i}. One can easily see that

$$
\begin{equation*}
H+n K_{1}=H \cup\left(\bigcup_{i=1}^{n} T^{i}\right) \tag{1}
\end{equation*}
$$

Lemma 2.1 Let $H+K_{1}=H \cup T^{1}$ and $H+2 K_{1}=H \cup T^{1} \cup T^{2}$. Then, we have $\operatorname{cr}\left(H+K_{1}\right)=1$ and $\operatorname{cr}\left(H+2 K_{1}\right)=2$.

Proof The drawing in Figure 2 shows that $\operatorname{cr}\left(H+K_{1}\right) \leq 1$ and $\operatorname{cr}\left(H+2 K_{1}\right) \leq 2$. Since $H+K_{1}$ contains a subgraph which is isomorphic to the subdivision of $K_{3,3}$, and $H+2 K_{1}$ contains a subgraph which is isomorphic to the subdivision of $K_{3,4}$. So by Property 1.2 , we have $\operatorname{cr}\left(H+K_{1}\right) \geq \operatorname{cr}\left(K_{3,3}\right)=1$ and $\operatorname{cr}\left(H+2 K_{1}\right) \geq \operatorname{cr}\left(K_{3,4}\right)=2$. This completes the proof.

Lemma 2.2 ([4]) There are 6 non-isomorphic drawings of $K_{2,3}$ (see Figure 3).

Figure 3 Six good drawings of $K_{2,3}$
Lemma 2.3 There are exactly 4 drawings of H such that a region exists with 6 vertices on its boundary (see Figure 4).

Proof According to Lemma 2.2, we know that there are 6 non-isomorphic drawings of $K_{2,3}$ shown in Figure 3. To obtain a drawing of H such that there is a region with 6 vertices of H on its boundary, the only candidates are Figure 3(2) and 3(6). To obtain a drawing of H from Figure $3(2)$ and $3(6)$, we need to add a new vertex at any edge of $K_{2,3}$, then we get the possible good drawings of H shown in Figure 4.

Figure 4 Four good drawings of H
Theorem 2.4 For $n \geq 1$, we have $\operatorname{cr}\left(H+n K_{1}\right)=Z(6, n)+n$.
Proof The good drawing of $H+n K_{1}$ in Figure 2 shows that $\operatorname{cr}\left(H+n K_{1}\right) \leq Z(6, n)+n$. We prove the reverse inequality by induction on n. By Lemma 2.1, the theorem is true for $n=1$ and $\mathrm{n}=2$. Suppose now for $n \geq 3, \operatorname{cr}\left(H+(n-2) K_{1}\right) \geq Z(6, n-2)+n-2$, and consider such a good drawing D of $H+n K_{1}$ that

$$
\begin{equation*}
\operatorname{cr}_{D}\left(H+n K_{1}\right)<Z(6, n)+n \tag{2}
\end{equation*}
$$

Claim 2.5 There is at least one T^{i}, such that $\operatorname{cr}_{D}\left(H, T^{i}\right)=0$.
Otherwise, for all $t_{i}, \operatorname{cr}_{D}\left(H, T^{i}\right) \geq 1$. Using (1), we have $\operatorname{cr}_{D}\left(H+n K_{1}\right) \geq \operatorname{cr}_{D}\left(\bigcup_{i=1}^{n} T^{i}\right)+$ $\operatorname{cr}_{D}\left(H, \bigcup_{i=1}^{n} T^{i}\right) \geq Z(6, n)+n$. This contradicts (2).

Claim 2.6 For all $i, j=1,2, \ldots, n, i \neq j$, there holds $\operatorname{cr}_{D}\left(T^{i}, T^{j}\right) \geq 1$.

Otherwise, assume T^{1} and T^{2} satisfy $\operatorname{cr}_{D}\left(T^{1}, T^{2}\right)=0$. Since H contains two 5 -cycle, $\operatorname{cr}_{D}\left(H, T^{1} \cup T^{2}\right) \geq 2$. As $T^{i} \cup T^{1} \cup T^{2}$ is isomorphic to $K_{3,6}$, by $\operatorname{cr}\left(K_{3,6}\right)=6, \operatorname{cr}_{D}\left(T^{i}, T^{1} \cup T^{2}\right) \geq 6$ for $i=3,4, \ldots, n$. Together with (1) and Properties 2.1 and 2.2, we have

$$
\begin{aligned}
\operatorname{cr}_{D}\left(H_{n}\right) & =\operatorname{cr}_{D}\left(H \cup \bigcup_{i=3}^{n} T^{i} \cup T^{1} \cup T^{2}\right) \\
& =\operatorname{cr}_{D}\left(H \cup \bigcup_{i=3}^{n} T^{i}\right)+\operatorname{cr}_{D}\left(T^{1} \cup T^{2}\right)+\operatorname{cr}_{D}\left(H, T^{1} \cup T^{2}\right)+\operatorname{cr}_{D}\left(\bigcup_{i=3}^{n} T^{i}, T^{1} \cup T^{2}\right) \\
& \geq Z(6, n-2)+(n-2)+2+6(n-2) \geq Z(6, n)+n
\end{aligned}
$$

This contradicts (2). Hence $\operatorname{cr}_{D}\left(T^{i}, T^{j}\right) \geq 1$.
Next we get contradiction from restricted condition of Claims 2.5 and 2.6.
By Claim 2.5, assume T^{1} satisfies $\operatorname{cr}_{D}\left(H, T^{1}\right)=0$. Since $\operatorname{cr}_{D}\left(H, T^{1}\right)=0$, there is a disk such that the vertices of H are all placed on the boundary of disk. From Lemma 2.3, the good drawing of H is shown in Figure 4. Adding the edges of T^{1}, we have the subdrawing of $H \cup T^{n}$ as shown in Figure 5.

Figure 5 Four good drawings of $H \cup T^{n}$
(i) In Figure $5(1)$, when $t_{i}(2 \leq i \leq n)$ are placed in the region α, together with Claim 2.2, $\operatorname{cr}_{D}\left(T^{i}, T^{j}\right) \geq 1$, we have $\operatorname{cr}_{D}\left(H \cup T^{1}, T^{i}\right) \geq 3$, and " $=$ " holds if and only if $\operatorname{cr}_{D}\left(H, T^{i}\right)=2$ and $\operatorname{cr}_{D}\left(T^{1}, T^{i}\right)=1$. When $t_{i}(2 \leq i \leq n)$ are placed in the other regions, together with $\operatorname{cr}_{D}\left(T^{i}, T^{j}\right) \geq 1$, we have $\operatorname{cr}_{D}\left(H \cup T^{1}, T^{i}\right) \geq 5$. Now let x be the number of vertices t_{i} which are placed in the region α. As for all this t_{i}, there holds $\operatorname{cr}_{D}\left(H, T^{i}\right) \geq 2$. Using (1), we have $\operatorname{cr}_{D}\left(H+n K_{1}\right) \geq Z(6, n)+2 x$. This together with (2), implies that $x \leq \frac{n-1}{2}$. Hence, we have

$$
\begin{aligned}
& \operatorname{cr}_{D}\left(H+n K_{1}\right)=\operatorname{cr}_{D}\left(\bigcup_{i=2}^{n} T^{i}\right)+\operatorname{cr}_{D}\left(H \cup T^{1}, \bigcup_{i=2}^{n} T^{i}\right)+\operatorname{cr}_{D}\left(H \cup T^{1}\right) \\
& \quad \geq Z(6, n-1)+3 x+5(n-1-x)+1 \geq Z(6, n-1)+5 n-5-2 x \geq Z(6, n)+n .
\end{aligned}
$$

This contradicts (2).
(ii) In Figure $5(2)(3)(4)$, no matter which regions the vertex t_{i} are placed in, and by $\operatorname{cr}_{D}\left(T^{i}, T^{j}\right) \geq 1$, there always hold $\operatorname{cr}_{D}\left(H \cup T^{1}, T^{i}\right) \geq 4$. Moreover, together with $\operatorname{cr}_{D}\left(H \cup T^{1}\right) \geq$ 1, we have

$$
\operatorname{cr}_{D}\left(H+n K_{1}\right)=\operatorname{cr}_{D}\left(\bigcup_{i=2}^{n} T^{i}\right)+\operatorname{cr}_{D}\left(H \cup T^{1}, \bigcup_{i=2}^{n} T^{i}\right)+\operatorname{cr}_{D}\left(H \cup T^{1}\right)
$$

The crossing numbers of join of a subdivision of $K_{2,3}$ with P_{n} and C_{n}

$$
\geq Z(6, n-1)+4(n-1)+1 \geq Z(6, n)+n
$$

This contradicts (2).
Therefore, we always have $\operatorname{cr}_{D}\left(H+n K_{1}\right) \geq Z(6, n)+n$. This completes the proof.

3. The graph $H+P_{n}$

The graph $H+P_{n}$ contains $H+n K_{1}$ as a subgraph. We will use the same notion as $H+n K_{1}$. Let P_{n}^{*} denote the path on n vertices of $H+P_{n}$ not belonging to the subgraph H. One can easily see that

$$
\begin{equation*}
H+P_{n}=H \cup\left(\bigcup_{i=1}^{n} T^{i}\right) \cup P_{n}^{*} \tag{3}
\end{equation*}
$$

Lemma 3.1 ([7]) Let D be a good drawing of $m K_{1}+C_{n}, m \geq 2, n \geq 3$, in which no edges of C_{n} is crossed, and C_{n} does not separate the other vertices of the graph. Then for all $i, j=1,2, \ldots, n$, two different subgraphs T^{i} and T^{j} cross each other in D at least $\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$ times.

Theorem 3.2 For $n \geq 2$, we have $\operatorname{cr}\left(H+P_{n}\right)=Z(6, n)+n+1$.
Proof One can easily see that in Figure 2 it is possible to add $n-1$ edges which form the path P_{n}^{*} on the vertices of $n K_{1}$ in such a way that only one edge of P_{n}^{*} is crossed by an edge of H. Hence $\operatorname{cr}\left(H+P_{n}\right) \leq Z(6, n)+n+1$. Next we assume there exists a good drawing D of $H+P_{n}$ such that

$$
\begin{equation*}
\operatorname{cr}_{D}\left(H+P_{n}\right) \leq Z(6, n)+n \tag{4}
\end{equation*}
$$

Claim 3.3 $\operatorname{cr}_{D}\left(H \cup \bigcup_{i=1}^{n} T^{i}, P_{n}^{*}\right)=\operatorname{cr}_{D}\left(P_{n}^{*}\right)=0$. Thus all vertices of P_{n}^{*} are placed in the same region.

By Theorem 2.4, $\operatorname{cr}\left(H+n K_{1}\right)=Z(6, n)+n$. Therefore using (3), we have

$$
\begin{aligned}
\operatorname{cr}_{D}\left(H+P_{n}\right) & =\operatorname{cr}_{D}\left(H \cup \bigcup_{i=1}^{n} T^{i}\right)+\operatorname{cr}_{D}\left(H \cup \bigcup_{i=1}^{n} T^{i}, P_{n}^{*}\right)+\operatorname{cr}_{D}\left(P_{n}^{*}\right) \\
& \geq Z(6, n)+n+\operatorname{cr}_{D}\left(H \cup \bigcup_{i=1}^{n} T^{i}, P_{n}^{*}\right)+\operatorname{cr}_{D}\left(P_{n}^{*}\right)
\end{aligned}
$$

This together with assumption (4), implies that $\operatorname{cr}_{D}\left(H \cup \bigcup_{i=1}^{n} T^{i}, P_{n}^{*}\right)=\operatorname{cr}_{D}\left(P_{n}^{*}\right)=0$. So no edges of P_{n}^{*} is crossed, and no edges of P_{n}^{*} crossed with the edges of $H \cup \bigcup_{i=1}^{n} T^{i}$. Thus all vertices of P_{n}^{*} are placed in the same region.

Next we divide three following different cases to discuss:
Case 1 All vertices of P_{n}^{*} are placed in the regions where there are 6 vertices on the boundary.
Consider the drawing of $H \cup T^{1}$, satisfying $\operatorname{cr}_{D}\left(H, T^{1}\right)=0$. By Theorem 2.4, the drawing of $H \cup T^{1}$ is shown in Figure 5. By Claim 3.3, all $t_{i}(2 \leq i \leq n)$ are placed in the same region with the vertex t_{1}. Thus $\operatorname{cr}_{D}\left(H \cup T^{n}, T^{i}\right) \geq 5$. Moreover, together with $\operatorname{cr}_{D}\left(H \cup T^{1}\right) \geq 1$, we have $\operatorname{cr}_{D}\left(H+P_{n}\right) \geq Z(6, n-1)+5(n-1)+1>Z(6, n)+n$. This contradicts (4).

Case 2 All vertices of P_{n}^{*} are placed in the regions in which there are 5 vertices on the boundary.

Then, for all $i=1,2, \ldots, n$, we have $\operatorname{cr}_{D}\left(H, T^{i}\right) \geq 1$. By Claim 3.3, all $t_{i}(2 \leq i \leq n)$ are placed in the 5 vertices region. Using Lemma 3.1, we have $\operatorname{cr}_{D}\left(\sum_{i=1}^{n} T^{i}\right) \geq C_{n}^{2}\left\lfloor\frac{5}{2}\right\rfloor\left\lfloor\frac{4}{2}\right\rfloor$. So we have $\operatorname{cr}_{D}\left(H+P_{n}\right) \geq \operatorname{cr}_{D}\left(\sum_{i=1}^{n} T^{i}\right)+\sum_{i=1}^{n} \operatorname{cr}_{D}\left(H, T^{i}\right) \geq C_{n}^{2}\left\lfloor\frac{5}{2}\right\rfloor\left\lfloor\frac{4}{2}\right\rfloor+n>Z(6, n)+n$. This contradicts (4).

Case 3 All vertices of P_{n}^{*} are placed in the regions in which no more than 4 vertices are on the boundary.

Then, for all $i=1,2, \ldots, n$, we have $\operatorname{cr}_{D}\left(H, T^{i}\right) \geq 2$. Using (3), we have $\operatorname{cr}_{D}\left(H+P_{n}\right) \geq$ $\operatorname{cr}_{D}\left(\sum_{i=1}^{n} T^{i}\right)+\sum_{i=1}^{n} \operatorname{cr}_{D}\left(H, T^{i}\right) \geq Z(6, n)+2 n>Z(6, n)+n$. This contradicts (4).

Together with above three cases, the assumption (4) does not hold. So we have $\operatorname{cr}_{D}(H+$ $\left.P_{n}\right) \geq Z(6, n)+n+1$. This completes the proof.

4. The graph $H+C_{n}$

The graph $H+C_{n}$ contains both $H+n K_{1}$ and $H+P_{n}$ as a subgraph. Let C_{n}^{*} denote the subgraph induced on the vertices not belonging to the subgraph H. Let $T_{i}(1 \leq i \leq 6)$ denote the subgraph induced by n edges of $K_{6, n}$ incident with ith vertex of H. One can easily see that

$$
\begin{equation*}
H+C_{n}=H \cup\left(\bigcup_{i=1}^{6} T_{i}\right) \cup C_{n}^{*} \tag{5}
\end{equation*}
$$

Lemma 4.1 ([5]) Let D be an optimal drawing of $H+C_{n}$. Then $\operatorname{cr}_{D}\left(C_{n}^{*}\right)=0$.
Theorem 4.2 For $n \geq 3$, we have $\operatorname{cr}_{D}\left(H+C_{n}\right)=Z(6, n)+n+3$.
Proof In Figure 2, it is possible to add n edges from $H+n K_{1}$, then the edges of C_{n}^{*} are crossed only three times. Hence $\operatorname{cr}\left(H+C_{n}\right) \leq Z(6, n)+n+3$. To prove the reverse inequality, assume that there is a drawing D of $H+C_{n}$, such that

$$
\begin{equation*}
\operatorname{cr}_{D}\left(H+C_{n}\right) \leq Z(6, n)+n+2 . \tag{6}
\end{equation*}
$$

Since $H+C_{n}=H \cup\left(\bigcup_{i=1}^{6} T_{i}\right) \cup C_{n}^{*}$, and $H \cup\left(\bigcup_{i=1}^{6} T_{i}\right)$ is isomorphic to $H+n K_{1}$, from Theorem 2.4, we have $\operatorname{cr}_{D}\left(H+n K_{1}\right) \geq Z(6, n)+n$. Moreover, using Lemma 4.1 and (5), we have

$$
\begin{align*}
\operatorname{cr}_{D}\left(H+C_{n}\right) & =\operatorname{cr}_{D}\left(H+n K_{1}\right)+\operatorname{cr}_{D}\left(C_{n}^{*}, H \cup\left(\bigcup_{i=1}^{6} T_{i}\right)\right)+\operatorname{cr}_{D}\left(C_{n}^{*}\right) \\
& \geq Z(6, n)+n+\operatorname{cr}_{D}\left(C_{n}^{*}, H \cup\left(\bigcup_{i=1}^{6} T_{i}\right)\right) . \tag{7}
\end{align*}
$$

Claim $4.3 \operatorname{cr}_{D}\left(C_{n}^{*}, H \cup\left(\bigcup_{i=1}^{6} T_{i}\right)\right)=2$.
Firstly, assume that $\operatorname{cr}_{D}\left(C_{n}^{*}, H \cup\left(\bigcup_{i=1}^{6} T_{i}\right)\right)=0$. By Lemma 3.1, for all T_{i} and $T_{j}(1 \leq i<$ $j \leq 6)$, have $\operatorname{cr}_{D}\left(T_{i}, T_{j}\right) \geq\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$. So $\operatorname{cr}_{D}\left(H+C_{n}\right) \geq C_{6}^{2}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor>Z(6, n)+n+2$. This contradicts (6).

Secondly, assume that $\operatorname{cr}_{D}\left(C_{n}^{*}, H \cup\left(\bigcup_{i=1}^{6} T_{i}\right)\right)=1$. Since H is 2-connected graph $\left(\operatorname{cr}_{D}\left(C_{n}^{*}, H\right)\right.$ ≥ 2), it is only possible that $\operatorname{cr}_{D}\left(C_{n}^{*}, \bigcup_{i=1}^{6} T_{i}\right)=1$. Then deleting the crossed edges of C_{n}^{*} results

The crossing numbers of join of a subdivision of $K_{2,3}$ with P_{n} and C_{n}
in the drawing of $H+P_{n}$ with fewer than $Z(6, n)+n+1$. This contradicts Theorem 3.2.
Thirdly, assume that $\mathrm{cr}_{D}\left(C_{n}^{*}, H \cup\left(\bigcup_{i=1}^{6} T_{i}\right)\right) \geq 3$. By (7), we have $\mathrm{cr}_{D}\left(H+C_{n}\right) \geq Z(6, n)+$ $n+3$. This contradicts (6).

According to above three kinds of discussion, we have $\operatorname{cr}_{D}\left(C_{n}^{*}, H \cup\left(\bigcup_{i=1}^{6} T_{i}\right)\right)=2$.
Next we divide two following different cases to complete the proof.
Case $1 \operatorname{cr}_{D}\left(C_{n}^{*}, H\right)=2, \operatorname{cr}_{D}\left(C_{n}^{*}, \bigcup_{i=1}^{6} T_{i}\right)=0$.
Subcase 1.1 There exists a 2-degree vertex of H placed in the inner of C_{n}^{*}, and the other five vertices are placed in the external. Since $\operatorname{cr}_{D}\left(C_{n}^{*}, \bigcup_{i=1}^{6} T_{i}\right)=0$, using Lemma 3.1, we have $\operatorname{cr}_{D}\left(H+C_{n}\right) \geq C_{5}^{2}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2>Z(6, n)+n+2$. This contradicts (6).

Subcase 1.2 There exist two 2-degree vertices of H placed in the inner of C_{n}^{*}, and the other four vertices are placed in the external. Without loss of generality, suppose x_{5}, x_{6} are placed in the inner region. Now consider the drawing of H. Moreover, the edges of H do not cross each other more than three times. Otherwise by Lemma 3.1, we have $\operatorname{cr}_{D}\left(H+C_{n}\right) \geq C_{4}^{2}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+$ $\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2+3>Z(6, n)+n+2$. Therefore, according to the structure of H, the drawing of $H \cup C_{n}^{*}$ is as shown in Figure 6.

First we can prove that there exists no edge of C_{n}^{*} which are crossed two times. Otherwise deleting the crossed edges of C_{n}^{*} results in the drawing of $H+P_{n}$ with fewer than $Z(6, n)+n+1$. This contradicts Theorem 3.2. So in Figure 6, there exists at least a vertex t_{i} placed in the boundary of C_{n}^{*}.

Figure 6 Five good drawings of $H \cup C_{n}^{*}$
(i) When $H \cup C_{n}$ is as shown in Figure 6(1)(3)(5), there hold $\mathrm{cr}_{D}\left(H \cup C_{n}^{*}, \bigcup_{i=1}^{6} T_{i}\right) \geq n$. So we have $\operatorname{cr}_{D}\left(H+C_{n}\right) \geq C_{4}^{2}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2+n>Z(6, n)+n+2$. This contradicts (6).
(ii) When $H \cup C_{n}$ is as shown in Figure 6(2)(4), there hold $\operatorname{cr}_{D}\left(H \cup C_{n}^{*}, \bigcup_{i=1}^{6} T_{i}\right) \geq 2$. And together with $\operatorname{cr}_{D}(H) \geq 1$, we have $\operatorname{cr}_{D}\left(H+C_{n}\right) \geq C_{4}^{2}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2+2+1>$ $Z(6, n)+n+2$. This contradicts (6).

Case $2 \operatorname{cr}_{D}\left(C_{n}^{*}, H\right)=0, \operatorname{cr}_{D}\left(C_{n}^{*}, \bigcup_{i=1}^{6} T_{i}\right)=2$.
Subcase 2.1 There exists a vertex, x_{6}, such that $\operatorname{cr}_{D}\left(C_{n}^{*}, T_{6}\right)=2$. As Lemma 3.1, for $1 \leq i \leq 5$, with $\operatorname{cr}_{D}\left(T_{i}, T_{j}\right) \geq\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$. Hence $\operatorname{cr}_{D}\left(H+C_{n}\right) \geq C_{5}^{2}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2>Z(6, n)+n+2$. This contradicts (6).

Subcase 2.2 There exist two vertices, x_{5}, x_{6}, such that $\operatorname{cr}_{D}\left(C_{n}^{*}, T_{5}\right)=\operatorname{cr}_{D}\left(C_{n}^{*}, T_{6}\right)=1$.
Subcase 2.2.1 For $n=3$. There exists no edge of C_{3}^{*} which crosses with T_{5} and T_{6} at the same time. Otherwise deleting the crossed edges of C_{3}^{*} results in the drawing of $H+P_{3}$ with fewer than $Z(6,3)+3+1$. This contradicts Theorem 3.2. So the edges of T_{5} and T_{6} crosses with the different edges of C_{3}^{*}. According to the structure of C_{3}^{*}, the subgraph $T_{5} \cup T_{6} \cup C_{3}^{*}$ is as shown in Figure 7. As H contains a 5 -cycle C_{5}, so regardless of whether or not the edges of H cross each other, we always have $\operatorname{cr}_{D}\left(\bigcup_{i=1}^{4} T_{i}, T_{5} \cup T_{6} \cup H \cup C_{3}^{*}\right) \geq 3$. Hence $\operatorname{cr}_{D}\left(H+C_{3}\right) \geq \operatorname{cr}_{D}\left(\bigcup_{i=1}^{4} T_{i}\right)+$ $\operatorname{cr}_{D}\left(T_{5} \cup T_{6} \cup H \cup C_{3}^{*}\right)+\operatorname{cr}_{D}\left(\bigcup_{i=1}^{4} T_{i}, T_{5} \cup T_{6} \cup H \cup C_{3}^{*}\right) \geq C_{4}^{2}\left\lfloor\frac{3}{2}\right\rfloor\left\lfloor\frac{2}{2}\right\rfloor+3+3>Z(6,3)+3+2$. This contradicts (6).

Figure 7 A subdrawing $T_{5} \cup T_{6} \cup C_{3}^{*}$
Subcase 2.2.2 For $n \geq 4$. Based on known conditions, the vertices $x_{i}(1 \leq i \leq 6)$ are all placed in the same region of C_{n}^{*}, say, external region. Then according to the cross of T_{i} and T_{j}, we can divide three cases: (i) For $1 \leq i<j \leq 4, \operatorname{cr}_{D}\left(T_{i}, T_{j}\right) \geq\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$. (ii) For $1 \leq i \leq 4, j=5,6$, $\operatorname{cr}_{D}\left(T_{i}, T_{j}\right) \geq\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor$. (iii) For $i=5, j=6, \operatorname{cr}_{D}\left(T_{i}, T_{j}\right) \geq\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor$. So using (5), we have $\operatorname{cr}_{D}\left(H+C_{n}\right) \geq C_{4}^{2}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2 \times 4\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor+\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor+2>Z(6, n)+n+2(n \geq 4)$. This contradicts (6).

So from the above cases, the assumption (6) does not hold. We get $\operatorname{cr}_{D}\left(H+C_{n}\right) \geq Z(6, n)+$ $n+3$. This completes the proof.

Acknowledgements We thank the referees for their time and comments.

References

[1] J. A. BONDY, U. S. R. MURTY. Graph Theory with Application. Macmillan London and Elsevie, New York, 1979.
[2] R. K. GUY. Crossing numbers of graphs//Graph Theory and Applieations. LNM 303. Heidelberg: SpringVerlag, 1972.
[3] D. J. KLEITMAN. The crossing number of $K_{5, n}$. J. Comb. Theory, 1970, 9: 315-323.
[4] H. T. PAK. The crossing number of $K_{2,4, n}$. ARS Combinatoria, 2013, 109: 527-537.
[5] M. KLEŠČ. The join of graphs and crossing numbers. Electronic Notes in Discrete Math, 2007, 28: 349-355.
[6] Ling TANG, Jing WANG, Yuanqiu HUANG. The crossing number of the join of C_{m} and P_{n}. Int. J. Math. Comb., 2007, 1(1): 110-116.
[7] M. KLES̆Č. The crossing numbers of join of the special graph on six vertices with path and cycle. Discrete Math., 2010, 310(9): 1475-1481.
[8] Zhidong ZHOU, Shengxiang LV. On the crossing of the join graph of a path or a cycle. Adv. in Math., 2014, 43(1): 69-80. (in Chinese)

[^0]: Received March 9, 2017; Accepted July 20, 2017
 Supported by the Natural Science Foundation of Hunan Province (Grant No. 2017JJ3251).
 E-mail address: szh820@163.com

