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Abstract Adding a new vertex to any edge of the complete bipartite graph K2,3 gives a

subdivision of K2,3 (6-vertices graph). In the paper, we get the crossing numbers of the join

graph of the specific 6-vertices graph H with n isolated vertices as well as with the path Pn

on n vertices and with the cycle Cn.
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1. Introduction

Let G be a simple graph, whose vertex set and edge set are denoted by V (G) and E(G),

respectively. A drawing of G is a representation of G in the plane such that its vertices are rep-

resented by distinct points and its edges by simple continuous arcs connecting the corresponding

point pairs. For simplicity, we assume that in a drawing (a) no edge passes through any vertex

other than its end-point, (b) no two edges touch each other, (c) no three edges cross at the same

point.

The crossing number, cr(G) is the smallest number of edge crossings in any drawing of G. It

is easy to see that a drawing with minimum number of crossings (an optimal drawing) is always

a good drawing, meaning that (i) no edge crosses itself, (ii) no two edges cross more than once,

and (iii) no two edges are incident with the same vertex cross.

Let φ be a drawing of graph G. We denote the number of crossings in φ by crφ(G). For

definitions not explained in this paper, readers are referred to [1]. By definition and notation

about crossing numbers, it is easy to get the following properties:

Property 1.1 Let D be a good drawing of G, and A,B,C be mutually edge-disjoint subgraphs

of G. Then

(i) crD(A ∪B,C) = crD(A,C) + crD(B,C).

(ii) crD(A ∪B) = crD(A) + crD(A,B) + crD(B).

Property 1.2 (i) Let H be a subgraph of G. Then cr(H) ≤ cr(G).

(ii) If H is isomorphic to G. Then cr(H) = cr(G).
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In general, computing the crossing number of graphs is an NP-complete problem. At present,

there are only some classes of special graphs whose crossing numbers are known. For example,

these include the complete bipartite graph Km,n (see [2,3]) and the complete tripartite graph

Km,n,s (see [4]) and so on. It is a very important result of Km,n, in 1970 Kleitman [3] proved

that:

cr(Km,n) = Z(m,n) = ⌊
m

2
⌋⌊

m− 1

2
⌋⌊

n

2
⌋⌊

n− 1

2
⌋, m ≤ 6, m ≤ n.

The join product of G and H , denoted by G + H , is obtained from vertex-disjoint copies

of G and H by adding all edges between V (G) and V (H). Let nK1 denote the graph on n

isolated vertices, and let Pn and Cn be the path and cycle on n vertices, respectively. Recently,

the crossing numbers of join product become more and more concerning. In 2007, Klešč [5] and

Tang [6] obtained the crossing numbers of join of Pn + Pn, Pn + Cn and Cn + Cn, respectively.

And in [7] the crossing numbers of G+ Pn and G+ Cn are also known for a special graph G of

order six. The up to date results of crossing numbers of G of order six with Pn and Cn are given

in [7,8].

Let uv be an edge of graph G. Add a new vertex w to the edge of uv and make uw and

wv replace the edge uv while the other vertices of G remain unchanged. This step is called a

subdivision of an edge of graph G. Adding a new vertex w to any edge of the complete graph

K2,3 gives a subdivision of K2,3 (see Figure 1). For convenience, we denote the subdivision graph

by H , obviously H is a specific 6-vertices graph. In the paper, on the basis of result of crossing

number of complete bipartite graph cr(K6,n) = Z(6, n) by Kleitman, together with the special

structure of graph H , we get the crossing numbers of the join graph of H with n isolated vertices

as well as with the path Pn on n virtices and with the cycle Cn.

w

Figure 1 A subdivision of K2,3 (the graph H) Figure 2 A good drawing of H + nK1

2. The graph H + nK1

In the graph of H + nK1, denote V (H) = {x1, x2, x3, x4, x5, x6}, V (nK1) = {t1, t2, . . . , tn}.

Let for i = 1, 2, . . . , n, T i denote the subgraph of H which consists of the six edges incident with

the vertex ti. One can easily see that

H + nK1 = H ∪ (
n⋃

i=1

T i). (1)

Lemma 2.1 Let H+K1 = H ∪T 1 and H+2K1 = H∪T 1∪T 2. Then, we have cr(H+K1) = 1

and cr(H + 2K1) = 2.
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Proof The drawing in Figure 2 shows that cr(H + K1) ≤ 1 and cr(H + 2K1) ≤ 2. Since

H + K1 contains a subgraph which is isomorphic to the subdivision of K3,3, and H + 2K1

contains a subgraph which is isomorphic to the subdivision of K3,4. So by Property 1.2, we have

cr(H +K1) ≥ cr(K3,3) = 1 and cr(H + 2K1) ≥ cr(K3,4) = 2. This completes the proof. �

Lemma 2.2 ([4]) There are 6 non-isomorphic drawings of K2,3 (see Figure 3).

(1) (2) (3) (4) (5) (6)

Figure 3 Six good drawings of K2,3

Lemma 2.3 There are exactly 4 drawings of H such that a region exists with 6 vertices on its

boundary (see Figure 4).

Proof According to Lemma 2.2, we know that there are 6 non-isomorphic drawings of K2,3

shown in Figure 3. To obtain a drawing of H such that there is a region with 6 vertices of H

on its boundary, the only candidates are Figure 3(2) and 3(6). To obtain a drawing of H from

Figure 3(2) and 3(6), we need to add a new vertex at any edge of K2,3, then we get the possible

good drawings of H shown in Figure 4.

(3) (4)(1) (2)

Figure 4 Four good drawings of H

Theorem 2.4 For n ≥ 1, we have cr(H + nK1) = Z(6, n) + n.

Proof The good drawing of H + nK1 in Figure 2 shows that cr(H + nK1) ≤ Z(6, n) + n. We

prove the reverse inequality by induction on n. By Lemma 2.1, the theorem is true for n = 1

and n=2. Suppose now for n ≥ 3, cr(H + (n− 2)K1) ≥ Z(6, n− 2) + n− 2, and consider such a

good drawing D of H + nK1 that

crD(H + nK1) < Z(6, n) + n. (2)

Claim 2.5 There is at least one T i, such that crD(H,T i) = 0.

Otherwise, for all ti, crD(H,T i) ≥ 1. Using (1), we have crD(H + nK1) ≥ crD(
⋃n

i=1
T i) +

crD(H,
⋃n

i=1
T i) ≥ Z(6, n) + n. This contradicts (2).

Claim 2.6 For all i, j = 1, 2, . . . , n, i 6= j, there holds crD(T i, T j) ≥ 1.
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Otherwise, assume T 1 and T 2 satisfy crD(T 1, T 2) = 0. Since H contains two 5-cycle,

crD(H,T 1∪T 2) ≥ 2. As T i∪T 1∪T 2 is isomorphic to K3,6, by cr(K3,6) = 6, crD(T i, T 1∪T 2) ≥ 6

for i = 3, 4, . . . , n. Together with (1) and Properties 2.1 and 2.2, we have

crD(Hn) = crD(H ∪

n⋃

i=3

T i ∪ T 1 ∪ T 2)

= crD(H ∪
n⋃

i=3

T i) + crD(T 1 ∪ T 2) + crD(H,T 1 ∪ T 2) + crD(
n⋃

i=3

T i, T 1 ∪ T 2)

≥ Z(6, n− 2) + (n− 2) + 2 + 6(n− 2) ≥ Z(6, n) + n.

This contradicts (2). Hence crD(T i, T j) ≥ 1.

Next we get contradiction from restricted condition of Claims 2.5 and 2.6.

By Claim 2.5, assume T 1 satisfies crD(H,T 1) = 0. Since crD(H,T 1) = 0, there is a disk

such that the vertices of H are all placed on the boundary of disk. From Lemma 2.3, the good

drawing of H is shown in Figure 4. Adding the edges of T 1, we have the subdrawing of H ∪ T n

as shown in Figure 5.

(3)(1) (2) (4)

α

Figure 5 Four good drawings of H ∪ T
n

(i) In Figure 5(1), when ti (2 ≤ i ≤ n) are placed in the region α, together with Claim

2.2, crD(T i, T j) ≥ 1, we have crD(H ∪ T 1, T i) ≥ 3, and “=” holds if and only if crD(H,T i) = 2

and crD(T 1, T i) = 1. When ti (2 ≤ i ≤ n) are placed in the other regions, together with

crD(T i, T j) ≥ 1, we have crD(H ∪ T 1, T i) ≥ 5. Now let x be the number of vertices ti which

are placed in the region α. As for all this ti, there holds crD(H,T i) ≥ 2. Using (1), we have

crD(H + nK1) ≥ Z(6, n) + 2x. This together with (2), implies that x ≤ n−1

2
. Hence, we have

crD(H + nK1) = crD(

n⋃

i=2

T i) + crD(H ∪ T 1,

n⋃

i=2

T i) + crD(H ∪ T 1)

≥ Z(6, n− 1) + 3x+ 5(n− 1− x) + 1 ≥ Z(6, n− 1) + 5n− 5− 2x ≥ Z(6, n) + n.

This contradicts (2).

(ii) In Figure 5(2)(3)(4), no matter which regions the vertex ti are placed in, and by

crD(T i, T j) ≥ 1, there always hold crD(H ∪T 1, T i) ≥ 4. Moreover, together with crD(H ∪T 1) ≥

1, we have

crD(H + nK1) = crD(
n⋃

i=2

T i) + crD(H ∪ T 1,

n⋃

i=2

T i) + crD(H ∪ T 1)
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≥ Z(6, n− 1) + 4(n− 1) + 1 ≥ Z(6, n) + n.

This contradicts (2).

Therefore, we always have crD(H + nK1) ≥ Z(6, n) + n. This completes the proof. �

3. The graph H + Pn

The graphH+Pn containsH+nK1 as a subgraph. We will use the same notion asH+nK1.

Let P ∗

n denote the path on n vertices of H+Pn not belonging to the subgraph H . One can easily

see that

H + Pn = H ∪ (

n⋃

i=1

T i) ∪ P ∗

n . (3)

Lemma 3.1 ([7]) Let D be a good drawing of mK1+Cn, m ≥ 2, n ≥ 3, in which no edges of Cn

is crossed, and Cn does not separate the other vertices of the graph. Then for all i, j = 1, 2, . . . , n,

two different subgraphs T i and T j cross each other in D at least ⌊n
2
⌋⌊n−1

2
⌋ times.

Theorem 3.2 For n ≥ 2, we have cr(H + Pn) = Z(6, n) + n+ 1.

Proof One can easily see that in Figure 2 it is possible to add n− 1 edges which form the path

P ∗

n on the vertices of nK1 in such a way that only one edge of P ∗

n is crossed by an edge of H .

Hence cr(H + Pn) ≤ Z(6, n) + n+ 1. Next we assume there exists a good drawing D of H + Pn

such that

crD(H + Pn) ≤ Z(6, n) + n. (4)

Claim 3.3 crD(H ∪
⋃n

i=1
T i, P ∗

n) = crD(P ∗

n ) = 0. Thus all vertices of P ∗

n are placed in the

same region.

By Theorem 2.4, cr(H + nK1) = Z(6, n) + n. Therefore using (3), we have

crD(H + Pn) = crD(H ∪

n⋃

i=1

T i) + crD(H ∪

n⋃

i=1

T i, P ∗

n) + crD(P ∗

n )

≥ Z(6, n) + n+ crD(H ∪

n⋃

i=1

T i, P ∗

n) + crD(P ∗

n).

This together with assumption (4), implies that crD(H ∪
⋃n

i=1
T i, P ∗

n) = crD(P ∗

n) = 0. So

no edges of P ∗

n is crossed, and no edges of P ∗

n crossed with the edges of H ∪
⋃n

i=1
T i. Thus all

vertices of P ∗

n are placed in the same region.

Next we divide three following different cases to discuss:

Case 1 All vertices of P ∗

n are placed in the regions where there are 6 vertices on the boundary.

Consider the drawing of H ∪ T 1, satisfying crD(H,T 1) = 0. By Theorem 2.4, the drawing

of H ∪ T 1 is shown in Figure 5. By Claim 3.3, all ti (2 ≤ i ≤ n) are placed in the same region

with the vertex t1. Thus crD(H ∪ T n, T i) ≥ 5. Moreover, together with crD(H ∪ T 1) ≥ 1, we

have crD(H + Pn) ≥ Z(6, n− 1) + 5(n− 1) + 1 > Z(6, n) + n. This contradicts (4).

Case 2 All vertices of P ∗

n are placed in the regions in which there are 5 vertices on the boundary.
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Then, for all i = 1, 2, . . . , n, we have crD(H,T i) ≥ 1. By Claim 3.3, all ti (2 ≤ i ≤ n) are

placed in the 5 vertices region. Using Lemma 3.1, we have crD(
∑n

i=1
T i) ≥ C2

n⌊
5

2
⌋⌊ 4

2
⌋. So we

have crD(H + Pn) ≥ crD(
∑n

i=1
T i) +

∑n

i=1
crD(H,T i) ≥ C2

n⌊
5

2
⌋⌊ 4

2
⌋ + n > Z(6, n) + n. This

contradicts (4).

Case 3 All vertices of P ∗

n are placed in the regions in which no more than 4 vertices are on the

boundary.

Then, for all i = 1, 2, . . . , n, we have crD(H,T i) ≥ 2. Using (3), we have crD(H + Pn) ≥

crD(
∑n

i=1
T i) +

∑n

i=1
crD(H,T i) ≥ Z(6, n) + 2n > Z(6, n) + n. This contradicts (4).

Together with above three cases, the assumption (4) does not hold. So we have crD(H +

Pn) ≥ Z(6, n) + n+ 1. This completes the proof. �

4. The graph H + Cn

The graph H + Cn contains both H + nK1 and H + Pn as a subgraph. Let C∗

n denote the

subgraph induced on the vertices not belonging to the subgraph H . Let Ti (1 ≤ i ≤ 6) denote

the subgraph induced by n edges of K6,n incident with ith vertex of H . One can easily see that

H + Cn = H ∪ (

6⋃

i=1

Ti) ∪ C∗

n. (5)

Lemma 4.1 ([5]) Let D be an optimal drawing of H + Cn. Then crD(C∗

n) = 0.

Theorem 4.2 For n ≥ 3, we have crD(H + Cn) = Z(6, n) + n+ 3.

Proof In Figure 2, it is possible to add n edges from H+nK1, then the edges of C∗

n are crossed

only three times. Hence cr(H + Cn) ≤ Z(6, n) + n+ 3. To prove the reverse inequality, assume

that there is a drawing D of H + Cn§such that

crD(H + Cn) ≤ Z(6, n) + n+ 2. (6)

Since H + Cn = H ∪ (
⋃

6

i=1
Ti) ∪ C∗

n, and H ∪ (
⋃

6

i=1
Ti) is isomorphic to H + nK1, from

Theorem 2.4, we have crD(H + nK1) ≥ Z(6, n) + n. Moreover, using Lemma 4.1 and (5), we

have

crD(H + Cn) = crD(H + nK1) + crD(C∗

n, H ∪ (
6⋃

i=1

Ti)) + crD(C∗

n)

≥ Z(6, n) + n+ crD(C∗

n, H ∪ (

6⋃

i=1

Ti)). (7)

Claim 4.3 crD(C∗

n, H ∪ (
⋃

6

i=1
Ti)) = 2.

Firstly, assume that crD(C∗

n, H ∪ (
⋃6

i=1
Ti)) = 0. By Lemma 3.1, for all Ti and Tj (1 ≤ i <

j ≤ 6), have crD(Ti, Tj) ≥ ⌊n
2
⌋⌊n−1

2
⌋. So crD(H + Cn) ≥ C2

6
⌊n
2
⌋⌊n−1

2
⌋ > Z(6, n) + n+ 2. This

contradicts (6).

Secondly, assume that crD(C∗

n, H∪(
⋃

6

i=1
Ti)) = 1. SinceH is 2-connected graph (crD(C∗

n, H)

≥ 2), it is only possible that crD(C∗

n,
⋃6

i=1
Ti) = 1. Then deleting the crossed edges of C∗

n results
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in the drawing of H + Pn with fewer than Z(6, n) + n+ 1. This contradicts Theorem 3.2.

Thirdly, assume that crD(C∗

n, H ∪ (
⋃6

i=1
Ti)) ≥ 3. By (7), we have crD(H+Cn) ≥ Z(6, n)+

n+ 3. This contradicts (6).

According to above three kinds of discussion, we have crD(C∗

n, H ∪ (
⋃6

i=1
Ti)) = 2.

Next we divide two following different cases to complete the proof.

Case 1 crD(C∗

n, H) = 2, crD(C∗

n,
⋃6

i=1
Ti) = 0.

Subcase 1.1 There exists a 2-degree vertex of H placed in the inner of C∗

n, and the other

five vertices are placed in the external. Since crD(C∗

n,
⋃

6

i=1
Ti) = 0, using Lemma 3.1, we have

crD(H + Cn) ≥ C2
5⌊

n
2
⌋⌊n−1

2
⌋+ 2 > Z(6, n) + n+ 2. This contradicts (6).

Subcase 1.2 There exist two 2-degree vertices of H placed in the inner of C∗

n, and the other

four vertices are placed in the external. Without loss of generality, suppose x5, x6 are placed in

the inner region. Now consider the drawing of H . Moreover, the edges of H do not cross each

other more than three times. Otherwise by Lemma 3.1, we have crD(H +Cn) ≥ C2

4
⌊n
2
⌋⌊n−1

2
⌋+

⌊n
2
⌋⌊n−1

2
⌋+ 2 + 3 > Z(6, n) + n+ 2. Therefore, according to the structure of H , the drawing of

H ∪ C∗

n is as shown in Figure 6.

First we can prove that there exists no edge of C∗

n which are crossed two times. Otherwise

deleting the crossed edges of C∗

n results in the drawing of H+Pn with fewer than Z(6, n)+n+1.

This contradicts Theorem 3.2. So in Figure 6, there exists at least a vertex ti placed in the

boundary of C∗

n.

(2) (3) (4) (5)

ti ti ti ti ti

(1)

Figure 6 Five good drawings of H ∪ C
∗

n

(i) When H ∪ Cn is as shown in Figure 6(1)(3)(5), there hold crD(H ∪ C∗

n,
⋃

6

i=1
Ti) ≥ n.

So we have crD(H +Cn) ≥ C2

4
⌊n
2
⌋⌊n−1

2
⌋+ ⌊n

2
⌋⌊n−1

2
⌋+2+n > Z(6, n)+n+2. This contradicts

(6).

(ii) When H ∪Cn is as shown in Figure 6(2)(4), there hold crD(H ∪C∗

n,
⋃6

i=1
Ti) ≥ 2. And

together with crD(H) ≥ 1, we have crD(H + Cn) ≥ C2

4⌊
n
2
⌋⌊n−1

2
⌋ + ⌊n

2
⌋⌊n−1

2
⌋ + 2 + 2 + 1 >

Z(6, n) + n+ 2. This contradicts (6).

Case 2 crD(C∗

n, H) = 0, crD(C∗

n,
⋃6

i=1
Ti) = 2.

Subcase 2.1 There exists a vertex, x6, such that crD(C∗

n, T6) = 2. As Lemma 3.1, for 1 ≤ i ≤ 5,

with crD(Ti, Tj) ≥ ⌊n
2
⌋⌊n−1

2
⌋. Hence crD(H + Cn) ≥ C2

5⌊
n
2
⌋⌊n−1

2
⌋ + 2 > Z(6, n) + n + 2. This

contradicts (6).
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Subcase 2.2 There exist two vertices, x5, x6, such that crD(C∗

n, T5) = crD(C∗

n, T6) = 1.

Subcase 2.2.1 For n = 3. There exists no edge of C∗

3
which crosses with T5 and T6 at the same

time. Otherwise deleting the crossed edges of C∗

3
results in the drawing of H + P3 with fewer

than Z(6, 3) + 3 + 1. This contradicts Theorem 3.2. So the edges of T5 and T6 crosses with the

different edges of C∗

3
. According to the structure of C∗

3
, the subgraph T5∪T6∪C∗

3
is as shown in

Figure 7. As H contains a 5-cycle C5, so regardless of whether or not the edges of H cross each

other, we always have crD(
⋃4

i=1
Ti, T5 ∪T6 ∪H ∪C∗

3
) ≥ 3. Hence crD(H +C3) ≥ crD(

⋃4

i=1
Ti)+

crD(T5 ∪ T6 ∪H ∪ C∗

3 ) + crD(
⋃

4

i=1
Ti, T5 ∪ T6 ∪H ∪ C∗

3 ) ≥ C2
4⌊

3

2
⌋⌊ 2

2
⌋+ 3 + 3 > Z(6, 3) + 3 + 2.

This contradicts (6).

t5 t6

Figure 7 A subdrawing T5 ∪ T6 ∪ C
∗

3

Subcase 2.2.2 For n ≥ 4. Based on known conditions, the vertices xi (1 ≤ i ≤ 6) are all placed

in the same region of C∗

n, say, external region. Then according to the cross of Ti and Tj , we can

divide three cases: (i) For 1 ≤ i < j ≤ 4, crD(Ti, Tj) ≥ ⌊n
2
⌋⌊n−1

2
⌋. (ii) For 1 ≤ i ≤ 4, j = 5, 6,

crD(Ti, Tj) ≥ ⌊n−1

2
⌋⌊n−2

2
⌋. (iii) For i = 5, j = 6, crD(Ti, Tj) ≥ ⌊n−2

2
⌋⌊n−3

2
⌋. So using (5), we

have crD(H+Cn) ≥ C2

4
⌊n
2
⌋⌊n−1

2
⌋+2×4⌊n−1

2
⌋⌊n−2

2
⌋+⌊n−2

2
⌋⌊n−3

2
⌋+2 > Z(6, n)+n+2 (n ≥ 4).

This contradicts (6).

So from the above cases, the assumption (6) does not hold. We get crD(H+Cn) ≥ Z(6, n)+

n+ 3. This completes the proof. �
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