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Abstract We introduce the notion of a right bi-Giraud recollement for abelian categories.

We show that right bi-Giraud recollements are bijective to cohereditary and hereditary torsion

pairs. We obtain such torsion pairs in the module category via certain idempotent ideals.
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1. Introduction

In [1], there is a one-to-one correspondence between equivalence classes of recollements of a

triangulated category C and its TTF triples. And in [1–3], there is also a bijection between right

recollements and stable t-structures of triangulated categories C. For right (left) recollements of

triangulated categories, readers can refer to [4].

It is natural to study similar questions to triangulated categories in abelian categories. In

[5], it was shown that such a correspondence holds in the category of right R-modules, ModR, for

a unitary ring R, and that recollements of an abelian category are in bijection with its bilocalising

TTF-classes. So we ask naturally what is about the right recollements of abelian categories. We

shall show that there is a bijection between right Bi-Giraud recollements of an abelian category

and its cohereditary and hereditary torsion pairs of C, which perfectly coincides with the situation

in triangulated category. Now we state our main result (Theorem 3.4) as follows:

Theorem 1.1 There is a bijection between R(C′, C, C′′) right Bi-Giraud recollements of abelian

categories and (T ,F) cohereditary and hereditary torsion pairs of an abelian category C.

In view of the theorem above, it motivates us to consider a method of gaining cohereditary

and hereditary torsion pairs for a given abelian category. We obtain the following result (Theorem

4.3).

Theorem 1.2 Let R be a two-sided noetherian ring and I = I2 an idempotent ideal of R.

Then (TI ,FI) is a cohereditary and hereditary torsion pair of Mod-R if and only if I is projective

as a left R-module, where TI := {M ∈ ModR|MI =M}; FI := {M ∈ ModR|MI = 0}.

Here, we want to point out why we give a direct proof for [6, Theorem 4.1] as Theorem

3.3 in this paper. On the one hand, the original proof in [6] involves lots of preparations in [6,
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Sections 2 and 3]. In fact, we find that it can be directly and self-containedly proved through our

observation of Lemma 3.2. On the other hand, it is easy for readers to know how we establish

the connections between right recollements and torsion pairs.

2. Right Bi-Giraud recollements of abelian categories

In this section, we define right Bi-Giraud recollement and discuss its some properties. First,

let us recall that a right recollement (C′, C, C′′, i∗, i
!, j∗, j∗) of abelian categories is a diagram

of functors

C′
-

�

Diagram 1 Functors diagram

C
-

� C′′

i∗

i!
j∗

j∗

satisfying the following conditions:

(i) (i∗, i
!) and (j∗, j∗) are adjoint pairs;

(ii) i∗ and j∗ are fully faithful; and

(iii) Imi∗ = Kerj∗.

In [6], a coreflective subcategroy of an abelian category is called Co-Giraud if the coreflector

preserves cokernels. Dually, a reflective subcategroy of an abelian categrory is called Giraud if

the reflector preserves kernels. Accordingly, we make the following

Definition 2.1 A right recollement of abelian categories is called Bi-Giraud if the two functors

i!, j∗ are exact.

Now, we give some equivalent conditions of right Bi-Giraud recollement of abelian categroies.

Theorem 2.2 Let C′, C, C′′ be abelian categories. If a diagram of functors

C′
-

�

Diagram 2 Functors diagram

C
-

� C′′

i∗

i!
j∗

j∗

satisfies the following conditions:

(i) (i∗, i
!) and (j∗, j∗) are adjoint pairs;

(ii) i∗ and j∗ are fully faithful; and

(iii) i!, j∗ are exact,

then the following conditions are equivalent:

(1) (R1) j∗i∗ = 0;

(R2) for any C ∈ C, there exists a short exact sequence

0 −→ i∗i
!C −→ C −→ j∗j

∗C −→ 0.

(1)′ (R1) i!j∗ = 0 ; (R2)′=(R2).

(2) (R3) Imi∗ = Kerj∗.

(2)′ (R3)′ Imj∗ = Keri!.
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Proof (1) ⇒ (2). It is only to show that Kerj∗ ⊆ Imi∗. For any C ∈ C with j∗C = 0, since

there exists the short exact sequence

0 −→ i∗i
!C −→ C −→ j∗j

∗C −→ 0,

j∗j
∗C = 0 implying i∗i

!C ∼= C, and C ∈ Imi∗.

(2) ⇒ (1)′. First, we prove (R1)′ i!j∗ = 0. It is easy to be seen from the following formulas

HomC′(i!j∗, i
!j∗) ∼= HomC(i∗i

!j∗, j∗) ∼= HomC′′(j∗i∗i
!j∗,−) = 0.

Next, we show the condition (R2) holds. For any C ∈ C, we consider the following exact sequence

0 −→ KerηC −→ C
ηC

−→ j∗j
∗C −→ CokerηC −→ 0, (2.1)

where η is the unit of the adjoint pair (j∗, j∗). Now, applying the exact functor j∗ to this exact

sequence, we get exact sequence

0 −→ j∗KerηC −→ j∗C
j∗ηC

−→ j∗j∗j
∗C −→ j∗CokerηC −→ 0.

By j∗ fully faithful, j∗ηC is isomorphic which results in j∗KerηC = 0, and j∗CokerηC = 0. Under

the assumption Imi∗ = Kerj∗, KerηC = i∗C
′
1 and CokerηC = i∗C

′
2 for some C′

1, C
′
2 ∈ C′. We

now can rewrite (2.1) as follows

0 −→ i∗C
′
1 −→ C

ηC

−→ j∗j
∗C −→ i∗C

′
2 −→ 0. (2.2)

Now, applying the exact functor i! to (2.2), we get

0 −→ i!i∗C
′
1 −→ i!C

i!ηC

−→ i!j∗j
∗C = 0 −→ i!i∗C

′
2 −→ 0.

So by i∗ fully faithful,

0 = i!i∗C
′
2
∼= C′

2, CokerηC = i∗C
′
2 = 0; i!i∗C

′
1
∼= i!C, i∗C

′
1
∼= i∗i

!i∗C
′
1
∼= i∗i

!C

which results in that (2.2) can be replaced by the following short exact sequence

0 −→ i∗i
!C −→ C −→ j∗j

∗C −→ 0.

(1)′ ⇒ (2)′. Similar to (1)⇒ (2).

(2)′ ⇒ (1). Similar to (2)⇒ (1)′.

From now on, we always suppose that a right recollement (C′, C, C′′, i∗, i
!, j∗, j∗) of

abelian categroies is Bi-Giraud and denoted by R(C′, C, C′′). On the knowledge of cohereditary

and hereditary torsion pair of abelian category, readers can refer to the next section of this paper.

Proposition 2.3 Let R(C′, C, C′′) be a right Bi-Giraud recollement. Then

(1) i∗ and j∗ are exact;

(2) (i∗C
′, j∗C

′′) is a cohereditary and hereditary torsion pair of C;

(3) C/C′ ∼= C′′ and C/C′′ ∼= C′.

Proof (1) We only prove that i∗ is exact and the exactness of j∗ can be proved similarly. In

fact, it is only to need i∗ that preserves monomorphism, due to the right exactness of i∗. For
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any short exact sequence in C′

0 −→ C′
1

f
−→ C′ g

−→ C′
2 −→ 0,

we can get the exact sequence

0 −→ Keri∗f −→ i∗C
′
1

i∗f
−→ i∗C

′ i∗g
−→ i∗C

′
2 −→ 0, (2.3)

by acting i∗. Again acting the exact functor j∗ on (2.3), we have

0 −→ j∗Keri∗f −→ j∗i∗C
′
1 = 0

j∗i∗f
−→ j∗i∗C

′ = 0
j∗i∗g
−→ j∗i∗C

′
2 = 0 −→ 0,

implying j∗Keri∗f = 0. So there exists C′
0 ∈ C′ such that Keri∗f = i∗C

′
0, which renders that

(2.3) can be replaced by

0 −→ i∗C
′
0 −→ i∗C

′
1

i∗f
−→ i∗C

′ i∗g
−→ i∗C

′
2 −→ 0. (2.4)

Further, by the exactness of i! and i∗ being fully faithful , we have

0 −→ i!i∗C
′
0 −→ i!i∗C

′
1
∼= C′

1

i!i∗f
−→ i!i∗C

′ ∼= C′ i!i∗g
−→ i!i∗C

′
2
∼= C′

2 −→ 0,

which indicates that C′
0
∼= i!i∗C

′
0 = 0 and i∗C

′
0 = 0. Comparing with (2.4), we get that i∗ is

exact.

(2) Hom(i∗C
′, j∗C

′′) ∼= Hom(j∗i∗C
′, C′′) = 0, and (R2) infer that (i∗C

′, j∗C
′′) is a torsion

pair of C. By i∗, j∗ exact fucntors and the arguments of (1), we can easily get that (i∗C
′, j∗C

′′)

is cohereditary and hereditary.

(3) We only prove that C/C′ ∼= C′′, and C/C′′ ∼= C′ can be proved similarly. By (2), C′ can

be seen as serre’s subcategory of C, which makes us get the exact sequence of abelian categories

0 −→ C′ i∗−→ C
F
−→ C/C′ −→ 0

where F is the quotient functor satisfying F is exact and KerF = C′. Since Imi∗ = Kerj∗, there

exists uniquely a functor G : C/C′ −→ C′′ such that j∗ = GF . Next, we only need to check that

G ◦ Fj∗ ∼= IdC′′ and Fj∗ ◦G ∼= IdC/C′ . Clearly, G ◦ Fj∗ ∼= GF ◦ j∗ ∼= j∗j∗ ∼= IdC′′ . Now, taking

any object C ∈ C/C′, Fj∗ ◦GC = Fj∗j
∗C = j∗j

∗C ∈ C/C′. In fact, j∗j
∗C ∼= C in C/C′, in view

of the following exact sequence

0 −→ i∗i
!C −→ C −→ j∗j

∗C −→ 0.

3. Cohereditary and hereditary torsion pair of abelian category

In this section, most of the contents are from [6]. One of our main works in this section is to

prove [6, Theorem 4.1] in a direct way. And the other is to give our main theorem of this paper.

Recall that a pair (T ,F) of abelian category C is called torsion pair if (i) Hom(T ,F) = 0

and (ii) for any C in C, there is a short exact sequence

0 −→ T −→ C −→ F −→ 0

with T ∈ T , F ∈ F , where T is called torsion class and F is called torsion-free class. A torsion
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pair (T ,F) is cohereditary (resp., hereditary) if F (resp., T ) is closed under factor objects (resp.,

subobjects).

Recall that a functor t : C → C is called an idempotent radical functor of C if (i) there exists

a natural transformation Φ : t→ IdC such that ΦC : tC → C is a monomorphism for any C ∈ C;

(ii) t(CokerΦC) = 0 and (iii) t2 = t. The definition of idempotent coradical functor r can be

dually given.

It is well known that there is a bijective correspondence between torsion pairs and idempo-

tent radical functors (resp., idempotent coradical functors) of C such that T = {C ∈ C|tC = C}

and F = {C ∈ C|tC = 0} (resp., T = {C ∈ C|rC = 0} and F = {C ∈ C|rC = C}). Readers can

refer to [7–9] for more knowledge on torsion theory.

Let i∗ : T → C and j∗ : F → C be inclusion functors. And let i! : C → T induced by

t : C → C and j∗ : C → F induced by r : C → C. Then we have the following diagram of funtors

T
-

�

Diagram 3 Functors diagram

C
-

� F
i∗

i!
j∗

j∗

satisfying the following conditions:

(i) (i∗, i
!) and (j∗, j∗) are adjoint pairs;

(ii) i∗ and j∗ are fully faithful; and

(iii) Imi∗ = Kerj∗.

But in general, this diagram is not a right Bi-Giraud recolloments, even not a right recollements,

because T ,F are not abelian categories. In order to turn the diagram above into a right Bi-

Giraud recollement, we need to make the following preparations.

In the following, we only state and prove what is on cohereditary torsion pair. On hereditary

torsion pair, it has dual results.

Lemma 3.1 ([6]) (1) Let (T ,F) be cohereditary torsion pair of C. If f : X →M is epimorphic

with M ∈ T , then fΦX : tX →M is also epimorphic.

(2) Let (T ,F) be torsion pair of C. Then (T ,F) is cohereditary if and only if t preserves

epimorphisms.

Recall an object C ∈ C is called codivisible (resp., divisible) with respect to torsion pair

(T ,F) if Hom(C,−) (resp.,Hom(−, C)) is exact on all short exact sequences

0 −→ X ′ −→ X −→ X ′′ −→ 0

in C with X ′ ∈ F (resp., X ′′ ∈ T ).

Notations With respect to torsion pair (T ,F) of C,

C′ := {C ∈ C|C torsion and codivisible objects};

C′′ := {C ∈ C|C torsionfree and divisible objects}.



662 Jian FENG

Lemma 3.2 Let (T ,F) be a torsion pair of C. If a short exact sequence

0 −→ X ′ −→ X −→ X ′′ −→ 0

has the middle term X ∈ C′, then X ′ ∈ T if and only if X ′′ ∈ C′.

Proof Suppose thatX ′ ∈ T . It is clear that X ′′ ∈ T becauseX ∈ T . Now, we need to show that

X ′′ is codivisible with respect to (T ,F). Taking a short exact sequence 0 → F → Y → Z → 0

with F ∈ F , we have the following commutative diagram

0 - (X ′′, F ) - (X ′′, Y ) - (X ′′, Z)

0

?

?

0 - (X,F ) - (X,Y ) - (X,Z) - 0

?

0 - (X ′, F ) - (X ′, Y )

Diagram 4 Commutative diagram

- (X ′, Z)

0

?

?

?

0

?

?

?

where each row and column is exact, and Hom(X ′, F ) = 0. So Hom(X ′, Y ) → Hom(X ′, Z)

is monomorphic, implying Hom(X ′′, Y ) → Hom(X ′′, Z) is epimorphic. This shows that X ′′ is

codivisible.

Conversely, assume that X ′′ ∈ C′. We need to prove Hom(X ′, F ) = 0 for any F ∈ F , which

is equivalent to prove Img = 0 for any g ∈ Hom(X ′, F ). Now, consider the following push-out

diagram

0 - X ′ - X -X ′′ - 0

0 -Img -M

Diagram 5 Push-out diagram

-X ′′ - 0
? ? ?

It is easy to see that the second exact row is splitting, since Img ∈ F and X ′′ is codivisible,

which results in Img ∈ T and Img = 0.

Now, we give our direct proof of [6, Theorem 4.1].

Theorem 3.3 Let (T ,F) be a torsion pair of C. Then the following are equivalent:

(1) (T ,F) is cohereditary and hereditary;

(2) The idempotent radical (resp., coradical) functor t (resp., r) is exact;

(3) T = C′ (resp., F = C′′).

Proof (1) ⇒ (2). It is the direct corollary of Lemma 3.1.

(2) ⇒ (3). In fact, we only need T ⊆ C′, i.e., every T ∈ T is codivisible. Given an exact

sequence 0 → F → Y → Z → 0 with F ∈ F , and a morphism h : T → Z. Then we have the

following commutative diagram
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T

?

0 - tF -tM - tImh - 0

0 - F -M -Imh - 0

0 - F - Y - Z

Diagram 6 Commutative diagram

- 0
? ? ?

? ? ?

where each row is exact (the exactness of the first row is due to the exactness of t and the

second row is the pull-back of the third row). Since F ∈ F and Imh ∈ T , we get tF = 0 and

tM ∼= tImh = Imh. This shows that T is codivisible.

(3) ⇒ (1). It follows from Lemma 3.2. �

Until now, we can give our main theorem in this paper.

Theorem 3.4 There is a bijection between R(C′, C, C′′) right Bi-Giraud recollements of abelian

categories and (T ,F) cohereditary and hereditary torsion pairs of an abelian category C.

Proof It follows clearly from Proposition 2.3 and Theorem 3.3. �

4. A method producing cohereditary and hereditary torsion pairs

In this section, we suppose that R is a two-sided noetherian ring with unit, ModR is the

right R-modules category, and I = I2 is an idempotent ideal of R.

Notations

TI := {M ∈ ModR|MI =M};

FI := {M ∈ ModR|MI = 0}.

It is easy to observe that

Proposition 4.1 (TI ,FI) is a cohereditary torsion pair of ModR.

Proof First, taking M ∈ TI , N ∈ FI and a morphism f :M → N , then

Imf = f(M) = f(MI) = f(M)I = 0

implying f = 0 and Hom(TI ,FI) = 0.

Next, for any M ∈ Mod-R, there is a short exact sequence 0 → MI → M → M/MI → 0.

By I being an idempotent ideal of R, it is clear that M = MI ∈ TI and (M/MI)I = 0 ∈ FI .

Until now, we have shown that (TI ,FI) is a torsion pair of ModR.

At last, it is obvious that FI is closed under factor objects. �

Remark 4.2 In fact, the result in Proposition 4.1 also holds without the assumption that
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R is a two-sided noetherian ring. And TI is still a torsion class of ModR; FI is closed under

subobjects and factor objects under the weaker condition that I is an ideal of R. In other words,

The assumption that I is an idempotent ideal of R guarantees that FI is closed under extensions.

From this Proposition above, we know that an idempotent ideal I of R can produce a

cohereditary torsion pair. The following theorem answers that an idempotent ideal I can produce

a cohereditary and hereditary torsion pair when I as a left R-module is projective.

Theorem 4.3 Let R be a two-sided noetherian ring and I = I2 an idempotent ideal of R.

Then TI is closed under subobjects if and only if I is projective as a left R-module.

Proof =⇒. Let TI be closed under subobjects. By R being noetherian, I is a finitely generated

left R-module. So it only needs to prove that I is flat. For any short exact sequence in ModR

0 −→ L
f

−→M
g

−→ N −→ 0,

we can get the following exact sequence

0 −→ Ker(f ⊗ I) −→ L⊗ I −→M ⊗ I −→ N ⊗ I −→ 0.

We need to show that Ker(f ⊗ I) = 0. On the one hand, (L⊗ I)I = L⊗ I2 = L⊗ I ∈ TI , which

implies Ker(f⊗I) ∈ TI by hypothesis. On the other hand, for any element
∑

li⊗ri ∈ ker(f⊗I),

we have 0 = (f ⊗ I)(
∑

li ⊗ ri) =
∑

f(li)⊗ ri ∈M ⊗ I and 0 =
∑

f(li)ri = f(
∑

liri) ∈MI. So
∑

liri = 0 by f : L→ M monomorphism. Moreover, for any r ∈ I,

(
∑

li ⊗ ri)r =
∑

li ⊗ rir = (
∑

liri)⊗ r = 0

which infers that Ker(f ⊗ I)I = 0, i.e., Ker(f ⊗ I) ∈ FI .

⇐=. If I is projective as a left R-module, M ⊗ I ∼= MI for any M ∈ ModR. Taking

any M ∈ TI and short exact sequence0 −→ L −→ M −→ N −→ 0, we have the following

commutative diagram

0 -L⊗ I-M ⊗ I-N ⊗ I -0

0 - LI -MI - NI - 0

0 - L -M

Diagram 7 Commutative diagram

- N - 0
? ? ?

? ? ?

where each row is exact. By the five lemma, we can get LI = L ∈ TI . �

Combining Proposition 4.1 with Theorem 4.3, it follows that

Theorem 4.4 Let R be a two-sided noetherian ring and I = I2 an idempotent ideal of R. Then

(TI ,FI) is cohereditary and hereditary if and only if I is projective as a left R-module.

Now, removing the restriction of R being a two-sided noetherian ring, and only demanding

that R is a ring with unit, we can obtain the following fact:
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Proposition 4.5 Let R be a ring and I an ideal of R. Then I is an idempotent ideal if and

only if TI = Gen(IR), where Gen(IR) = {M ∈ ModR|
∑

Im(f) =M, f ∈ Hom(I,M)}.

Proof The part of if is obvious.

For the part of only if, let I be an idempotent ideal. Then I = I2 ∈ TI , and it is easy

to check that Gen(IR) ⊆ TI . Before using TI ⊆ Gen(IR), we consider morphisms ψr0 : I → I

for any r0 ∈ R by assigning r0r to r for any r ∈ I and morphisms fm : I → M ∈ ModR for

any m ∈ M by assigning mr to r for any r ∈ I. It is easy to verify that ψr0 and fm are right

R-module homomorphisms, rendering fmψr0 ∈ Hom(I,M).

Now, for any M ∈ TI , M = MI. So for any element m ∈ M , there exist mi ∈ M , ri ∈ I,

i = 1, . . . , t such that m = m1r1 + · · ·+mtrt, i.e.,

m =
∑

miri =
∑

fmi
(ri) =

∑

fmi
ψ1R(ri) ∈

∑

Imf,

where f takes over Hom(I,M). Thus M ∈ Gen(IR). �

Next example explains that there are non-trivial right bi-Giraud recollements and not all

right recollements are right bi-Giraud.

Example 4.6 Let R and S be rings and SMR (6= 0) an S-R-bimodule. Then we can construct

the triangular matrix ring Λ =
(

R 0
M S

)

and describe the right Λ-modules as triples (XR, YS , f)

where XR is a right R-module, YS a right S-module and f : Y ⊗S M → X a right R-module

morphism. The morphisms between two objects (XR, YS , f) and (X ′
R, Y

′
S , f

′) are pair of mor-

phisms (α, β) where α : X → X ′ is an R-morphism and β : Y → Y ′ is an S-morphism, such that

the following diagram commutes

Y ⊗S M

f

��

β⊗M
// Y ′ ⊗S M

f ′

��

X α
// X ′.

Diagram 8 Commutative diagram

Now, we begin to define the following functors:

(1) The functor TR : ModR → ModΛ is defined by TR(X) = (X, 0, 0) on the objects

X ∈ ModR and given an R-morphism α : X → X ′ then TR(α) = (α, 0).

(2) The functor HR : ModR→ ModΛ is defined by HR(X) = (X,HomR(M,X), εX) on the

objects X ∈ ModR where εX : HomR(M,X)⊗S M → X is standard, and given an R-morphism

α : X → X ′ then HR(α) = (α,HomR(M,α)).

(3) The functor UR : ModΛ → ModR is defined by UR(X,Y, f) = X on the objects

(X,Y, f) ∈ ModΛ and given an Λ-morphism (α, β) : (X,Y, f) → (X ′, Y ′, f ′) then UR(α, β) = α.

(4) The functor TS : ModS → ModΛ is defined by TS(Y ) = (Y ⊗S M,Y, IdY⊗SM ) on the

objects Y ∈ ModS and given an S-morphism β : Y → Y ′ then TS(β) = (β ⊗M,β).

(5) The functor HS : ModS → ModΛ is defined by HS(Y ) = (0, Y, 0) on the objects

Y ∈ ModS and given an S-morphism β : Y → Y ′ then HS(β) = (0, β).
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(6) The functor US : ModΛ → ModS is defined by US(X,Y, f) = Y on the objects

(X,Y, f) ∈ ModΛ and given an Λ-morphism (α, β) : (X,Y, f) → (X ′, Y ′, f ′) then US(α, β) = β.

It is easy to know that

(i) The functors TR, TS and HR, HS are fully faithful;

(ii) The pairs (TR, UR), (TS , US) and (UR, HR), (US , HS) are adjoint pairs of functors.

(iii) The functors UR and US are exact.

(iv) We have KerUR = ModΛ/Λe1Λ ∼= ModS, KerUS = ModΛ/Λe2Λ ∼= ModR, Mode1Λe1 =

ModR and Mode2Λe2 = ModS, where e1 =
(

1 0
0 0

)

and e2 =
(

0 0
0 1

)

are idempotent elements of Λ.

So by Definition 2.1, we get right (left) bi-Giraud recollements

ModS ModΛ ModR;- -HS UR

� �US TR

ModR ModΛ ModS.- -TR US

� �HSUR

At the same time, we also point out that not all right (left) recollements are bi-Giraud as follows:

ModS ModΛ ModR;- -HS UR

� �HR

ModR ModΛ ModS.- -TR US

� � TS

We have proved that these two are right (left) bi-Giraud recollements if and only if the S-R-

bimodule SMR = 0.
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