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Abstract The new multiple (%)—expansion method is proposed in this paper to seek the
exact double traveling wave solutions of nonlinear partial differential equations. With the aid of
symbolic computation, this new method is applied to construct double traveling wave solutions
of the coupled nonlinear Klein-Gordon equations and the coupled Schroédinger-Boussinesq
equation. As a result, abundant double traveling wave solutions including double hyperbolic
tangent function solutions, double tangent function solutions, double rational solutions, and a
series of complexiton solutions of these two equations are obtained via this new method. The
new multiple (%')—expansion method not only gets new exact solutions of equations directly
and effectively, but also expands the scope of the solution. This new method has a very wide
range of application for the study of nonlinear partial differential equations.
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1. Introduction

The research of nonlinear science is the frontier and hot spot in the field of natural science
at present. Nonlinear partial differential equations (NPDEs) are widely used as models to ex-
press many nonlinear phenomena which exist in many fields, such as physics, fluid mechanics,
atmospheric science, information science, life science, and water systems science, plasma physics,
condensed matter physics. So it plays a vital role to seek exact solution for partial differential
equations. During the past decades, many powerful methods to construct solitary wave solu-

tions of nonlinear partial differential equations have been established and developed such as the
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Bécklund transformation [1], Hirota bilinear transformation [2], Darboux transformation [3], the
tanh-coth method [4], the F-expansion method [5], the exp-function method [6], the inverse scat-
tering method [7], the mapping method [8], generalized tanh functions method [9], the auxiliary
equation method [10,11], the Jacobi elliptic function expansion method [12], the (%)—expansion
method [13], the first integral method [14], the sine-cosine method [15], and so on. The author
also constructed the asymptotic solutions of a series of nonlinear equations by a variety of meth-
ods, such as, the generalized variational iteration method [16], the functional mapping method
[17], the homotopy mapping method [18-20], the singular perturbation method [21,22] and so
on.

Among these methods, the (%)—expansion method is direct and effective to construct exact
solutions of NPDEs [13]. Later, this method was improved and applied to a series of NPDEs
successfully [23-25]. However, we find that these methods can only get single traveling wave
solutions of NPDEs. So we propose a new multiple (%)-expansion method to construct double
traveling wave solutions of NPDEs in this paper. For illustration, we apply this new method to
the coupled nonlinear Klein-Gordon equations and the coupled Schrédinger-Boussinesq equation.
As a result, a rich variety of exact solutions which include double hyperbolic tangent function
solutions, double tangent function solutions, double rational solutions and complexiton solutions
of the above two equations are obtained via the new multiple (%)—expansion method.

The rest of this letter is organized as follows. In Section 2, we describe the new multi-
ple (%)-expansion method. In Section 3, we illustrate the applications of this method to the
coupled nonlinear Klein-Gordon equations. In Section 4, we apply this method to the coupled
Schrédinger-Boussinesq equation. In Section 5, some conclusions are given.

2. Description of the new multiple (%)—expansion method
In this section, we describe the main steps of the new multiple (%)—expansion method

for double traveling wave solutions of NPDEs. For a given NPDE with independent variables

u = (x1,22,...,2Tn,t) and dependent variable wu:
F Uy Upy Ugyy Uy« v oy Uty e v o s Ugy oy s Uggns - - -) = 0 (1)
where u = (z1, T2, ..., Ty, t) is an unknown function, F is a polynomial in v = (21, X2, ..., Ty, 1)

and its various partial derivatives, in which the highest order derivatives and nonlinear terms are

involved.
Step 1. Combining the independent variables zi,xs,...,2, and t into one variable ¢ =

kixq1 + koxo + - - - + kpx,, — st, we suppose that
¢ =kix1 + kaxa+ -+ kpx, — st, u=u(s), (2)

the travelling wave variable (2) permits us reducing Eq. (1) to an ordinary differential equation
(ODE) for u = u(s)

H(u,—su' k' kot ... s%u” —kysu”, .. k2 ko, .. ) = 0. (3)
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Step 2. We suppose that the solution of ODE (3) can be expressed by a polynomial in
(S1)i(£2)d (3,5 =0,1,2...) as follows:

G Go
G/
9=+ 3wl Gy, ©

k=11i+j5=k

where ag,a;; (1,7 = 0,1,2) are constants to be determined later, Gi = G1(§) and G2 = Ga(n)

satisfy the following second order nonlinear ordinary differential equations
Al(Gll)2 — BlGlG/{ + ClG% =0, AQ(GIQ)z — BQGQG/Q/ + CQG% =0, (5)
where Al, Ag, By, By, C1,Cs are constants, and (Al — A2)2 + (B1 — B2)2 + (01 — 02)2 75 0.

Step 3. Determine the positive integer n by balancing the highest order derivatives and
nonlinear terms in Eq. (3).

Step 4. Substituting ansétz (4) along with Eq. (5) into Eq. (3) and collecting all the terms

with the same order of (G ) (G—’;‘) (z j=0,1,2...), we convert the left-hand side of Eq. (3) into a
polynomial in ( reh ) (%) (4,7 =0,1,2...). Equating each coefficient of this polynomial to zero,

yields a set of algebraic equations for ag,a;j (4,5 =0,1,2...),k1,...,kn,8,A1,A49,B1,...,Ca.
Step 5. Assuming that the constants ag, a;; (4,7 = 0,1,2...),k1,...,kn,s, A1, A2, By, ..., Cs.
can be obtained by solving the algebraic equations in Step 4. Since the general solutions of
the second order nonlinear ordinary differential equation (5) can be solved, then substituting
ao,ai;j (4,7 =0,1,2,...),k1,...,k,,s and the known general solutions of Eq. (5) into ansétz (4),

we can obtain the exact double traveling wave solutions of Eq. (1) immediately.

3. Application to the coupled nonlinear Klein-Gordon equations

The coupled nonlinear Klein-Gordon equations read [26,27]

Upp — c(Q)VQU + aju — Blug — 71uv2 =0,
Vgt — C(Q)VQ’U + v — Bov® — pulv =0,

which play an important role in modern physics, where
0? 0? 0?
Y=ot o e (7)
0’x 0%y 0%z
is the Laplace operator.

We seek the travelling wave solutions of Eq. (6) in the form
u(z,y, z,t) = u(<), v(z,y,z1) =u(s), ¢=kr+ly+pz—uwt, (®)

where K = (k,l,p) and w are the wave vector and angular frequency.
Substituting (8) into (6), we have

Au” + aqu — fru® — yuv? =0, (9)
Av" 4+ apv — Bov® — youtv =0, (10)

where
A=w?-K?3, K’=K K=k +1>+p% (11)
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By considering the homogeneous balance between the highest order derivatives and nonlinear
terms appearing in Egs. (9) and (10), we obtain m = 1 for « and n = 1 for v. Suppose that the

solutions for Egs. (9) and (10) can be expressed in the following form

/ !

=ao + + 2 12

U = agp alO(Gl) a01(G2) ( )
G G}

U—bo+b1o(G )+b01(G2) (13)

where G1 = G1(§), G2 = Ga(n) satisfies Eq. (5), and ag, a10, ao1, bo, b10, bo1 are constants to be
determined later.

Substituting (12) and ( 3) along with Eq.(5) into Egs.(9) and (10), and collecting all terms
with the same power of ( )’(%) (1,5 = 0 1,2,...) together, the left-hand side of Eqgs.(9) and

(10) is converted into another polynomial ( )1( g;) (i,7 =0,1,2,...). Equating each coefficient
of this polynomial to zero, yields a set of snnultaneous algebraic equations for ag,a;; (i,j =
O,1,2,...),kl,...,k,HS,Al,AQ,Bl,... ,02.

Solving the algebraic equations above, yields

2A(4L —1)2(By — 2A(4L —1)2(By —
aozo’&w:# (3~ 125 myam:# GG

B1B2 — 1172 B1B2 — 1172
2A(5+ — 1)%(B1 — 72) \/QA(AQ —1)2(B1 —2)
bo =0, bg = 51 , bor = + B> , b1 =0,
0 10 :F\/ B1B2 — 1172 ol B1B2 — 1172 "
Y232 Ay Cq Ay Cy B?
- = 2A(EL _EL 4 = (AL o228 p
A Al > <B1 )Bl ' (Bl )Bz Cq L

Substituting (14) along with Eq. (5) into Egs.(12) and (13), from (8), we obtain plentiful
double traveling wave solutions consisting of hyperbolic functions, trigonometric functions, ra-

tional functions, and their mixture with arbitrary parameters as the follows:

Ci A
(5 —1>0,
Case 1 When C’1 Al
2 (A2
22y
B, 32 ) >0,
2A(4 — 1)2(B2 —m) C
=+ tan D& +c¢
\/ ﬁ1ﬂ2 — M2 A — (Di& +e)
2A( @ —1)2B2—m) [ Cs
+ tan(Dan + dy),
\/ ﬂlﬂz Y2 Ay — By (Dan +dy)
2A4(5 — 1)2(B1 — 72) (;
tan D& +c
-7 \/ 5152 — Y172 A — (Dig+e)
2A( @ —1)2(81 — 72) \/07
+ tan(Dan + d1),
\/ 5152 — 7172 Ay — By (Dan +d)

Ag

AL q Ay .
where Dy = % “t—, Dy = ng “%-—,c1,d; are arbitrary constants.
By Ba
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C A

2 <o,

B B,

Cy A

2Z(Z22 1) <o,

By " By

uz(x,t):i\/2A(g§1;2112f;—m>mtanhm“@)
: \/ M%gff;_ ) \/E )
vala,t) = F \/2A(%1g2112f;2—w \/TAl (e o
+ \/ 2A(g§1621)2$2 72) m b Fan ot do).

Case 2 When

A2

where F] = —t, 5 = 32 02 ,Co, do are arbitrary constants.

C, A

Gt
Case 3 When Ll

Gty

B> " By

2A(4+ — 1)%(B2 — m) C
uz(x,t) ==+ L tanD +c
3(@1) \/ B1B2 — 1172 A — (D& +e1)

QA(% = 1)%(B2 —m) \/C’i

* \/ B1B2 — 172 By — Ay ten A{Fy%+da),

2A(5 — 1)2(By —

v3(z,t) =F \/ (Bﬁll@ z ,(f; ") AIC tan(D1€ + ¢1)
\/M( (

n - 126

-m72) [ Ch
2 tan h(Fon + d
B1B2 — Y172 By — Ay (Fen + d2),

where D = F2 1 / f ,c1,dy are arbitrary constants.
By
Ci, A
BB VT
Case 4 When 1=

Cy A
B V70

= 2’4(% —1)%(B2 —m) \/07
ug(z,t) =+ \/ 58 —i1m i tan h(F1€ + ¢3)
24(3 - 12(B2—m) \/07
* \/ B1B2 — 1172 A, — B, tan(Don + d1),

683
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2A( & = 1)2(B1 — 72) / c,
tan h(F1€ + ¢
-7 \/ ﬂ152 - M2 - A (1€ + c2)

2442 — 1)2(B1 —
= \/ ﬁlﬂz - Y172

Al

) [ G
1B tan(Dan + dy),

where F; = % = , Dy = Bz BQ— ,C1,d; are arbitrary constants.
371 2
Ci1 A
>
Case 5 When Cl Al c
55 ~D=0(5 =0,
By " Bs
2A( ﬂ —1)2(B2—m)
==+ tan Di&+ec
\/ 5152 — M2 A — (Dig + 1)
I QAﬂ—l )2(B2 — 1) -1
516 - £ - ds’
182 — 172 (5 )N+ ds
2A4(4+ — 1)%(B1 — 72)
tan Di£E+c
- \/ 5152 — Y172 A — (Dig+ 1)
N 2A4(52 — 1)2(B1 — 72) -1
5152 — 7172 (42 —1)p+ds’
Bs 3
224
where D = % %701,(13 are arbitrary constants.
By
Ci1 A
(5 —1>0,
Case 6 When C’l Al A
2, A2 2
22 _)=0(Z2-1=0),
BN =0(F-1=0
2A(4 —1)2(B2 — 1)
ug(x,t) =% L tan D& +c
ol 1) \/ B1B2 — 1172 Ay — (Dig+ 1)
i\/wgg—l) (82 =) @HM
B1B2 — 1172 By o
244+ — 1)2(B1 — 72)
ve(x,t) = tan Di&+ec
ole?) $\/ B1B2 — 7172 A — (Dig + 1)
. \/2A(g§ —1)2(B, fvz)(@n” )
B1B2 — 1172 By o
A
where D; = % ~&1—,C1,dq4 are arbitrary constants.

By
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Ci A
—(Hr—1) <0,
Case 7 When

685

B 214(%1 —1)2(B2 — ) / C,
ur(z,t) =+ \/ 312 — 1172 A tan h(F1§ + co)

)2(B2 — 1)

-1

) Ao
:i:\/ A(iBz -1
B1p - Y172 (*2 -

n+ds’

AL )2
v7(:r,t)=:F\/ 24(5 — (A

ﬁ152 — Y172

— ) " / G tan h(F1€ + ¢2)
-4

. fA(gz “D2Bi-m) 1
B1P2 — 1172 (542 —)n+ds’
¢ 1= %

where F; = B T C2 d3 are arbitrary constants.

B1

Cy A

5 (5~ <0,
Case 8 When L

21 =0 (2 -1=0),

By By ~ 'B N

2

- 2A(4 —1)%(B2 —m) / o]
ug(w,t) =+ \/ SN~ A tan h(F1€ + c2)

. fA(gz — 12— ) Cy
B1B2 — 1172 B,

n+da),

2A(8- - 1)2(Br—2) [ 4
vg(x,t) = L tan h(F1€ + ¢
(1) =7 \/ B1B2 — 1172 By — A4 (F18 + c2)
N \/QA(;; —1)%(B1 — 72)(%77+d4)
B1B2 — 1172 By ’
_A
where F} = % —oL, ¢, dy are arbitrary constants.
By
A
SHEE - =0(F=0),
Case 9 When Lol !
Gl oy,
B, ' B,
\/214‘41—1 (B2 —11) —1
=+ — .
B1B2 — 172 (5 —DE+es

\/QA
+

—1)2(B2—m1) [ O
tan(Don +d
51,5’2 - Y172 Az — By (Dan + dv),
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\/214 (5 —1)2(B1 — 72) -1
:F
B1B2 — 1172 (% —1é+cs

2A( & —1)2(Br—2) [ C,
+ tan(Don + d
\/ ﬁ1ﬂ2 — 7172 Ay — Bo (Dan + dv),

Ag
where Dy = g; 32 ,C3,dy are arbitrary constants.
Cl Al Al
Case 10 When L= !
ot )
By "B
2A(4E —1)2(B2 —m) Oy
uio(x,t) = =% L —&+c
10(2,?) \/ B1B2 — 172 (Bl5 2

+

2A(8 —12(Ba—m) [ Cy
tan(Dson + d
\/ 5152—7172 Ay — By (Dan + du),
2A(5 — 1)2(B1 —m2) C
vio(z,t) qt\/ (3716—1—04)

5152 — 7172
2A(82 - 1B —72) [ Cp
+ tan(Don + d
5152 — M2 Az — B (D ).
22
where Dy = % 320727 c4,d; are arbitrary constants.
By
Cl A1 Cl
F(F_ )—O(B—:O),
Case 11 When Lol !
%(é -1)<0
B> " By ’

L 2AG - 128 — ) -1
un(@,t) =+ \/ P12 — 72 (5~ DE+cs

24(%2 —1)2(Ba—m1) [ Cy
+ 2 tan h(Fyn + d
\/ B1B2 — 71172 Ay — By (Fen + dz),

PR e TR R
uimH =+ B1B2 — 1172 (%— )¢+ c3

2A(42 —1)2(B1 — ) [ Oy
+ 2 tan h(Fon + d.
\/ B1B2 — 172 By — (s anh(Fyn + da),

1 .
where Fy = % —o; =, C3,dy are arbitrary constants.




Double traveling wave solutions of two nonlinear partial differential equations

S n=0(5-1=0),
Case 12 When { ! ™1 !
Code ) g
By By ’
24(5 — D2 (B —m) Oy
ui2(z,t) ==+ L —¢+ec
12(01) \/ B1B2 — 1172 (315 2
2A(82 -1’ (B =) [ Gy
+ 2 tan h(Fon + do),
\/ B1B2 — 1172 By — Ay ( 21 2)
2A(5- — D2(B1 — 12) Oy
vi2(z,t) = 1 —f4e
(@) =F \/ B1B2 — 1172 (31§ 2
214(% —1)2(81 — 72) Cy
+ 2 tan h(Fon + ds),
\/ B1B2 — 71172 By — Ay (Fon + d2)
Ay
where I = % —22, ¢y, do are arbitrary constants.
By
A
LA - =0(F =0)
Case 13 When L !
Sz =02 =0
By " Bs By ’
u@ﬂi¢m@y4ﬂ&—m 1
B B1B2 — 2 (5t —DE+es

i¢M@§1W&%) 1
B1B2 — 1172 (g—i — 1) +ds’

AP e R
=% B1B2 — 1172 (%—1)54-03

\/214(}32 = 1)2(B1 —12) -1
== ;
B1B2 — 7172 (g—z — 1) +ds

where c3, d3 are arbitrary constants.

C, A C
Bl(gl—l)—O(B1 =0),
Case 14 When L= !
2 n=0(F-1=0)
By By By -

2A(% - 1)%(B2 —m) -1
B1B2 — 1172 (‘% —1)é+c3

¢ZM§§—D%&—WQ<E

_“ _|_d ,
B1B2 — 172 an 2

2A(5 — 1)2(B1 — 12) -1
B1B2 — M2 (%1 —1Dé+cs

via(z,t) =F

687
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., \/M(ég — D26 — ) Oy
B1B2 — 7172 an

+da),

where c3, d4 are arbitrary constants.

Ci A A
P TE -
Case 15 When Ll !
S22 =0 (22 -1=0)
By "By By D
2A(4 —1)2(B2 — ), Cy
uis(x,t) ==+ L —&+c
13 ) \/ B1B2 — 1172 (31€ 2
i¢lﬂéi—)(&—vﬂ(bn+d)
B1B2 — 1172 Bo +
2A(5 — 1)%(B1 — ) C
vis(z,t) = L —f+e
152 ) :F\/ B1B2 — 2 (315 2
i\/zAvgz—l)?(ﬂl—w(cz ay
B1B2 — 1172 an +
where c4, d4 are arbitrary constants.
A A
AN =05 —1=0),
Case 16 When Ll !
oy =0(5=0)
Bs " Bs By, 7
2A(5- = 1)%(Ba —m) Oy
)=+ . “u
w(®,?) \/ B1B2 — 1172 B1§ 2

. \/2A(gg 128 -m) -1
B1B2 — 1172 (@ — 1) +ds’

24(5 — 1)2(B1 — 72) —1
5152 - 772 (g—g —1)n+ds’

24(5- — D2(B1 —12) Oy
v mt —¢+c
1ol -7 \/ 5152 — M7 (315 2
:t\/

where ¢4, d3 are arbitrary constants.

4. Application to the coupled Schrodinger-Boussinesq equation

We consider the coupled nonlinear Schrédinger-Boussinesq equations

(15)

Wy + Uge + fru = vu,
3vtt — Ugzzx + 3(U2)xm + BZ’UJL’JC = (|u|2)$17

where 31, B2 are real constants and v(z,t) is a real function while u(z,t) is a complex function.

The Eq. (15) is known to describe various physical processes in Laser and plasma, such as forma-
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tion, Langmuir field amplitude and intense electromagnetic waves and modulation instabilities
[28,29].

In order to look for the exact traveling wave solutions of Eq. (15), we suppose that

u(z,t) = p(z,t)e’”, 7=k +1t+§, (16)
where p(x,t) is a real function, k,I,&, are real constants. By substituting (16) into (15), we
obtain

— (L + K = Br)p = ve, (18)
vt — Vogaa + 3(1]2)90:8 + Bovze = (@2)96367 (19)

According to Eq. (17), we suppose that

p(x,t) = ¢(s) = p(x — 2kt + &1), (20)

where &; is the arbitrary constant. By substituting (20) into (18), we obtain

_ 9’ 2
We can suppose that
v(z,t) = P(s) = Y(z — 2kt + &). (22)

By substituting (20) and (22) into (18) and (19) and setting integral constant to zero, we
obtain ODE
{ @(5) = (14 K2 = B1)p(s) = (<)e(s) =0, (23)
9" (S) + (122 + B2)1(s) + 3¢°(<) — ¢*() = 0.

By considering the homogeneous balance between the highest order derivatives and nonlinear
terms appearing in Eq. (23), we obtain m = 2 for ¢ and n = 2 for 1. Suppose that the solutions
for Eq. (23) can be expressed in the following form

G G Lo GLGY G
— _— 24
0= ao+a10(Gl)+a01(G ) +azo <G1) +a“<G1)(G2)+a°2(G2) (24)
G/ G/ G/ G/ G/ G/
¢—ao+b1o(G )+bo1(G2)+bzo(G1) +511(G1)(G2)+502(G2)2 (25)

where G1 = G1(§), G2 = Ga(n) satisfies Eq. (5), and ag, a10, o1, @20, @11, @02, bo, b10, bo1, b20, b11, bo2
are constants to be determined later.

Substituting (24) and (25) along with Eq.(5) into Eq.(23), and collecting all terms with
the same power of ( 1) (g—;) (i,j = 0,1,2,...) together, the left-hand side of Eq.(23) is
converted into another polynomial (%)Z(%)J (i,7 = 0,1,2,...). Equating each coefficient
of this polynomial to zero, yields a set of simultaneous algebraic equations for ag,a;; (4,7 =
0,1,2,...),k1,...,kn,s,A1,A2,B1,...,Co.

Solving the algebraic equations above, yields

A
ag = O ajp = 0 apl = O a0 = :I:G\f(— — 1) , apg = i6\/§(§2 — 1)2, aylp = O,
1 2
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A A
bo =0, bip =0, by =0, byg = 6(3—1 —1)2, by = 6(=2 — 1)?

= 2
L ) 32 7b11 07 (6)
22 A, o Ay Cy B}
1777,17 A Lo pn==L.B
3(B ) +51+ ﬂz, 1= (B1 )B201+ 1.

Substituting (26) along w1th Eq. (5) into (24) and (25), from (16), we obtain plentiful dou-

ble traveling wave solutions consisting of hyperbolic functions, trigonometric functions, rational
functions, and their mixture with arbitrary parameters as follows:

Ci A
i
Case 1 When Lol
Cs (& ~1)>0
Bs " By ’
Al 2 Cl 2
—[+6vV2(2E — 12— tan?(D
uy(z,t) =[ 6\[(31 ) 1B e (D1€ + 1)
+ 6\@(& o 1)2 Co tanz(Dgn + dl)]61'(7@954‘(%(%—1)%+51+%52)t+50)’
By A2 — By
A C A C
vy (z,t) :6(3—1 - )Qﬁ tan?(D1€ 4 ¢1) + G(FE — 1)2142sz2 tan?(Dyn + dy),
AL Ay
where Dy = % 5, Dy = % £2— ¢1,d; are arbitrary constants.
1 By
Ci A
5 <0,
Case 2 When Lol
Cs (é ~1)<0,
By Bg
Cq
us(x, t) :[i6\[( ) tan h%(F1€ + co)
Bl A1

+ 6\/5(7 _ 1)2 CQ tan hQ(an + d )} l(kx‘i‘(%( ) +Bl+12ﬁ2)t+£0)
Bs By — Ay

vo(a,t) = (7—1)2 Cl tanh2 F1§+02)+6(A 12— s

tan h?(Fon +d
By B; By~ Ay (Fon + o),
A2
where F} = Cf LoFy = 02 , Co, do are arbitrary constants.
Gd_y)
Case 3 When By Bl
Code 4y g,
B> Bg
C
us(x,t) = [iG\fz(Bl 1)? 1_B tan 2(Di€ + 1)
C' (k22
+ h2(F i(kz+(5 ( 1) +B1+ is Bz)t-‘rfo)
6\[2(32 ) B A, tan h*(Fen + da)]e
A As
vs(,t) =6(=E — 1)2 L tan?(D1& 4 ¢1) + 6(— - 1) Cs tan h?(Fon + da),
B Ay — B, By — Ay

where D = % 5} 1 1 / ,c1,dy are arbitrary constants.
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Ci A
5 (5~ <0,
Case 4 When Ll
22 )5,
By B2
ug(, ) =[£6V/2i ( ) tan h2(FL€ + ca)
Bl A1
iﬁ\/iZ(& 1)2 O tan (Dgn—f—d )] i(kaz-i—(%(%_1)%+51+T12ﬂ2)t+50)7
By Ay —
Ay s C1 9 A, ) 9
) =6(= — 1)2——L  tan h2(F 6(=— —1)"—————t D d
va(x,t) (B1 ) B A, e (F1€+c2) + (32 )A2—32 an®(Dan + dy),
A Ay
where F} % cfl , Dy = gz %,cl,dl are arbitrary constants.
iy Ty
Ci A
B1 (Fl - 1) Oa
Case 5 When r=
22 _q)_g (2o
By " By "By 7
A Ch
us(z, 1) :[16\/5(—1 —1)? tan?(Dy € + ¢1)
A1 Bl
1 ik (B (FE—1) G +81+ 5 B2)t+60)
i6f(——1) ( 3 (B B, TH1+ 1302 o)
(42 — 1+ d3)?
Ay 9 C Ay 1
vs(x,t) =6(— —1 tanD 4+c1)+6(=——1 ,
s(0:1) =65, P g (i e + 6, — VP ey
A
where D; = gi BL ,c1,d3 are arbitrary constants.
1
C, A
= (5~ >0,
Case 6 When E.
222 =0 (B -1=0)
By " Bs By B
A
ug(z,t) :[iﬁﬂ(—l —1)? tan?(D1€ + ¢1)
A, — By
iﬁ\[(f —1) (ZQ +d4)2]ei(k1+(%(%* )%+ﬁ1+ﬁﬁ2)t+§0)’
2
Aq s 1 9 As Cy
t) =6(— —1)*——t D 6(—=— —1)*(= d
vl £) =6(5* — P tant (Dig + 1) + 652 — DA(Gn + o),
Al
where D; = % 1 ,C1,dy are arbitrary constants.
1
C A
= (5~ 1<,
Case 7 When Ll
)
By By By 7
Ch
uzr(z,t) :[i6\/§(—1 - 1) tan h2(Fi& + ¢2)
B B — A,
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i6\/§(é —1)? 1 ei(kx+(%( -1 +51+12ﬂ2)t+50)
(52 — D +ds)?
A L, O A L, 1
vr(x,t) =6(—= —1 tan h?(Fy€ + c2) + 6 1 ,
o) =608~ 1) g R ) 6 1
AL
where F} = gi —oL, ¢, d3 are arbitrary constants.
By
Ci1 A
5 (5 -1 <0
Case 8 When Ll
Gl g
By B, g, T
ug(x,t) :[iG\/i(é — 12— tan h2(F€ + ¢3)
’ Bl B, —A1
i@f(i .y (gzn+d ik (D B+ B2t eo)
A Cq A C
vs(x,t) :6(3—1—1) oA tanhQ(Flf—f—cQ)—kG(—z—l) (32n+d4) ,
_A
where F} = % —+, ¢, dy are arbitrary constants.
By
Cl A1 Cl
§(§_1) O(B =0),
Case 9 When Ll !
ug(z,1) =
ek (B G -D Bt B)460)
1 Cy
vo(,t) =6( - —1)* =2 1)2A2 ~5 tan?(Dan + dy ),
C!
where Dy = BZ
Case 10 When Bi "By B
@(& -1)>0
By By ’
A C
(@, 1) =[£6v2(5- — 1)* (%€ + )
B4 By
Az o O i(ka+ (22 (AL —1) G4+ 1 B2)t+60)
+6v2(—=— —1 t D dy 3B B 1Tz 0
\f(BQ ) Ay — By an®(Dary + da)Je ' 1 ’
Ay 9 Ay 5 Cs
t) =6(— — 1) (—= 6(—=— —1 t D d
vio(z, 1) (B1 )(Blf+04) + (B2 )AQ—BQ an®(Dyn + dy),
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Ag

where Dy = % BZC—Q, c4,dy are arbitrary constants.
By
Cy A Ch
BB VT E =0
Case 11 When Cl Al !
2, A2
— —1)<0,
By <BQ )
1

o) VB 1

C2 i(ka (3 (5 —1) g +B1+ 1 Ba)t+o)
+6 tan h?(F: ds 3B By THRIT1zP2)RTR0
VA 12 P a2 (Fn 4 )
Ay 9 1 A, 9 9
vi1(x,t) =6(—= —1 +6(= -1 tan h*(Fon + d
11(z, 1) (Bl ) ((2—1—1)54—@,)2 (32 ) A2 (F2n + d2),
A2
where I = % —22, ¢, do are arbitrary constants.
B
C, A A
55 V=0 G 120
Case 12 When C’l Al !
2, Ao
222 4y
5B D0
oz, t) [iﬁf(——n (f§+c4)2
& 2 i(ka+ (22 (4 —1) Sh 481+ 15 62)t+6o0)
:i:6\[(——1) tan h=(Fyn + da)le 33 By T B AT 12 PRIRR0)
By By — Ay
A a Ay O ,
t) =6(— —1 6 1 tan h”(F: d
wia(e, ) =65 — 12T+ en)? + 652 ~ 175 P tan h2(Fn + ),

A
1-42 .
where Fy = % —&5%, ¢4, do are arbitrary constants.
B

C, A C
St -n=0(5 =0,
Case 13 When Lel 1
222 =0(F2=0)
Bs ' By T UYBy,

where c3, d3 are arbitrary constants.
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Ci A C
Gty o0&,
Case 14 When { ! 1 !
G g Ay
By " By By -
Aq 9 1
ura(x,t) =[+6V2(7 1)
By (= 1)E+c3)?
Ay 2,Ca 27 i(ka+ (B (HL—1) T +81+ 5 82)t+£o0)
+ 2(Z22 1 e 3\B B 1T 13P2 0
6V2(5E — 120+ d)le o ,
Ay 2 1 Az 2 Cy 2
vig(x,t) =6(—= — 1 +6(=— —1)(=n+dy)",
14(2, 1) (31 ) (B 1 1) (32 )(3277 4)
where c3, d4 are arbitrary constants.
Ci1 Ay A
g(g—l): (Fl_lz );
Case 15 When Ll !
2222 1) =0(-1=0)
By B, T 'By -
A C
uis (2, ) =[F6V2(5 — DA (€ + )’
1 1
A 9.,Co 21 i(ka+(22 (AL —1) SL 481+ B2)t+E0)
+ 2(= _1)29(== 3 \B B 1T 1372 0
6V2(5 — D2+ da)e ks ,
A1 2 01 2 A2 2 02 2
vis5(z,t) 6(B1 ) (Blf+c4) +6(32 ) (3277+d4) :
where ¢4, dy are arbitrary constants.
Ci A A
5 (5 —D=0(5 —1=0),
Case 16 When e !
Sl gy _g (L2 _y)
By ' B, By 7
A C
ure(@, t) =[H6v2( 5 — 1)* (56 + 1)’
B, B,
A, 1 i(ko+(22 (AL —1)SL 48, +-L Ba)t+&0)
£ 6V2(EE — 1)? Ot BBt ),
By " (82— 1+ da)?
Ay 2, C1 2 Az 2 1
) =6( 5 — 1)2(rE+ca)? +6(5 — 1 ;
vi6(2, t) (31 ) (Blf oy (B2 ) ((% 1)+ dy)?

where cy4, d3 are arbitrary constants.

5. Conclusion

In summary, a new multiple (%)—expansion method has been first proposed and then ap-

plied to the coupled nonlinear Klein-Gordon equations and the coupled Schrédinger-Boussinesq
equation. With the aid of symbolic computation, a rich variety of solutions are obtained. These
solutions include double hyperbolic tangent function solutions, double tangent function solutions,
double rational solutions, and complexiton solutions. Such complexiton solutions possess combi-
nation of hyperbolic tangent and tangent function solutions, combination of hyperbolic tangent

and rational function solutions, combination of tangent and rational function solutions.
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The double traveling wave solutions of NPDEs are significant. We use nonlinear ordinary
differential equation A;(G})? — B;G;GY + C;G? = 0 (i = 1,2) in this new method and get
new double traveling wave solutions in the form u(¢) = ag + > ,_, Diti=k a”(gigg)l(gzgzg ).
However, Wang [13] used linear ordinary differential equation G’ + AG + uG = 0 as auxiliary

equation and the solutions presented in the form u(s) = ag + > vy ai(%). This traditional
(%

‘& )-expansion can only get single traveling wave solutions of NPDEs. So the new multiple (%)—
expansion method is very effective and powerful to handle various nonlinear partial differential
equations which frequently arise in mathematical physics, engineering sciences and many scientific
real time application fields, and provides more theoretical basis to reveal physical properties,

vibration inner laws and exterior factors.
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