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Abstract The truncated hierarchical B-spline basis has been proposed for adaptive data

fitting and has already drawn a lot of attention in theory and applications. However the

stability with respect to the Lp-norm, 1 ≤ p < ∞, is not clear. In this paper, we consider

the Lp stability of the truncated hierarchical B-spline basis, since the Lp stability is useful

for curve and surface fitting, especially for least squares fitting. We prove that this basis is

weakly Lp stable. This means that the associated constants to be considered in the stability

analysis are at most of polynomial growth in the number of the hierarchy depth.
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1. Introduction

The splines are a widely used tool in computer graphics, animation, modeling, CAD, CAGD,

and many other related fields, but they do not have the local refinement property, which is very

important in adaptive function approximation and detailed representation of geometric models

[1–4]. The hierarchical spline models provide a flexible and simple framework for local refinement

such that they are effective in many applications [5].

The concept of the hierarchical splines was originally introduced in [6] as an accumulation

of tensor-product splines with nested knot vectors. After that the researchers pay attention to

how to construct hierarchical B-spline basis. The hierarchical B-spline (HB-spline for short)

basis for tensor-product meshes was constructed in [7] and was extended in [8]. This basis does

not have the property of partition of unity. Later, a kind of truncated hierarchical B-spline

(THB-spline for short) basis was introduced in [9]. This basis forms a convex partition of unity

and has smaller support than those of the HB-spline basis. Moreover, there are some work

about hierarchical splines for non tensor-product mashes: polynomials splines over hierarchical

T-meshes [10,11], hierarchical Powell-Sabin splines [12], hierarchical splines on regular triangular

partitions [13], truncated hierarchical generating system for Zwart-Powell elements [14], and

bivariate hierarchical quartic box splines on three-directional meshes [15].
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Throughout this paper, we use Ω to denote an open interval (a, b) ⊂ R or an open rectangle

(a, b)× (a′, b′) ⊂ R
2. The norm of a continuous function f defined on Ω is defined by

‖f‖p = ‖f‖p,Ω :=

{

(
∫

Ω
|f |pdµ)1/p, 1 ≤ p < ∞,

maxΩ |f |, p = ∞.
(1)

And the norm of a vector c = {ci}i∈I is defined by

‖c‖p :=

{

(
∑

i∈I |ci|
p)1/p, 1 ≤ p < ∞,

maxi∈I |ci|, p = ∞.
(2)

If a basis is suitable for numerical computations, then it should be reasonably insensitive

to round-off errors. That is to say, functions with small functions values should have small

coefficients and vice versa. A basis with this property is said to be well conditioned or stable

and the stability is measured by the condition number of the basis.

Definition 1.1 Let V be a normed linear space. A basis {φi}i∈I with the index set I for V is

said to be stable with respect to a norm ‖ · ‖p, 1 ≤ p ≤ ∞, if there exist two positive constants

K1 and K2 such that

K−1
1 ‖c‖p ≤ ‖

∑

i∈I

ci · φi‖p ≤ K2‖c‖p, (3)

for all sets of coefficients c = {ci}i∈I . Let K∗
1 and K∗

2 denote the smallest possible value of K1

and K2 such that inequality (3) holds. The condition number of the basis {φi}i∈I is then defined

to be κp = κp({φi}i∈I) = K∗
1 ·K∗

2 .

From this definition, we know that K1K2 gives an upper bound for the condition number

κp of the basis {φi}i∈I and K1, K2 should be small. There is no unique answer to the question

how small the constants K1 and K2 should be, but it is typically required that the constants

should be independent of the dimension of V , or at least grow very slowly with it.

The univariate and bivariate tensor-product B-spline basis are L∞ stable [16–18]. The task

of finding L∞ stable basis for the multivariate spline spaces over triangulations can only be done

for general triangulations when d ≥ 3r+2 (see [3]). As for the HB-spline and THB-spline basis,

the cases are more complicated. The HB-spline basis is a weakly L∞ stable basis, provided that

the nested subdomains satisfy certain conditions [19]. The absence of the strong L∞ stability

of the HB-spline basis is implied by the missing partition of unity. The THB-spline basis is a

strongly L∞ stable basis under certain reasonable assumptions on the given knot configuration

[20]. The Lp stability of a basis, 1 ≤ p < ∞, is useful in many applications, for example the

case p = 2 is closely related to the least squares approximations. In this paper, we consider the

Lp stability of the THB-spline basis, 1 ≤ p < ∞. We will prove that the THB-spline basis is a

weakly Lp stable basis, 1 ≤ p < ∞, by using some classical tools of the mathematical analysis.

This means that the associated constants to be considered in the stability analysis are at most of

polynomial growth in the number of hierarchy depth. An example is proposed that the constants

to be considered in the Lp stability analysis depend on the number of the hierarchical depth.

The remainder of this paper is organized as follows. In Section 2, we give some preliminaries

about this paper. In Section 3, we review the hierarchical spline spaces. We give the proofs of
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the Lp stability (1 ≤ p < ∞) of the B-spline and the truncated hierarchical B-spline basis in

Section 4 and 5, respectively. We conclude this paper with a summary in Section 6.

2. Preliminaries

Let {Bi}i∈I be a sequence of B-spline basis functions defined on Ω, where I is an index set

such that the functions Bi do not vanish on Ω for i ∈ I. And let S = span{Bi}i∈I be the linear

space of the linear combinations of {Bi}i∈I with real coefficients c = {ci}i∈I .

Lemma 2.1 ([21]) Let f be a real univariate polynomial of degree d having no zeros in interval

(−1, 1), and let f be positive on (−1, 1). Then

max
−1≤x≤1

f(x) ≤
1 + d

2
·

∫ 1

−1

f(x)dx. (4)

Lemma 2.2 Let f be a real univariate polynomial of degree d having no zeros in interval (a, b).

Then

‖f‖∞ ≤ (1 + d)(b − a)−1/p‖f‖p, 1 ≤ p < ∞. (5)

Proof From Lemma 2.1 and the Hölder inequality, we obtain the result. �

Lemma 2.3 Let f be a real bivariate polynomial in two variables of degree d in the first

variable and of degree d′ in the second variable having no zeros in (a, b)× (a′, b′). Then

‖f‖∞ ≤ (1 + d)(1 + d′)[(b− a)(b′ − a′)]−1/p‖f‖p, 1 ≤ p < ∞. (6)

Proof Firstly, we fix the second variable. Using Lemma 2.2 to the first variable, we have

( max
a≤x≤b

|f(x, y)|)p ≤ (1 + d)p(b − a)−1

∫ b

a

|f(x, y)|pdx, ∀y ∈ (a′, b′). (7)

Then we take the maximum on both sides. Using Lemma 2.2 to the second variable, we obtain

the result. �

For a univariate polynomial f of degree d, its blossom B[f ] is a function of d variables.

Definition 2.4 ([22]) Let f(x) be a univariate polynomial of degree d, its blossomB[f ](x1, . . . , xd)

is a function of d variables with the following properties:

(i) Symmetric property:

B[f ](x1, . . . , xd) = B[f ](π(x1, . . . , xd)), π is any permutation of {x1, . . . , xd}; (8)

(ii) Affine property:

B[f ](. . . , αu+ βv, . . .) = αB[f ](. . . , u, . . .) + βB[f ](. . . , v, . . .), α+ β = 1; (9)

(iii) Diagonal property:

B[f ](x, . . . , x) = f(x). (10)

From the blossom method we can obtain explicit formulas for the B-spline coefficients of a

univariate spline function.
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Lemma 2.5 ([22]) Let f =
∑n

i=0 ciBi be a univariate spline of degree d with knot vector

t = {ti}
n+d+1
i=0 . Then its B-spline coefficients can be given by

ci = B[f |(tk,tk+1)](ti+1, . . . , ti+d), k = i, i+ 1, . . . , i+ d, (11)

where B[f ](x1, . . . , xd) is the blossom of f and f |(tk,tk+1) is the restriction of f to the interval

(tk, tk+1).

Lemma 2.6 Let S = span{Bi}ni=0 be a univariate spline space of degree d with knot vector

t = {ti}
n+d+1
i=0 and let any f =

∑n
i=0 ciBi ∈ S. Then

|ci| ≤
(2d(d− 1))d

d!
· ‖f‖∞,(ti,ti+d+1), i = 0, 1, . . . , n. (12)

Proof Let [tli , tli+1] be the largest subinterval of [ti+1, ti+d] ⊂ (ti, ti+d+1) = supp(Bi) for fixed

i, i = 0, 1, . . . , n. And let {xi,k}dk=0 be uniformly spaced points

xi,k = tli + k(tli+1 − tli)/d, k = 0, 1, . . . , d (13)

in the interval [tli , tli+1]. Since the restriction of f to [tli , tli+1] is a univariate polynomial of

degree d, it can be represented both in terms of {Bi}ni=0 and the Lagrange coefficient polynomials

{pi,k}dk=0

f(x)|[tli ,tli+1] =
n
∑

j=0

cjBj(x)|[tli ,tli+1] =

li
∑

j=li−d

cjBj(x) =
d

∑

k=0

f(xi,k)pi,k(x)|[tli ,tli+1], (14)

where

pi,k(x) =

d
∏

j=0,j 6=k

x− xi,j

xi,k − xi,j
, x ∈ [tli , tli+1], k = 0, 1, . . . , d. (15)

On the other hand, pi,k also can be represented in terms of {Bi}ni=0

pi,k(x)|[tli ,tli+1] =

n
∑

j=0

ωj
i,kBj(x)|[tli ,tli+1] =

li
∑

j=li−d

ωj
i,kBj(x), k = 0, 1, . . . , d. (16)

By substituting Eq. (16) into Eq. (14), we obtain

f(x)|[tli ,tli+1] =

li
∑

j=li−d

cjBj(x) =

d
∑

k=1

f(xi,k)pi,k(x)

=

d
∑

k=1

f(xi,k)(

li
∑

j=li−d

ωj
i,kBj(x)) =

li
∑

j=li−d

(

d
∑

k=0

ωj
i,kf(xi,k))Bj(x). (17)

Since {Bj}nj=0 are B-spline basis functions, we have

ci =
d

∑

k=0

ωi
i,kf(xi,k). (18)
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From Lemma 2.5, we have

ωi
i,k =

1

d!

∑

(j1,...,jd)∈πd

d
∏

r=1

(ti+j1 − xi,0) · · · (ti+jk − xi,k−1)(ti+jk+1
− xi,k+1) · · · (ti+jd − xi,d)

(xi,k − xi,0) · · · (xi,k − xi,k−1)(xi,k − xi,k+1) · · · (xi,k − xi,d)
,

(19)

for k = 0, 1, . . . , d, where πd denotes the set of all permutations of the integers {1, 2, . . . , d}.

Since ti+j1 , . . . , ti+jd , xi,0, . . . , xi,k−1, xi,k+1, . . . , xi,d ∈ [ti+1, ti+d], we have

(ti+j1 − xi,0) · · · (ti+jk − xi,k−1)(ti+jk+1
− xi,k+1) · · · (ti+jd − xi,d) ≤ (ti+d − ti+1)

d. (20)

From Eq. (13) we know that xi,k −xi,l = (k− l)(tli+1− tli)/d for 1 ≤ l ≤ d but with l 6= k. Since

[tli , tli+1] is the largest subinterval of [ti+1, ti+d], we have

d
∏

l=0,l 6=k

|xi,k − xi,l| =
d
∏

l=0,l 6=k

|k − l|

d
(tli+1 − tli) = k!(d− k)!(

tli+1 − tli
d

)d

≥ k!(d− k)!(
ti+d − ti+1

d(d− 1)
)d (21)

for all k. The sum in Eq. (19) contains d! terms which means that

d
∑

k=0

|ωi,k| ≤
d

∑

k=0

1

d!
d!

(ti+d − ti+1)
d

k!(d− k)!( ti+d−ti+1

d(d−1) )d
=

d
∑

k=0

(d(d − 1))d

d!

d!

k!(d− k)!

=
(d(d− 1))d

d!
·

d
∑

k=0

d!

k!(d− k)!
=

(d(d − 1))d

d!
·

d
∑

k=0

(

d

k

)

=
(2d(d− 1))d

d!
. (22)

Combining Eq. (18) and inequality (22), we have

|ci| = |
d

∑

k=0

ωi
i,kf(xi,k)| ≤

d
∑

k=0

|ωi
i,k| · ‖f‖∞,(ti,ti+d+1)

≤
(2d(d− 1))d

d!
· ‖f‖∞,(ti,ti+d+1), i = 0, 1, . . . , n. (23)

Lemma 2.7 Let S = span(Bi ×B′
j)i=0,...,n;j=0,...,n′ be a bivariate tensor-product spline space

in two variables of degree d in the first variable and degree d′ in the second variable with knot

vector t× t’ = {ti}
n+d+1
i=0 × {t′j}

n′+d′+1
j=0 , and let any f =

∑n
i=0

∑n′

j=0 cijBiB
′
j ∈ S. Then

|cij | ≤
(2d(d− 1))d(2d′(d′ − 1))d

′

d!d′!
‖f‖∞,(ti,ti+d+1)×(t′

j
,t′

j+d′+1
),

i = 0, 1, . . . , n; j = 0, 1, . . . , n′. (24)

Proof Firstly, we fix the second variable and use Lemma 2.6 to the first variable. Then we use

Lemma 2.6 to the second variable. The result follows. �

Lemma 2.8 Let f =
∑n

i=0 ciBi be a univariate spline function of degree d with knot vector

t = {ti}
n+d+1
i=0 , and let h = maxi |ti+1 − ti| be the maximum interval between knots. Then

|ci| ≤ h−1/p(2d(d− 1))d
(1 + d)1−1/p

d!
· ‖f‖p,(ti,ti+d+1), (25)
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for all sets of coefficients {ci}ni=1, 1 ≤ p < ∞.

Proof Using Lemmas 2.2 and 2.6 we have the result. �

Lemma 2.9 Let f =
∑n

i=0

∑n′

j=0 cijBiB
′
j be a bivariate tensor-product spline in two variables

of degree d in the first variable and degree d′ in the second variable, and let h = maxi,j |ti+1 −

ti| · |t′j+1 − t′j | be the maximum cell between all cells. Then

|cij | ≤ h−1/p(2d(d+ 1))d(2d′(d′ + 1))d
′ [(1 + d)(1 + d′)]1−1/p

d!d′!
· ‖f‖p,(ti,ti+d+1)×(t′

j
,t′

j+d′+1
), (26)

for all sets of coefficients {cij}1≤i≤n,1≤j≤n′ , 1 ≤ p < ∞.

Proof From Lemmas 2.3 and 2.7 we have the result. �

3. Hierarchical spline spaces

In what follows, let

S0 ⊂ S1 ⊂ S2 ⊂ · · · (27)

be an infinite sequence of nested linear spaces defined on Ω. We assume that each space Sl is

spanned by a B-spline basis Bl = {Bl
k}k∈Il , where Il is the index set such that the functions Bl

k

do not vanish on Ω for k ∈ Il. Those basis functions of Bl are defined on a partition ∆l of Ω,

where ∆l+1 is a refinement of ∆l, l = 0, 1, . . . . In addition, let the hierarchy {Ωl} be a sequence

of nested bounded domains

Ω = Ω0 ⊇ Ω1 ⊇ · · · ⊇ Ωl ⊇ · · · , (28)

where l represents the level of the hierarchy and Ωl represents the domain selected to be refined at

level l. We also suppose that the boundary ∂Ωl is aligned with the edges of ∆l. The hierarchical

B-spline basis [7] is defined by

H =
⋃

l∈Z+

Hl =
⋃

l∈Z+

{β ∈ Bl : supp(β) ∩Dl 6= ∅}. (29)

However, this basis does not have the property of partition of unity and has relatively large

support. In view of this, a kind of truncated hierarchical B-spline basis was presented [9]. The

THB-spline basis is defined by

T =
⋃

l∈Z+

T l =
⋃

l∈Z+

{truncl+1(β) : β ∈ Bl, and supp(β) ∩Dl 6= ∅}, (30)

where the truncation of f ∈ Sl with respect to Bl+1 on Ωl+1 is defined by

truncl+1(f) =
∑

supp(Bl+1

k
)*Ωl+1

cl+1
k Bl+1

k , (31)

where f =
∑

k c
l+1
k Bl+1

k is its representation with respect to Bl+1.

In what follows, we will use S to denote the hierarchical space spanH = spanT , N to denote

the depth of the hierarchy, and T = {τlk : l ∈ Z
+, k ∈ Iτl } to denote the THB-spline basis, where

Iτl is the index set such that the functions τlk do not vanish on Ωl for k ∈ Iτl . An example of
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an HB-spline basis is shown in Figure 1. And an example of a THB-spline basis is shown in

Figure 2. It can be seen that the supports of the THB-spline basis are smaller than those of the

HB-spline basis.

(a) HB-spline basis functions of level 0 (b) HB-spline basis functions of level 1

(c) HB-spline basis functions of level 2 (d) HB-spline basis functions of level 3

(e) Combination of basis functions from the hierarchical levels 0-3

Figure 1 Univariate quadratic HB-splines defined on the hierarchical meshes

Lemma 3.1 ([20]) The THB-spline basis T = {τlk : l ∈ Z
+, k ∈ Iτl } has the following properties:

(i) Non-negativity: τlk ≥ 0, ∀τlk ∈ T ;

(ii) Locally compact support: ∀τlk ∈ T has locally compact support;

(iii) Nested property: spanT l ⊆ spanT l+1, l ∈ Z
+;

(iv) T forms a convex partition of unity;

(v) ∀τlk ∈ T with level l, ∃Bl
k ∈ Bl so that

τlk|Ωl\Ωl+1 = Bl
k|Ωl\Ωl+1 . (32)

Bl
k is called the mother of τlk and indicated by mot(τlk). τlk is called the child of Bl

k and

indicated by child(Bl
k). The level of Bl

k is the level of τlk;

(vi) If the restriction of f to πl0k0
= (Ωl0\Ωl0+1)

⋂

supp(τl0k0
), indicated as f |πl0k0

, can be

represented both in terms of basis of Bl and THB-spline basis

f |πl0k0
=

∑

B
l0
k0

∈Bl0

cl0k0
Bl0

k0
|πl0k0

=
∑

k0∈Z+

∑

l0∈Il0

cl0k0
τl0k0

|πl0k0
, (33)

where Bl0
k0

= mot(τl0k0
), then

cl0k0
= cl0k0

. (34)
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The concepts of weakly and strongly stable basis were introduced in the context of multires-

olution analysis [23]. They were extended to the context of the hierarchical spline spaces [20].

The stability of the THB(or HB)-spline basis depends not only on the number of the hierarchy

depth N , but also on the choice of the hierarchy. This is different from the case of the stability

of wavelet expansions, which depend solely on the number N .

Definition 3.2 A basis {φi}i∈I for the hierarchical spline space S is called a strongly Lp stable

basis, 1 ≤ p ≤ ∞, if there exist two constants K1 and K2 which are independent of the hierarchy

{Ωl} such that

K−1
1 ‖c‖p ≤ ‖

∑

i∈I

ciφi‖p ≤ K2‖c‖p, (35)

for all sets of coefficients c = {ci}i∈I . The basis {φi}i∈I is called a weakly Lp stable basis if there

exist two polynomials K1(N) and K2(N) which depend on the depth N of the hierarchy {Ωl},

such that inequality (35) holds for all sets of coefficients c = {ci}i∈I .

The HB-spline basis is a weakly L∞ stable basis, provided that the nested subdomains

satisfy certain conditions [19]. The absence of the strong L∞ stability of the HB-spline basis is

implied by the missing partition of unity. The THB-spline basis is a strongly L∞ stable basis

under certain reasonable assumptions on the given knot configuration [20].

(a) THB-spline basis of level 0 (b) THB-spline basis of level 1

(c) THB-spline basis of level 2 (d) THB-spline basis of level 3

(e) Combination of basis from the hierarchical levels 0-3

Figure 2 Univariate quadratic THB-splines defined on the hierarchical meshes

4. Lp Stability of B-spline basis
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It is well known that the univariate and bivariate tensor-product B-spline basis are L∞

stable [16–18]. Now we consider the Lp stability of the univariate and bivariate tensor-product

B-spline basis, where p is a real number in the interval [1,∞).

Theorem 4.1 Let S = span{Bi}
n
i=0 be a univariate spline space of degree d defined on

Ω = [a, b] ⊂ R, and let h = maxi |ti+1 − ti| be the maximum interval between knots. Then there

exist two constants K1 and K2 such that

K−1
1 ‖c‖p ≤ ‖f‖p ≤ K2‖c‖p, (36)

for any f =
∑n

i=0 ciBi ∈ S and all coefficients c = {ci}ni=0, where

K1 = h−1/p(1 + d)
(2d(d− 1))d

d!
(37)

and

K2 = (b − a)1/p. (38)

Proof We first consider the upper inequality. Remembering q is the conjugate number of p

and applying the Hölder inequality, we have

|f | =|
n
∑

i=0

ciBi |≤
n
∑

i=0

|ciBi| ≤ (

n
∑

i=0

|ci|
p)1/p(

n
∑

i=0

|Bi|
q)1/q ≤ (

n
∑

i=0

|ci|
p)1/p(

n
∑

i=0

Bi)
1/q. (39)

Raising this to the pth power, and recalling that {Bi}
n
i=0 have the property of partition of unity,

we can obtain

|f |p ≤
n
∑

i=0

|ci|
p. (40)

So we have

‖f‖pp =

∫ b

a

|f |pdx ≤

∫ b

a

n
∑

i=0

|ci|
pdx =

n
∑

i=0

|ci|
p ·

∫ b

a

dx = (b − a) · ‖c‖pp. (41)

Taking pth roots, we prove the upper inequality

‖f‖p ≤ K2 · ‖c‖p, (42)

where K2 = (b− a)1/p.

Then we consider the lower inequality. Firstly we fix i. From Lemma 2.9 we have

|ci| ≤ h−1/p(2d(d− 1))d
(1 + d)1−1/p

d!
· ‖f‖p,(ti,ti+d+1). (43)

Raising this to the pth power and summing over i, we have

‖c‖pp =

n
∑

i=0

|ci|
p ≤ [h−1/p(2d(d− 1))d

(1 + d)1−1/p

d!
]p

n
∑

i=0

∫ ti+d+1

ti

|f |pdx. (44)

The above sum at most contains d + 1 terms, which means that if we take pth roots, then we

have

‖c‖p ≤ K1 · ‖f‖p, (45)

where K1 = h−1/p(1 + d)(2d(d− 1))d/d!. �
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Theorem 4.2 Let S = span{BiB
′
j}0≤i≤n,0≤j≤n′ be a bivariate tensor-product spline space in

two variables of degree d in the first variable and degree d′ in the second variable defined on

Ω = [a, b]× [a′, b′] ⊂ R
2. And let h = maxi,j |ti+1 − ti| · |t

′
j+1 − t′j | be the maximum cell between

all cells. Then there exist two constants K1 and K2 such that

K−1
1 ‖c‖p ≤ ‖f‖p ≤ K2‖c‖p, (46)

for any f =
∑n

i=0

∑n′

j=0 cijBiB
′
j ∈ S and all sets of coefficients c = {cij}, where

K1 := h−1/p(1 + d)(1 + d′)
(2d(d − 1))d(2d′(d′ − 1))d

′

d!d′!
(47)

and

K2 := [(b− a)(b′ − a′)]1/p. (48)

Proof This theorem can be proved by the same method as employed in Theorem 4.1. �

5. Lp Stability of the THB-spline basis

The Lp stability of a basis, 1 ≤ p < ∞, is useful in many applications, for example the

case p = 2 is closely related to the least squares approximations. In this section, we consider the

Lp-stability of the THB-spline basis, 1 ≤ p < ∞.

Theorem 5.1 Let S be a univariate hierarchical spline space of degree d defined on Ω =

[a, b] ⊂ R and T = {τlk : l ∈ Z
+, k ∈ Iτl } be the THB-spline basis, where Iτl is the index set such

that the functions τlk do not vanish on Ωl for k ∈ Iτl . And let h be the maximum cell between

all cells. Then there exist two constants K1(N) which depends on the number of the hierarchy

depth N and K2 such that

K1(N)−1‖c‖p ≤ ‖f‖p ≤ K2‖c‖p, (49)

for any f =
∑N

l=0

∑

k∈Iτ
l
clkτlk ∈ S and all sets of c = {clk}, where

K1(N) := h−1/p(1 +N)1/p(1 + d)
(2d(d− 1))d

d!
(50)

and

K2 := (b− a)1/p. (51)

Proof We first consider the upper inequality. Remembering q is the conjugate number of p

and applying the Hölder inequality, we have

|f | = |
N
∑

l=0

∑

k∈Iτ
l

clkτlk| ≤
N
∑

l=0

∑

k∈Iτ
l

|clkτlk|

≤ (

N
∑

l=0

∑

k∈Iτ
l

|clk|
p)1/p(

N
∑

l=0

∑

k∈Iτ
l

| τlk|
q)1/q

≤ (
N
∑

l=0

∑

k∈Iτ
l

|clk|
p)1/p(

N
∑

l=0

∑

k∈Iτ
l

τlk)
1/q,
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where T = {τlk : l ∈ Z
+, k ∈ Iτl } is the THB-spline basis and Iτl is the index set such that the

functions τlk do not vanish on Ωl for k ∈ Iτl . Raising this to the pth power, and recalling that

all {τlk} sum to 1, we can obtain

| f |p≤
N
∑

l=0

∑

k∈Iτ
l

| clk |p . (53)

So we have

‖f‖pp =

∫

Ω

|f |pdµ ≤

∫

Ω

N
∑

l=0

∑

k∈Iτ
l

|clk|
pdµ =

N
∑

l=0

∑

k∈Iτ
l

|clk|
p ·

∫

Ω

dµ

= (b− a) · ‖c‖pp. (54)

Taking pth roots, we prove the upper inequality

‖f‖p ≤ K2‖c‖p, (55)

where K2 = (b− a)1/p.

Then we consider the lower inequality. Firstly we fix l and k. From Eq. (34) and inequality

(26) we have

|clk| ≤ h−1/p(2d(d− 1))d
(1 + d)1−1/p

d!
· ‖f‖p,supp(τlk)

⋂
(Ωl\Ωl+1). (56)

Raising this to the pth power and summing over l and k, we have

‖c‖pp =

N
∑

l=0

∑

k∈Il

| clk |p≤ h−1(2d(d− 1))dp
(1 + d)p−1

(d!)p

N
∑

l=0

∑

k∈Iτ
l

∫

supp(τlk)
⋂

Dl

|f |pdµ. (57)

The above sum at most contains (1 + N)(1 + d) terms, which means that if we take pth roots,

then we have

‖c‖p ≤ K1(N) · ‖f‖p, (58)

where K1(N) = h−1/p(1 +N)1/p(1 + d)(2d(d − 1))d/d!. �

Theorem 5.2 Let S be a bivariate tensor-product hierarchical spline spaces in two variables of

degree d in the first variable and degree d′ in the second variable defined on Ω = [a, b]× [a′, b′] ⊂

R
2, and let T = {τlk : l ∈ Z

+, k ∈ Iτl } be the THB-spline basis, where Iτl is the index set such

that the functions τlk do not vanish on Ωl for k ∈ Iτl . And let h be the maximum cell between

all cells. Then there exist two constants K1(N) which depends on the number of the hierarchy

depth N and K2 such that

K1(N)−1‖c‖p ≤ ‖f‖p ≤ K2‖c‖p, (59)

for any f =
∑N

l=0

∑

k∈Iτ
l
clkτlk ∈ S and all sets of c = {clk}, where

K1(N) := h−1/p(1 +N)1/p(1 + d)(1 + d′)(2d(d − 1))d(2d′(d′ − 1))d
′

/d!d′! (60)

and

K2 := [(b− a)(b′ − a′)]1/p. (61)
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Proof The proof of this theorem can be completed by the method analogous to that used in

Theorem 5.1. �

Remark 5.3 The constants K1(N) in inequality (49) and (59) depend on the number of the

hierarchy depth. In fact, we cannot find a better constant such that inequality (49) and (59)

gets stronger. To verify this remark, we will construct a univariate quadratic hierarchical spline,

which will show the polynomial dependence. Let Ω0 = [0, 3] and take the grid with mesh size

1 on Ω0. And let the grid with mesh size 1/2l on Ωl, l ≥ 1. In each dyadic level l, we remove

one B-spline, and truncate the other 3 B-splines with respect to Bl+1 on Ωl+1, and insert 4 little

B-splines at the next level l + 1.

Ω0 = [0, 3],

Ωl = [1− 1/2l−1, 1 + 1/2l−2], for l ≥ 1.

The corresponding THB-spline basis functions of the first four levels are shown in Figure 2. We

define f by

f =

N
∑

l=0

∑

k∈Il

1 · τlk = 1, (62)

where

clk ≡ 1, ∀l, k. (63)

So we have

‖f‖p := (

∫ 3

0

| f |p dx)
1
p = 3

1
p (64)

and

‖c‖p := (

N
∑

l=0

∑

k∈Il

| clk |p)
1
p = (3N + 5)

1
p . (65)

These imply directly that

‖c‖p = (3N + 5)
1
p > 3

1
p = ‖f‖p. (66)

6. Conclusion

The hierarchical spline model provides a flexible and simple framework for adaptive function

approximation and detailed representation of geometric model. They can be linearly represented

by the truncated hierarchical B-spline basis. This basis forms a convex partition of unity and

has the smaller supports than those of the hierarchical B-spline basis. The stability analysis of

the truncated hierarchical B-spline basis is considered in this paper, since the stability of a basis

is important for the computer manipulations. We prove that the THB-spline basis is a weakly

Lp stable basis, 1 ≤ p < ∞, by using some classical tools of mathematical analysis. This means

that the associated constants to be considered in the stability analysis are at most of polynomial

growth in the number of hierarchy depth.

Acknowledgements We thank the referees for their time and comments.



Lp stability of the truncated hierarchical B-spline basis 709

References

[1] Renhong WANG, Xiquan SHI, Zhongxuan LUO, et al. Multivariate Spline Functions and Their Applications.

Science Press, Beijing, 1994. (in Chinese)
[2] G. FARIN. Curves and Surfaces for CAGD: a Practical Guide, 5th ed. Morgan Kaufmann Publishers, San

Francisco, 2002.

[3] Mingjun LAI, L. L. SCHUMAKER. Spline Functions on Triangulations. Cambidge University Press, Cam-
bridge, 2007.

[4] Yongxia HAO, Chongjun LI. The c1 and c2 quasi-plateau problem. J. Computat. Appl. Math., 2018, 329:
106–124.

[5] Xin LI, Falai CHEN, Hongmei KANG, et al. A survey on the local refinable splines. Science China Mathe-

matics. (Beijing), 2016, 59(4): 617–644.
[6] D. FORSEY, R. BARTELS. Hierarchical B-spline refinement. Comp. Graph., 1998, 22: 205–212.

[7] R. KRAFT. Adaptive and linearly independent multilevel B-splines. Vanderbilt Univ. Press, Nashville, TN,
1997.
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